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Abstract

For an autonomous robot, knowing its pose and the current state of the envi-

ronment is essential, as it represents a basis of planning and reactive behavior.

In case of a soccer playing robot in the RoboCup Humanoid league competition,

detecting field features efficiently so as autonomously to achieve and maintain an

accurate estimate of its pose on the field is nontrivial. Most current approaches

only optimize a three degrees of freedom (3-DoF) (x, y, yaw) of robot pose using

visual perception and dead reckoning (DR) data while retrieving another 3-DoF

(z, roll, pitch) of robot pose from IMU and Kinematic model. Note that the DR

and IMU data are not always reliable, which may reduce the accuracy of the re-

sulting estimate. In addition, new rules in RoboCup are creating new difficulties

for solely color-based detection strategies.

To address these challenges, this thesis proposes a model-based visual tracking

system that is able to track 6-DoF camera pose on the soccer field. First, we

introduce a kernel-based line detection method for extracting observations from

the input images. Then we describe a method for creating a set of 2D-to-3D

point correspondences by associating the observations with the projected field

model. As a result, we can solve the Perspective-n-Point (PnP) problem to find

the estimated 6-DoF camera pose. Moreover, use of the RANSAC schema makes

the optimization approach robust to outliers. Finally, tracking accuracy can be

further increased by applying the Kalman filter for state fusion.

Experimental results show four main advantages of the proposed system in com-

parison to previous work: 1) the line detection method is less sensitive to light

condition changes than the color thresholding-based approaches; 2) data registra-

tion accuracy is improved by identifying orientations of nodes and clustering the

line segments; 3) the system is comparable and in some cases better than the tra-

ditional 3DoF pose localization approaches in terms of visual tracking accuracy;

4) the system is less vulnerable than traditional approaches to the error from DR

or IMU data.
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1 Introduction

1.1 Motivation

The goal of the international RoboCup committee is to develop a team of humanoid

robots that is able to win against the official human World Soccer Champion team

until 2050. Due to this purpose, the rules for soccer game are updated every year

to make the playing situation progressively approaching the real human soccer

competition environment. In order to complete this challenging goal, various of

new technologies should be studied and developed.

Detecting field lines comes to the very first important step in vision perception,

because field lines are main source of information in soccer robot localization.

According to the changes of the Humanoid league rules, the soccer field is built

with artificial grass, rather than carpet which was used before. Thus the field lines

painted on the grass are no longer clear white. Moreover, the ball is specified to be

at least 50% white, which makes it harder to differentiate whether it is a ball or a

line segment. Due to these changes, the solely color-based detection method (Laue

et al., 2009) that were extensively used in previous years is no longer sufficient for

the current environment. Therefore, in order to address the new challenge, it is

crucial to develop a new visual perception system that can detect the brighter line

segments relative to their neighbor.

In addition, the more severe competition in RobotCup calls for higher accuracy

in localization. However, for a 6-DoF pose (x, y, z, γ, β, α)T where (x, y, z) denotes

the position of the robot on the field; and (γ, β, α) describe the orientation in Euler

angles of the robot, most of the current visual localization approaches only opti-

mize three parameters (x, y, α)T of robot pose while they retrieve the other three

parameters (z, γ, β)T from IMU and dead reckoning (DR) data, from which the

error may influence the resulting localization accuracy. Such approaches require

the robot equipped with well calibrated IMU, which it is not always realistic to do

so. Therefore, tracking the whole 6D camera pose in is essential for reducing the

dependence of the system on DR, which may improve the tracking accuracy.

1



1 Introduction

1.2 Contribution

In this thesis work, we present a visual tracking system which utilizes the field lines

to track the 6D camera pose of a soccer robot. The main working steps of our vision

tracking system are described as follows: First, we detect the boundary of the field

and identifies the obstacles inside the field boundary, then by constructing line

detectors, we find the high response pixels. Second, a purified skeleton is formed

by using the local optimal values. Third, from the purified skeleton, a node graph

is constructed, which is clustered to different line clusters afterwards. Fourth, we

set up a set of 2D-to-3D point correspondences by associating the observations

with the projected field model, followed by solving the Perspective-n-Point (PnP)

problem to find the optimal camera pose. We implement three algorithms for

optimization, hill climbing, EPnP, and, EPnP+RANSAC. Finally, we employ the

Kalman filter for state fusion.

Based on the working steps of our system, we therefore can outline the research

contributions of this thesis as follows:

• Proposing a kernel-based field line detection method that is less sensitive to

light condition changes than thresholding-based method.

• Proposing a new approach for constructing node graph that represents the

field line structure.

• Improving the data registration accuracy and robustness by considering the

node orientations and clusters.

• Three different optimization approaches are evaluated and the most suitable

one for our camera pose tracking task is chosen.

• Tracking the 6-DoF camera pose, thus reducing the dependence of our system

on other sensor messages such as IMU data.

2



2 Related work

Vision-base tracking system proposed by this paper can be described in three steps.

First, detecting line segments and construct a node graph that represents lines;

second, associating the detections and model lines with high accuracy; third, using

the resulting correspondences to find an optimal estimated pose of the camera,

and keeping track of the pose even when there are some noise measurements. We

discuss the related work according to these three aspects.

2.1 Methods for Object Detection

Most of the localization systems in RobotCup make use of the field lines. Many

previous work has presented some approaches for extracting candidate pixels from

field lines. One of the most popular approaches (Chiang et al., 2010; Gevers

and Smeulders, 1999; Laue et al., 2009; Strasdat et al., 2007; Yang et al., 2012)

is to use a color threshold to discriminate between field-line and green carpet.

Therefore, individual pixels are classified based on pre-calibrated look up table.

Detecting filed lines by thresholding has high efficiency in processing; however, it

is not robust with regard to changing illumination, simply because the look up

table needs to be calibrated every time when light condition changes. Even under

the constant lighting conditions, if the robot looks to different directions, due to

the reflection of light, a valid threshold may not work any more. The current

environment of RoboCup competition has several changes, for example, the field

is built with artificial grass and the lines painted on the grass are no longer clear

white. Therefore, the changes of the field ground make it extremely difficult to

extract effective lines candidate pixels by this color-table-based object detection

approach. Röfer (2008) improves the robustness by using ambiguous color classes

to resolve the ambiguities. The ambiguous color classes are resolved based on

their unambiguous neighbors in the image. Härtl et al. (2014) propose a new object

detection system where objects are found based on color similarities. The detection

rate of their system has substantial improvement by changing illumination.

By contrast, numerous works (Canny, 1986) employ edge detection (Canny,

1986) to improve object detection. Instead of finding white pixels by thresholding,

3



2 Related work

Figure 2.1: Output of the probabilistic Hough line detection on the extracted
edges(Farazi, Allgeuer, and Behnke, 2015)

this approach detects candidate line pixels by first applying Edge Detector to the

images for detecting spatial changes in brightness (Farazi, Allgeuer, and Behnke,

2015). To detect the edges, different detectors, such as the Sobel Edge Detector

(Yu-qian et al., 2006), Gabor filter (Mehrotra et al., 1992) might be applied. This

method is quite robust to changes in lighting conditions, so there is no need to tune

parameters for the changing lighting conditions. However, convolving by applying

filters to a whole image is an expensive operation. Moreover, when edge detection

is applied to those lines the result shows edges at both sides of an actual line.

Those pixels having high response are not the center of the lines but the edges of

the lines. Therefore, detecting lines from the edges input may not be able to get

a line that center between two close edges.

After getting line candidate pixels, it is quite common to use a probabilistic

Hough line detector to extracting lines from those pixels (Baist et al., 2005; Farazi,

Allgeuer, and Behnke, 2015; Strasdat et al., 2007). However, it is hard to detect

continuous line segments by this approach because Hough Transformation tend

to output many small line pieces on each actual line ( Figure 2.1). This problem

can be addressed by using a proper line merging method (Farazi, Allgeuer, and

Behnke, 2015).

Another approach for finding line segments is to find a node graph that repre-

4



2.2 Methods for Feature Matching

(a) (b)

Figure 2.2: Node graph representation of field lines (a) subsampled image of
pixels classified as “white” and “green”; (b) key node structure graph (Schulz and
Behnke, 2012).

sents the geometry structure of the field (Figure 2.2). The graph structure has

advantageous in verifying linear components and crossings. A typical method for

constructing graph is proposed by Schulz and Behnke (2012). This method per-

forms in sub-sampled images (1
8

size of the original images), thus, with proper

smooth, it is able to reduce the line width approximately to one pixel when skele-

tonization. However, finding skeleton in the initial images is much more difficult

because it tends to have multiple local optimal value while cutting through a line.

Therefore, for using the method proposed by Schulz and Behnke (2012) for con-

structing node graph in the initial size images, some changes on finding skeleton

pixels are needed.

Unlike above mentioned methods, this thesis work proposes a new approach

that can detect lines more robustly. In particular, we enhance the responses of

those relative brighter pixels by applying four different line filters on the images.

Each filter is supposed to detect lines in a particular orientation. The local opti-

mum pixels of the previous output are line candidate pixels, from which a purified

skeleton is found. Finally, a node graph is constructed from the purified skeleton.

Compared to previous approaches, our approach position the lines with higher

accuracy.

2.2 Methods for Feature Matching

Previous visual based tracking approaches can be classified into two classes: 1)

tracking objects by looking at optical flows in the image (Kendoul et al., 2009;

Warren et al., 1988); 2) tracking by matching a model of the being tracked object

to a part of the image (Kim et al., 2003; Papanikolopoulos et al., 1993). The main

idea of tracking by optical flow is to analyze two consecutive frames of the video

5
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stream to determine the direction of the movement in the game. The one proposed

by Cheriyadat et al. (2008) use Kanade-Lucas-Tomasi sparse optical flow algorithm

to track low-level feature points over time. The advantage of this algorithm is that

it requires no complex shape or visual models for objects. This approach can be

used for tracking balls or other robots on the field. However, it may fail if only

a part of the object is observable. For example, in the soccer field, it would be

difficult for the robot to track the large field model.

Drummond and Cipolla (2002) presents a framework for three-dimensional model-

based tracking. The framework belongs to the second class of approaches of visual

based tracking. It starts with identifying the visible edge features at each frame,

which would be associated to the model edges in the next step, then the camera mo-

tion between two frames is optimized according to the result of data registration by

using standard least-squares algorithm. This framework is used for tracking com-

plex structures, from which multiple edges can be observed. For a simple model,

like soccer field, essentially because most of the time it is partially observable, this

framework may fail. Nevertheless, visual tracking by matching models still have

comprehensive application in soccer robot environment. This is due to the fact

that after detecting artificial landmarks (poles) and natural landmarks (corners,

lines, goal posts), the most straightforward step is to associate the detections to

the model and optimize the pose parameters based on such association.

During the RoboCup competition, different features of the environment (goals,

field lines) is used as the localization information. Numerous previous works use

only some particular landmarks like poles (Figure 2.3a) for localization (Chiang et

al., 2010; Enderle et al., 2001; Minakata et al., 2008) . The triangulation method is

used to find the coarse location of the robot. In these approaches, feature matching

is straightforward because once a landmark is detected, the extracted features of

this landmark can be associated to the pre-known artificial landmarks with high

accuracy. In order to get a fast visual localization, Yang et al. (2012) defines 26

key points on the soccer field. Only the key points seen by a robot are used to

calculate the robot and object position. If two or more key points are seen in the

robot camera view, the space relationship of these key points is employed to adjust

the camera pose. Unfortunately, according to the rule of humanoid soccer league,

it is not possible to predefine key points and positioned them on soccer field. As

we can see, all these approaches rely on the artificial landmarks, whereas, which

are not allowed in competition any more.

By contrast, after removing artificial landmarks (colored poles) in Figure 2.3a,

it is crucial to detect natural landmarks of the soccer field, such as field lines and

goals in Figure 2.3b. Schulz and Behnke (2012) and Gudi et al. (2013) propose a

method to recover lines from images and extract three types of intersections, which

6



2.3 Methods for Visual Tracking

(a) (b)

Figure 2.3: Field features: a) field landmark: poles; b) field crossings(Schulz and
Behnke, 2012).

can be described as a T, L, and X crossing in Figure 2.3b. Those intersections

information together with a prior knowledge of the field geometry can be used to

determine the robot position and orientation. This method reduce dependence

on color-coded robot soccer environment; however, the crossings are not always

observable.

Strasdat et al. (2007) propose a method by using lines information for local-

ization. By following a nearest neighbor approach, a tracking system computes

the likelihood of line observations by evaluating the differences between expected

and measured Hough coordinates h = (θ, ρ) of matched lines. Whereas in this

approach, the system only takes into account the largest observed lines.

Our approach is developed based on state of the art of second class of visual

based tracking approach. Instead of using observation model in existed approaches,

we propose an approach based on point registration. To be specific, a node-

graph is constructed from the observed images, meanwhile, the field model is

projected to the image plane based on the estimated camera pose one step before.

As an oriented point, by applying the nearest neighbor method, each observed

node is assigned to a projected model point and associated with a 3D model

point. Moreover, the orientation of each node are used for rejecting outliers. Our

approach still works even if no particular landmarks or crossings are observed.

Details of our approach are discussed in Chapter 4.

2.3 Methods for Visual Tracking

After finishing feature matching, a set of 2D-to-3D point correspondences is formed.

In order to minimize the matching error, the current estimated camera pose need

7
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to be updated by solving the Perspective-n-Point (PnP) problem. In humanoid

league competition environment, one of the most popular localization mechanism

is to maintain a 3D trunk pose (x, y, α)T of the robot on the field (Röfer and

Jüngel, 2003; Whelan et al., 2012; Yi et al., 2015) while they retrieve the other

three pose parameters (z, roll, pitch)T from IMU and dead reckoning (DR) data.

The camera pose can be transformed from robot trunk pose by using the trans-

formation between camera link and trunk link retrieved from kinematic model. In

order to update the estimate robot pose, both the feature matching result and the

odometry data from motion model are integrated. This approach only has three

parameters to be optimized, thus the optimization process can be faster than that

of methods tracking 6D pose. However, this approach requires the robot equipped

with well calibrated IMU, which is not always realistic. Otherwise the error from

IMU data may have a negative effect on localization accuracy.

In our approach, we optimize the camera pose in 3D space with six degrees of

freedom: st : (x, y, z, γ, β, α)Tt , where (x, y, z) denotes the position of the camera

on the field; and (γ, β, α) describe the orientation in Euler angles of the camera.

All of these six parameters would be tracked and optimized according the feature

matching the result from camera, thus reducing the dependence of our system on

other sensor messages such as IMU data.

Feature matching result is represented by a set of N 2D-3D point correspon-

dences. Given such N correspondences, estimating the position and orientation

of a calibrated camera is a problem named Perspective-n-Point (PnP). Different

methods to the PnP problem (Bujnak et al., 2008; Ferraz et al., 2014; Wu and Hu,

2006) have been proposed in Computer Vision community, which increase the ac-

curacy and reduce the computational complexity. These methods can be roughly

classified into iterative and non-iterative techniques. Iterative PnP methods opti-

mize a cost function calculated from all correspondences iteratively (Dementhon

and Davis, 1995; Lowe, 1991; Lu et al., 2000; Quan and Lan, 1999). They usually

attempt to minimize the sum of Euclidean distances between the 2D points and

the projected points of their corresponding 3D points (e.g. 2D projection (Olsson

et al., 2009)). Iterative PnP methods can deal with arbitrary numbers of cor-

respondences and achieve excellent precision when they can converge. However,

iterative methods are computationally expensive as they perform a greedy explo-

ration of solution space. Furthermore, they are very sensitive to local optimum.

Therefore, a good initial estimation of the camera pose to converge is required.

Whereas most of the disadvantages of iterative PnP approaches can be overcome

by non-iterative techniques. One of the most popular and efficient method is EPnP

(Lepetit, Moreno-Noguer, et al., 2009). This method defines four control points

to represents all 2D and 3D corresponding points. It reduces the PnP problem

8
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to retrieve the position of four control points, whose weighted sum can be used

to express all the 3D points. The algorithm runs much faster than most of the

iterative ones, but can be slightly less accurate.

In our visual tracking system, both hill climbing method and EPnP method have

been implemented for pose estimation. Since the non-iterative method EPnP tends

to be sensitive to noise, it is often used within RANSAC scheme.

9
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3.1 Camera Model

It is important to be familiar with the camera model while using images cap-

tured by the camera for visual tracking. Thus, in this section, we introduce the

standard pinhole camera model which is also known as central-projection camera

model (Hartley and Zisserman, 2003). More specifically, we first introduce the

mathematical relationship between the coordinates of a 3D point and its projec-

tion onto the image plane named perspective projection model. After that we

introduce the intrinsic camera parameters followed by a brief discussion about ex-

ternal parameters matrix. In the end, we describe how to estimate the intrinsic

parameters and how to handle the lens distortion.

3.1.1 The Perspective Projection Model

Perspective projection model (Figure 3.1) defines the relationship between a 3D

point and its projection onto the image plane (Lepetit and Fua, 2005). Considering

a 3D point M = [X, Y, Z]T in a world coordinate system, the corresponding 2D

point m = [u, v]T on the image plane can be described with the following equation:

λm̂ = PM̂ (3.1)

where m̂ = [u, v, 1]T and M̂ = [X, Y, Z, 1]T are the homogeneous coordinates of

points m and M ; λ is a homogeneous scale factor to constrain the z-axis value of

m̂ is 1; P is a 3×4 perspective projection matrix which can be decomposed to the

following equation:

P = K[R|t] (3.2)

where

• K is the 3 × 3 camera calibration matrix that depends on the internal pa-

rameters of the camera (focal distance, and radial lens parameters);

• [R|t] is the 3 × 4 external parameters matrix depends on the position and

orientation of the camera in the world coordinate. More specifically, R is a

11
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Figure 3.1: Ideal pinhole camera model describes the relationship between a 3D
point M and its corresponding 2D projection m onto the image plane (Lepetit and
Fua, 2005).

3× 3 rotation matrix and t is a 3× 1 translation vector. More details about

the calibration matrix and external parameters matrix will be discussed in

the following sections.

3.1.2 The Calibration Matrix

As we mentioned above, K is the camera calibration matrix that only depends on

the five intrinsic camera parameters as follows:

• focal length f,

• pixel size in x and y directions: sx and sy,

• and coordinate of principal point c = [cx, cy]
T .

Principal point c is the intersection of the optical axis and the image plane.

Sometimes K also has a skew parameter s which is non-zero only if x and y direc-

tions are not perpendicular. K can be denoted as the following upper triangular

matrix:

K =

fx s cx
0 fy cy
0 0 1

 (3.3)

where fx and fy are proportional to the focal length f : fx = f/sx and fy = f/sy.

In most of 3D tracking methods, the intrinsic camera parameters are supposed

to be given. Those parameters are independent from the scene being observed by

the camera. Therefore, it is always preferable to estimate the parameters offline
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Figure 3.2: A calibration grid used for the estimation of the camera calibration
matrix (Bradknox, 2015).

before visual tracking. In fact, camera calibration is a step to determine all the

camera parameters from the applied camera model. Various methods for geometric

camera calibration are presented in previous work (Melen, 1994; Slama et al., 1980;

Tsai, 1987; Z. Zhang, 2000). These calibration methods can be roughly classified

into three classes: photogrammetric calibration (Hatze, 1988), calibration from

view geometry (Hartley and Zisserman, 2003), and self-calibration (Pollefeys et

al., 1999). Visual tracking greatly benefits from the development of calibration

techniques, which provides more accurate parameters. One of popular methods

uses a known planar calibration pattern, such as a checkerboard (Q. Zhang and

Pless, 2004) (Figure 3.2). Moreover, the parameters are optimized according to

the detection of image corners, corners at the intersections of black and white

squares, and corners at the intersections of two groups of grid lines.

3.1.3 The External Parameters Matrix

It is worth mentioning that the camera is not always at the origin of the world

coordinate system. There is a transformation between the camera coordinate and

the world coordinate. This transformation can be described by a rotation matrix

R and a translation vector t. Therefore, the 3×4 external parameters [R|t] matrix

actually refers to the position and orientation of camera respectively. When the

internal parameters have been estimated separately, the target of visual tracking

is to estimate R and t with a set of 2D to 3D correspondence.

13
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(a) (b)

Figure 3.3: Two types of lens distortion: (a) barrel; (b) pincushion.

3.1.4 Lens Distortion

Due to distortions caused by camera lenses, the perspective projection model of

the camera is not sufficient to define the relationship between 3D points in world

coordinate and corresponding 2D points in image coordinate. There exist several

types of lens distortion, such as Barrel distortion and Pincushion distortion, and

both of them are the most common distortions (Hugemann, 2010) (Figure 3.3).

Barrel distortion, f(r) < 1, i.e. the off-center distances of points near the image

borders are less than they should be after an ideal perspective mapping. Pincush-

ion distortion, f(r) > 1, has a visible effect that lines that do not go through the

center of the image are bowed inwards or towards the center of the image.

Because the lens distortions are radially symmetric, or approximately so, aris-

ing from the symmetry of a photographic lens. The distortion parameters can

be corrected by applying proper algorithmic transformations to the digital photo-

graph. The most well know method is Brown’s distortion model (Brown, 1966),

also known as the Brown-Conrady model based on previous work of Conrady

(Conrady, 1919). By applying the corrected distortion parameters to the captured

images, the distortion effect can be eliminated, as shown in Figure 3.4.

Usually we take into account the radial and tangential factors for the distortion;

the radial factor uses the following formula:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.4)

With above formula, an old pixel point at (x, y) represents the coordinates in the

input image, and its position on the corrected output image is (xcorrected, ycorrected)

Tangential distortion occurs because the image taken lenses are not perfectly
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(a) (b)

Figure 3.4: Undistorting an image. (a) Due to distortion effect, projections of
straight lines are curved. (b) After undistortion, the projections of straight lines
are straight.

parallel to the image plane. The distortion can be corrected via the formulas:

xcorrected = x+ [2p1xy + p2(r
2 + 2x2)]

ycorrected = y + [p1(r
2 + 2y2) + 2p2xy]

(3.5)

As a consequence, we have five distortion parameters presented as one row

matrix in 5 columns:

Distortioncoeficients = (κ1, κ2, κ3, κ4, κ5) (3.6)

3.2 Camera Pose Estimation

3.2.1 Camera Pose Parameterization

In order to measure the camera pose, the R and t should be properly param-

eterized. The representation of translation t is straightforward. However, the

parameterization of R is challenging.

It is well known that a rotation in 3D space has only three degrees of freedom.

Thus, it is not suitable to employ 3 × 3 rotation matrix with nine parameters

to represent the rotation information in tracking process. A variety of rotation

representations have been proposed, which include rotation matrices, Euler angles,

unit quaternions, Axis-Angle pair, and Exponential Map (Rowenhorst et al., 2015).

Each parameterization has distinct advantages and disadvantages with respect to

the ease of use for calculations and data visualization. We will briefly discuss two

of them that have been used in our approach, Euler angles and quaternions. More
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details about rotation representation can be found in the paper of original work

(Eberly, 2002; Grassia, 1998).

1. Euler angles

The idea behind Euler angles is to split a complete rotation of the coordinate

system into three constitutive rotations aroundX, Y and Z axes respectively.

It is worth to know that the resulting rotation depends on the order in

which the three rolls are performed. The Euler angles can be converted to

a rotation matrix. For instance, a set of Euler angles (α, β, γ) representing

a first rotation around Z axis by an angle α, a second rotation around Y

axis by an angle β, and a final rotation around X axis by an angle γ, can be

converted to a rotation matrix (Edmonds, 1996) as follows:

R =

cosα − sinα 0

sinα cosα 0

0 0 1

 cos β 0 sin β

0 1 0

− sin β 0 cos β

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (3.7)

Even though Euler angles are more human understandable, they have dis-

advantages, for instance, ambiguity and gimbal lock. The conversion from

a general rotation to Euler angles is ambiguous because the same rotation

can be obtained with different sets of Euler angles (Hughes et al., 2013).

Furthermore, Euler interpolation works well when the axis of interpolation

coincides with one of the X, Y , and Z rotation axes, but it is not as good as

interpolating arbitrary orientations. However, these problem can be avoided

by using quaternions representation of rotation.

2. Unit quaternions

Unit Quaternions (quaternions with the magnitude equal to one) that form

a four-dimensional vector space are extensively used to represent rotations.

A unit quaternion is denoted by q = ω + xi + yj + zk, where ω, x, y, z are

real numbers and the 4-tuple (ω, x, y, z) s unit length, with i2 = j2 = k2 =

ijk = −1. Bellow are some properties of unit quaternions:

• The corresponding rotation matrix R of a quaternion q is defined as

follows:

R =

1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy

2xy − 2wz 1− 2x2 − 2z2 2yz + 2wx

2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2

 (3.8)
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• The inverse (reciprocal) of a quaternion is given by:

q−1 =
q

[n(q)]2
(3.9)

where q is the quaternion conjugate given by q = ω− xi− yj− zk; and

[n(q)] is the quaternion norm given by [n(q)] =
√
qq =

√
ω2 + x2 + y2 + z2.

• The quaternion multiplication corresponds to matrix multiplication.

Thus the multiplication of two quaternions represents for composing

the corresponding two rotations: performing one rotation and then

performing another one. The product of two unit quaternions qn =

ωn + xni+ ynj + znk for n = 0, 1 is defined by distributing the product

over the sums. The most noteworthy is that the order of operands is

important because multiplication of quaternions is not commutative.

q0q1 = (w0w1 − x0x1 − y0y1 − z0z1)+
(w0x1 + x0w1 + y0z1 − z0y1)+
(w0y1 − x0z1 + y0w1 + z0x1)+

(w0z1 + x0y1 − y0x1 + z0w1)

(3.10)

Unit quaternion is one of the most widely used rotation representations.

Because unit quaternion allows each rotation to be represented relative to a

reference point uniquely. In comparison to Euler angles, the quaternions are

much more efficient in interpolation. Moreover, the quaternions are widely

used for obtaining smooth rotation by interpolating between orientations,

which is known as spherical linear interpolation (slerp) (Mukundan, 2002).

3.2.2 Reprojection Error Function

Given N 3D reference points M̂i = [xi, yi, zi, 1]T , i = 1, 2, . . . , N , in the word coor-

dinate system, and their corresponding projections m̂i = [ui, vi, 1]T , on the image

plane, the pose estimating problem aims to determine the perspective projection

matrix P , namely the rigid transformation that relates images to the known ob-

jects. The pose estimation problem aims to minimize the sum of reprojection

errors between the projected 3D points and their corresponding observed points

on 2D image plane.

[R|t] = argmin
[R|t]

N∑
i

dist2(PM̂i, λm̂i) (3.11)
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The optimization approaches depend on the definition of distance function. Let

ûi = PM̂i = [ûi, v̂i, ŵi]
T , and ui = λm̂i = [ui, vi, wi]

T . Then two most widely

used definitions about the distance in current pose optimization techniques can be

defined as follows:

• Algebraic distance: d2alg(ui, ûi) = (viŵi − wiv̂i)2 + (wiûi − uiŵi)2.

• Euclidean distance: d2edu(ui, ûi) =‖ ui − ûi ‖2.

3.2.3 EPnP: a Non-iterative Approach for Pose Estimation

The Perspective-n-Point (PnP) problem refers to the problem to estimate the

perspective projection matrix P without any prior knowledge of camera pose by

given n 3D-to-2D point correspondences. As we discussed in Section 3.1.1, P =

K[R|t]. Considering the camera has been calibrated, which means K is given,

the target of PnP problem comes to determine camera orientation represented by

rotation matrix R and camera position represented by translation vector t. The

constraint equations can be formulated as λmi = PMi, which can be rewritten to

the following two equations:{
P11Xi+P12Yi+P13Zi+P14
P31Xi+P32Yi+P33Zi+P34

= ui
P21Xi+P22Yi+P23Zi+P24
P31Xi+P32Yi+P33Zi+P34

= vi
(3.12)

Given a set of N correspondences, it will generate 2×N number of above equations,

which can be rewritten in the form Ap = 0, where p is a vector made of the

coefficients Pij. Such a constrained problem can be solved by using Singular Value

Decomposition (SVD).

Different methods for solving the PnP problem have been proposed by Computer

Vision community, which can increase the accuracy and reduce the computational

complexity (Bujnak et al., 2008; Ferraz et al., 2014; Wu and Hu, 2006). Here we

briefly introduce an efficient method for solving PnP problem, EPnP presented

by Lepetit, Moreno-Noguer, et al. (2009). EPnP is a non-iterative approach with

higher accuracy and lower computational complexity than non-iterative state-of-

the-art methods. Moreover, EPnP is much faster than iterative methods only with

a little loss of accuracy. The core idea of EPnP is to express N 3D points as a

weighted sum of four virtual control points. Then the problem is reduced to a

less complex problem to estimate the coordinates of these control points in the

camera referential. The less complex problem can be done in O(n) time to express

these coordinates as weighted sum of the eigenvectors of a 12 × 12 matrix and

solve a small constant number of quadratic equations to pick the right weights.
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More details about EPnP can be found in the paper of original work (Lepetit,

Moreno-Noguer, et al., 2009).

Here we briefly summarize a linear formulation of the problem that results from

the EPnP algorithm:

• Choose 4 of the 3D-to-2D correspondences named as control points:

ccj ∼ cwj , j = 1, . . . , 4 (3.13)

where we specify the points in the image coordinate with superscript c and

the points in 3D world coordinate with superscript w.

• Express each reference point as a weighted sum of the control points:

pwi =
4∑
j=1

αijc
w
j ,

pci =
4∑
j=1

αijc
c
j, with

4∑
j=1

αij = 1

(3.14)

where the αij are homogeneous barycentric coordinates. They are uniquely

defined and can easily be estimated.

• Perform the 2D projections of the image points:

∀i, λ

uivi
1

 = Kpci = K
4∑
j=1

αij

xcjycj
zcj

 (3.15)

where ui represents the 2D projections of pwi .

• The concatenation of equation (3.15) for all N correspondences can be ex-

pressed as a linear system Mx = 0 where M is a 2N × 12 known matrix.

The solution belongs to the null space or kernel of M , and can be expressed

as:

x =
N∑
i=1

βivi (3.16)

where the set vi represents the columns of the right-singular vectors of M

corresponding to the N null singular values of M .

The above discussed approaches do not require initial assumption of camera pose

and they are efficient; however, they are rather sensitive to noise. If a wrong 3D-
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to-2D point correspondences occurs, the algorithm will converge to an absolutely

wrong estimation.

3.2.4 Hill Climbing Method: an Iterative Approach for Pose

Tracking

Hill climbing method (Russell et al., 1995) is a local search optimization technique

that can be used for tracking the camera pose. In terms of accuracy, it is highly

advantageous to continuously estimate the external parameters matrix based on

prior knowledge about the camera pose acquired one step before.

Hill climbing method is popular because it is relatively simple to be imple-

mented. Although more advanced algorithms may give better results, hill climbing

works well in most normal situations. It is an iterative algorithm that attempts

to maximize (or minimize) a function f(x), where x can be either discrete states

or continuous states. When hill climbing is applied in a continuous space, the

algorithm is called gradient ascent (or descent). It starts with a random solution

to a problem, afterwards incrementally makes small changes to reach a better so-

lution. Once the algorithm cannot find any better neighbors, it will be terminated

(Russell et al., 1995).

The pseudo code of hill climbing method is described in Algorithm 1.

Similar to other local optimizer, hill climbing method has drawbacks, for in-

stance, it is not guaranteed to find the best global optimal solution; on the other

hand, it may get stuck on local optimum solutions. Fortunately, regrading our

visual tracking task, the camera pose estimated from the previous step can be

served as a good starting solution for hill climbing method. Consequently, hill

climbing method will have lower chance of getting stuck on local optimum.

3.2.5 RANSAC for Robust Estimation

The result of PnP problem will strongly be affected by outliers which are spurious

observations. In practice, a PnP solution is usually used with combining RANSAC

schema to eliminate outliers. Fischler and Bolles (1981) propose RANdom SAm-

ple Consensus (RANSAC) algorithm which is a popular technique designed to

cope with a large proportion of outliers in input data. RANSAC is a resampling

technique that generates candidate solutions by using the smallest possible obser-

vations required to estimate the underlying model parameters (Derpanis, 2010).

This resampling technique maximizes the probability that at least one subset con-

tains no outliers and therefore it produces a valid hypothesis. The RANSAC

algorithm pseudo code is shown in Algorithm 2.
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Algorithm 1: Hill Climbing Algorithm

Data: startPose,measurements
Result: optimalPose
optimalPose = startPose;
while True do

L = NEIGHBORS(currentPose);
nextError = +INF ;
nextPose = NULL;
for ∀x ∈ L do

if Error(x) < nextError then
nextPose = x;
nextError = Error(x);

end

end
if nextError < Error(optimalPose) then

optimalPose = nextPose;
else

break;
end

end
return optimalPose;

The number of iterations (N) is chosen high enough to ensure that the proba-

bility that at least one of the sets of random samples does not include an outlier

is high enough. Let u represent the probability that any selected data point is an

inlier and v = 1 − u the probability of observing an outlier. N iterations of the

minimum number of points denoted m are required, where

1− p = (1− um)N (3.17)

and thus with some manipulation:

N =
log(1− p)

log(1− (1− v)m)
(3.18)

Regarding our 3D tracking tasks, the PnP algorithm randomly chooses 6 of cor-

respondences to estimate camera pose. For each of this estimation, the 3D points

projected close enough to their corresponding 2D points are considered as inliers.

RANSAC performs iteratively until the best estimation camera pose is found.
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Algorithm 2: RANSAC algorithm

Data: data - a set of points S
model - a model that can be fitted to data
k - the minimum number of data required to estimate the model
N - the maximum number of iterations allowed in the algorithm
d - a threshold value for determining whether a data point is consistent
with a parameter estimate
τ - a threshold for the fraction the inlier number to the total number of
points
Result: Bestfit model parameters
iter num = 0;
while iternum < N do

iter num+ +;
Select randomly k points among S;
Generate a best fit model M from the k points;
inliers = φ;
for ∀p ∈ S do

if dist(p,M) < d then
inliers = inliers ∪ p;

end

end
inlierPct =‖ inliers ‖ / ‖ S ‖;
if inlierPct > τ then

Generate an optimal model Mo from the inliers ;
berak;

end

end

3.3 Visual Feature Detection

3.3.1 Image Color Formats

A color image is a digital image that includes color information for each pixel.

Such color information can be stored in different formats. Before we do the further

feature detection in the image, it is necessary to identify the color format of input

images and the color format for further image processing. RGB color format

is based on the additive of color components red (R), green (G) and blue (B)

(Figure 3.5a), the HSV color format describes a color by using the three color

components hue (H), saturation (S), and brightness value (V) (Figure 3.5b). In

our vision system, images are captured in RGB format and then converted to the

HSV format. We do this conversion because unlike RGB, HSV is closer to the
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(a) (b)

Figure 3.5: Two color format. (a) An additive color model: RGB. b) HSV color
wheel.

way how human eyes perceive color (Gonzalez et al., 2004). Moreover, HSV color

format is very popular for designing and editing because it gives the user a good

perception of the resulting color for a certain value.

The following equations shows the transformation from RGB to HSV.
H =


(6 + G−B

CMAX−Cmin
), if R = CMax

(2 + B−R
CMAX−Cmin

), if G = CMAX

(4 + R−G
CMAX−Cmin

), if B = CMAX

S = CMAX − Cmin/CMAX

V = CMAX

(3.19)

where H is hue with range 0◦ ∼ 360◦; S means saturation, with range 0 ∼ 1; V

represents value with range 0 ∼ 255. The RGB values are confined by equation

(3.20) : {
CMAX = max(R,G,B)

Cmin = min(R,G,B)
(3.20)

where CMAX and Cmin represent the maximum and minimum value in the RGB

color components. The further image processing can be achieved based on this

HSV color format.

3.3.2 Image Segmentation

Even though the simple color segmentation and blob detection methods are no

longer good enough for detecting field lines in current RoboCup humanoid league

competition environment because it is still a fundamental process in field bound-

ary detection or obstacle detection. In a brief, image segmentation aims to divide

an image into multiple regions having a strong correlation, and then to find the
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disjoint areas corresponding to real-world objects. For different segmentation pur-

poses, the segmentation process can be applied based on different properties of

the image, such as color, texture, and brightness. Various image segmentation

techniques (Khan, 2013) have been developed, some of the most important and

extensively used image segmentation techniques are surveyed below.

• Threshold based image segmentation

The most common algorithms based on global knowledge are represented by

histograms. Histogram thresholding is the simplest segmentation process. A

threshold is set to decide whether a pixel belongs to an object or background.

Thus, the value of the threshold should be chosen properly. In a static

environment, this kind of simple thresholding approach can be successful.

However, it is rather difficult to determine a single threshold that is suitable

for segmenting every images captured under different environment settings.

Thus, thresholding approach is very sensitive to noise. Several improved

methods exist such as pre-processing by different filters to eliminate the

outliers (Gonzalez et al., 2004).

• Edge based image segmentation

Edge based image segmentation divides the image by observing the changes

in intensity or pixels of an image. Many kernels can be used for detecting

edges such as Difference of Gaussian (DoG) and Laplacian of Gaussian(LoG)

(Marr and Hildreth, 1980). Segments are detected based on edge informa-

tion.

• Region based image segmentation

Region based image segmentation divides an image into different regions

based on pre-defined criteria, i.e., color, intensity, and object. It can be

obtained through a growth process in which a pre-selected seed is used. The

region growing can be considered as a sequential clustering or classification

process. Region based segmentation is simple and noise resilient compared

to other methods.

3.3.3 Line Detector

Before we introduce the line detector, we firstly review some basic knowledge

about edge detector. The main purpose of edge detection is to identify sharp

discontinuities from an image. There are many methods for edge detection; and

most of them can be classified into two categories, the search-based and the zero-

crossing based.

The search-based methods detect edges in two steps. Firstly, it convolves the

input image with an adapted mask to generate a gradient image. And then it
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(a) (b)

(c) (d)

Figure 3.6: Line detectors. (a) A line with two vertical edges. (b) Intensity
function (along horizontal scan line). Edges are regions with a high slop. (c) The
first derivative of the intensity function. High slopes are found from the maximum
/minimum of the first derivative. (d) High slopes are found from the zero crossings
of the second derivative.

detects edges by finding the local maximum and minimum of gradient magnitude

(Figure 3.6c). Many classical operators such as sobel, prewitt, and robert are the

first order derivative detectors (Gonzalez et al., 2004).

The zero-crossing based methods extract zero crossings in a second-order deriva-

tive expression is computed from the image (Figure 3.6d). Marr and Hildreth

(1980) proposes two typical operators, DoG and LoG, to calculate the second or-

der derivative. In the first step, both of the operators smooth an image by applying

convolution to the image with Gaussian kernel of certain width σ1. In the second

step, DoG smooths the image with another Gaussian kernel with width σ2, while

LoG uses Laplace for edge detection. However, it is possible to merge the two

steps to a single one: convoluting the image with LoG kernel or DoG kernel. The

behavior of the LoG edge detector is largely governed by the standard deviation

of the Gaussian smoothing filter used in the LoG filter.

The edge detector will highlight those pixels that are most likely on edges. The

algorithm for further model fitting such as probabilistic Hough line detector can be

applied to find edge lines among those edge pixels. Ideally two close and parallel

edges lines can be merged to find a field line, which is bordered by two edges.

However, many line fitting algorithms do not work well for detecting continuous
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edge line segments. Thus, merging those small detected edge segmentations with

noise angles is a tough task.

Similar to edge detector, the line detector is also to convolve the image with a

kernel. However, unlike edge detectors which detect two edges from a line with

a certain width, line detector aims to detect one single line that centers between

two edges. This kernel should be designed properly so the center of the line gets

higher response than other areas.

3.4 Recursive State Estimation

In probabilistic robotics, a concept of belief is used to represent the robot’s internal

knowledge about the state of the environment (Thrun et al., 2005). Probabilistic

state estimation algorithms compute belief distributions over possible world states.

Pose tracking aims to update the pose distribution in the space of possible camera

poses by incorporating new measurements.

The most general algorithm for dynamic state estimation is the Bayes filter

algorithm. To our best knowledge, the Kalman filter is the best studied technique

for implementing Bayes filters. We will describe the Bayes filter and the Kalman

filter in the following two sections respectively.

3.4.1 The Bayes Filter

We firstly explain some denotations of Bayes filter. A belief is a probability to a

possible hypothesis. We will denote the belief over a state variable xt by bel(xt)

which is an abbreviation for the posterior.

bel(xt) = p(xt|z1:t, u1:t) (3.21)

Equation (3.21) shows the probability distribution over the state xt at time t, which

is conditioned on all past measurements z1:t and all past controls u1:t. Occasionally,

it is useful to calculate a posterior before incorporating the measurement zt at time

t. Such a posterior will be denoted as follows:

bel(xt) = p(xt|z1:t−1, u1:t) (3.22)

This step is named as prediction as it predicts the state at time t based on previous

state posterior before incorporating the measurement at time t. Calculating bel(xt)

from bel(xt) is called correction or the measurement update.

One important assumption of the Bayes filter is the Markov assumption which

postulates that past and future data are independent if one knows the current
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state xt. So our belief and posterior formula can be simplified as follows:{
bel(xt) = p(xt|ut, xt−1)
bel(xt) = p(xt|zt, ut)

(3.23)

3.4.2 The Kalman Filter

The Kalman filter is a universal tool for recursive state estimation and it has been

extensively applied to 3D pose tracking. There are many extensions to the Kalman

filter, such as the Extended Kalman Filter (EKF) (Julier and Uhlmann, 1997), The

Unscented Kalman Filter (UKF)(Wan and Van Der Merwe, 2000), and we only

describe it here the most basic form. (Thrun et al., 2005) is a good reference

dedicated to the Kalman filter.

The Kalman filter represents state distributions by the moments representation:

at time t, the belief is represented by a Gaussian with mean µt and the covariance

Σt. Posteriors are Gaussian if the following three properties and the Markov

assumptions hold:

• The next state probability P (xt|ut, xt−1) must be a linear function in its

arguments with added Gaussian noise. This is expressed by the following

equation:

xt = Atxt−1 +Btut + εt (3.24)

where matrix At and Bt are called the transition matrix and the random

variable εt is a Gaussian random vector that models the randomness in the

state transition. Its mean is zero and its covariance is denoted Rt.

• The measurement probability p(zt|xt) must be linear in its arguments, with

added Gaussian noise:

zt = Ctxt + δt (3.25)

where δt represents the measurement noise and Ct is a linear transition ma-

trix.

• Finally, the initial belief bel(x0) must be normally distributed, with the mean

of this belief µ0 and the covariance Σ0.

The Kalman filter algorithm is depicted in Algorithm 3. The input of the

Kalman filter is a belief at time t − 1 represented by µt−1 and Σt−1. The up-

date process can be divided into two steps:

• Prediction step: updating bel(xt)

µt and Σt which represent the belief bel(xt) are calculated by incorporating

the control ut. µt is updated by using the deterministic version of the state
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Algorithm 3: The Kalman filter algorithm (Thrun et al., 2005)

Data: µt−1,Σt−1, ut, zt
Result: µt,Σt

µt = Atµt−1 +Btut;

Σt = AtΣt−1A
T
t +Rt;

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)

(−1);
µt = µt +Kt(zt − Ctµt);
Σt = (I −KtCt)Σt;
return µt,Σt

transition function of equation (3.24).The covariance µt is updated depending

on the linear matrix At and the covariance of random noise Rt.

• Correction step: updating bel(xt)

The Kalman gain denoted as Kt, is computed in the fifth line of Algorithm 3.

It specifies the degree to which the measurement is incorporated into a new

state estimate. The µt is adjusted proportion to the Kalman gain and the

deviation of the actual measurement zt. Finally, the new covariance of the

posterior belief Σt can be calculated.

In the context of 3D tracking, during each updating process of the Kalman

filter, the prior belief belxt can be used to project 3D model to the image frame.

After comparing the projected model with the observed features, the 2D to 3D

data correspondences can be generated. The optimal estimated pose for these

correspondences can be considered as a new measurement zt and incorporated to

the correction step of the Kalman filter.

The Kalman filte has been widely used to combine noise measurements from

different image frames and stabilize the camera moving trajectory. However, it

restricts the state probability distribution to be Gaussian and the state transition

must be linear.

3.5 Summary

In this chapter, we first explain the perspective projection model of the camera

and run into details of each element in this model. We discuss two methods

for estimating the camera pose, which are a non-iterative approach EPnP, and

an iterative approach hill climbing method, followed by a brief description for

RANSAC algorithm for robust estimation. Furthermore, we presented two image

processing techniques, image segmentation and line detection, which are highly

28



3.5 Summary

related to our tasks. In the end, we introduce the Kalman filter for recursive state

estimation.
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4 Vision-based 3D Pose Tracking

Using Field Lines

This chapter introduces our visual tracking system, which is designed to be used

for tracking the 6-DoF camera pose on the soccer field. The initial estimated

camera pose can be acquired by transforming the trunk pose of a robot according

to kinematic model, where the trunk pose is provided by the user. The main steps

of our visual tracking algorithm are as follows:

1. Extracting features (field boundary, obstacles, and field lines) from the cap-

tured image.

2. Converting the detected field lines to observations that can be used for

matching.

3. Generating 2D projected field model from 3D field model based on estimated

camera pose.

4. Establishing correspondences between 2D observations and 3D model points.

5. Determining the optimal camera pose st that minimizes the error function.

6. Using multi-hyphothesis approach to find the optimal camera pose after los-

ing track.

7. Using Kalman filter for statistical state fusion.

An overview of our visual tracking system is shown in Figure 4.1

4.1 Object Detection

Before using the camera for vision tracking task, the camera internal parameters

and distortion parameters are pre-calibrated. In our vision system, the image is

captured in the RGB color format with a resolution 640 × 480. We first convert

RGB format to the HSV format using the method we mentioned in Section 3.3.1.

We use HSV color format due to that it gives the user an intuitive perception of

the resulting color for a certain color value.
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4 Vision-based 3D Pose Tracking Using Field Lines

Figure 4.1: Overview of our visual tracking system.
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4.1 Object Detection

4.1.1 Field Detection

In soccer robot competition, every interesting object is located inside the green

field. It is very important to know where the field ends. Because knowing the

position of filed ends enables us to eliminate some unwanted detections such as

white lines outside the field. Thus we can focus on further processing on the area

inside the field boundary. As a result, the processing speed can be increased.

In our vision system, we employ a strategy to find the field boundary, which

is similar to the strategy proposed by Farazi, Allgeuer, and Behnke (2015). The

basic idea of this approach is to find some biggest green regions based on color

segmentation, thereby a convex hull is found from those green regions. However,

due to the effect of lens distortion, finding convex hull from initial image may

cause many false positive areas (Figure 4.2a). Therefore, we should do the convex

hull finding on undistorted image frame. Whereas undistorting the whole image

is time consuming, and doing further process on unsorted images requires much

more computational spaces because the size of undistorted image is much larger

than that of the initial image. For example, in our case the resolution of initial

image is 640 × 480 (Figure 4.2a), while the size of undistorted image is 1661 ×
1251 (Figure 4.3). So we present an approach to find the convex hull only by

undistorting a minimal set of boundary points. Our boundary finding algorithm

can be described as follows:

• Binarizing the color according to the green color ranges

The user defines ranges for green color in H, S, V dimensions. The color

at pixel position (i, j) in input image is classified according to the following

equation:

gij =

{
1 if (Hij ∈ [Hg

min, H
g
MAX ] ∧ Sij ∈ [Sgmin, S

g
MAX ] ∧ Vij ∈ [V g

min, V
g
MAX ])

0 otherwise

(4.1)

where gij denotes whether the color is green or not; Hg
min, Hg

MAX , Sgmin,

SgMAX , V g
min, V g

MAX are user defined green color thresholds. The binarizing

output of image shows in Figure 4.2b where the white pixels correspond to

the pixels that have been classified to the green.

• Finding regions of interest from the binarizing image

Continuous regions, so-called contours are retrieved by using the algorithm

proposed by Suzuki (1985). Each contour is stored as a vector of points. As

shown in Figure 4.2c, a huge number of contours (in blue) are detected, some

of which are rather small. Based on the assumption that the field locates on

the bottom of the image, and should be relatively large, only those contours
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with the area larger than a certain threshold and with the bottom close to

the bottom of the image, will be chosen for generating the field hull. In

Figure 4.2c, only one contour is chosen.

• Finding the convex hull on the undistorted point set

In Section 3.2.5, we present a formula of correcting points which can undistort

contours points easily. Then we could find a smallest convex region enclosing

undistorted contours points by using the algorithm proposed by Graham and

Yao (1983).

• Projecting convex hull to the initial image

We sample a set of points along each edge of the detected convex hull as

shown in Figure 4.2d. Those sample points are distorted back to initial

image; and the detected field boundary is visualized with the yellow lines in

Figure 4.2a.

4.1.2 Obstacle Detection

Obstacle detection is not only required by robot navigation on the field, but also

essential in the step of line detection. The information of size and position of

obstacles enables us to eliminate some false detections of field lines.

The obstacle detection is based on the assumption that obstacles are represented

as big black areas in the image. Thus, the obstacle detection depends on the black

color segmentation. The detection process consists of three steps:

• Binarizing the color according to the black color ranges

Similar to field detection, we introduce the following formula to classify the

pixels

bij =

{
1 if (Hij ∈ [Hb

min, H
b
MAX ] ∧ Sij ∈ [Sbmin, S

b
MAX ] ∧ Vij ∈ [V b

min, V
b
MAX ])

0 otherwise

(4.2)

where bij denotes whether the color is black or not; Hb
min, Hb

MAX , Sbmin,

SbMAX , V b
min, V b

MAX are user defined black color thresholds. Figure 4.4b

visualizes a binary output of black color.

• Searching regions of interest within the field boundary

We use the same method as the one we used for finding green field boundary

(Suzuki, 1985) to find connected black areas. The connected black areas

show the potential locations of obstacle regions in an image.
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4.1 Object Detection

(a) (b)

(c) (d)

Figure 4.2: Field boundary detection. (a) Convex hull of the green regions in the
image (yellow), and the unwanted area (red arrows). (b) Green binary image. (c)
Contours based on segmentation. (d) Boundary points of the undistorted convex
hull.

Figure 4.3: An undistorted image.
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(a) (b)

Figure 4.4: Obstacle detection. (a) Obstacle inside the green field (red). (b)
Black binary image.

• Refinement of potential obstacles

This step aims to find a convex hull of each black region whose area exceeds

a certain threshold. Black regions with small area are ignored. Figure 4.4a

visualizes a convex hull of a detected obstacle.

4.1.3 Field Line Detection

4.1.3.1 Line Filters

The pixels on white lines will be relatively brighter than its neighboring green

pixels. To detect field lines, we apply some line filters to the brightness channels

(V channel) of the input HSV image to enhance the brightness responses of pixels

on lines. In the output matrix, the higher the value is, the higher the probability

of the corresponding pixel belongs to a line. Before describing our line kernels, it

is necessary to briefly review the state of the art of edge detection techniques.

Among many image processing techniques, edge detection is an effective tech-

nique to identify pixels in an image in which the brightness changes sharply. A

widely used method of edge detection is the Difference of Gaussians (DoG) (Marr

and Hildreth, 1980). This method consists of subtracting two Gaussians (Fig-

ure 4.5), where a kernel in blue has a standard deviation smaller than the other

one in green. The detected edge of this image result from the convolution between

the DoG kernel in red (Figure 4.5) and the input image.

Our goal is to detect one single line that centers in two edges; however, the

existed edge detection methods are not sufficient to reach this goal. In order to
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4.1 Object Detection

Figure 4.5: The DoG kernel.

Figure 4.6: A 2D line filter for detecting vertical lines.

make the DoG kernel work for line detection, we therefore modify it as follows:

changing the widths (σ1, σ2) of two Gaussians so that the number of positive values

of DoG kernel is almost the same with the line width. By applying such DoG kernel

to the brightness channel, the closer a pixel to the center of the lines, the higher

response it gets.

The DoG kernel depicted in Figure 4.5 is a 1D horizontal kernel. In order to make

the result more robust to noise, a vertical Gaussian kernel is applied. Thus the

response of a pixel is a weighted sum of the value of itself and its neighborhoods.

In Figure 4.6 depicts the resulting 2D line filter which is constructed by a 1D

horizontal DoG kernel and a 1D vertical Gaussian kernel. It is noteworthy that

the kernel is represented in 2D, nevertheless, the convolution can be performed

much quicker on two separated 1D kernels.

In order to detect lines in different widths and orientations, we construct a

set of kernels in four different orientations and three different sizes Figure 4.7.

Meanwhile, we divide the input image into three parts: the bottom part, the

middle part, and the upper part. Normally, when a pixel gets close to the bottom

of the image, the captured object will be close to the camera as well. Therefore,

at the bottom part of the image, the captured lines tend to be bigger that other

parts. Hence we apply the largest four oriented kernels to the bottom part of the

image, the middle sized kernels to the middle part, and the smallest kernels to the

upper part.
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Figure 4.7: Four kernels used for detecting oriented line segments in three differ-
ent sizes.

We refer brightness response image to the output of line detection on brightness

channel. The higher the response is, the higher the probability of the correspond-

ing pixel belonging to a line. For the sake of computational costs, our method

only detects the lines inside the estimated field boundary. The responses outside

the field boundary are all set to zero. Moreover, in order to remove some false

detections, if one pixel is very close to or inside an obstacle convex hull, which is

detected in Section 4.1.2, the response of this pixel is also set to zero. Figure 4.11b

and Figure 4.12b visualize two resulting brightness response images.

4.1.3.2 Finding Candidate Skeleton Pixels

In the previous step, the brightness values of pixels that may be centered on lines

enhanced by line filters. The step aims to find those candidate skeleton pixels that

have higher value than most of their neighborhoods.

Skeletonization (Behnke et al., 1997) is used to find the optimal values among

their neighbors. It introduces a simple operator which observes 3× 3 pixel regions

to decide if the central pixel belongs to the skeleton. For all pixels inside the

estimated field boundary, the number cij of neighboring pixels (8-neighborhood)

having an equal or higher brightness response than that of the center pixel is

computed. If cij is less than three, which means the brightness response of the

center pixel is higher than the majority of its neighboring pixels, the central pixel

at position (i, j) will be considered as a candidate skeleton pixel. We classified

the candidate skeleton pixels into three types according to the value of cij: type 1

(cij = 0), type 2 (cij = 1) and type 3 (cij = 2). Figure 4.11c and Figure 4.12c are
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4.1 Object Detection

Figure 4.8: k and its relationship with side length s.

examples of the resulting candidate skeleton pixels.

4.1.3.3 Refinement of Skeleton

Skeletonization aims to approximately reduce the line width to one pixel. However,

the lines are not purely white, which causes a lot of noise inside line segments.

Therefore, in most cases, the line is still bigger than one pixel after skeletonization

as shown in Figure 4.11c. If we construct node graph directly on the skeleton

(Schulz and Behnke, 2012), many small loops inside a line segment may be formed.

Therefore, a lot of effort is required for eliminating those wrong connections.

Here we propose an approach to refine the skeleton. We first fit squares to the

candidate skeleton pixels, and then the centers of squares are used as purified

skeleton pixels to construct a node graph.

A square is determined by its center c(ci, cj) and side length s. Fitting squares

means finding a set of c(ci, cj) and and their corresponding s. Each skeleton pixel

should be inside one and at most one square. The main steps of finding a square

that containing a skeleton pixel P (i, j) are introduced as follows:

Step 1: Initialization: c = P and s = 1.

If there is only one skeleton pixel if you cut through the line, then the initial

value s = 1 and center c = P is optimal. Whereas further increasing of s is

needed if there are multiple skeleton pixels along the line width.

Due to the symmetry, s is increased by two in each step. We use a parameter

k to denote the length of the square in each side of the center. Thus:

• s = 1 + 2k;

• initial k = 0;

• and k is increased one by one.

Step 2: The size s stops to increase if one of the following condition is met:
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Figure 4.9: Judging a corner having a neighborhood or not: P2, P3 have neigh-
borhood skeleton pixels, while P1 and P4 do not have. The red points are skeleton
pixels.

Condition 1: At least two of its four corners have no neighborhood skeleton

pixels.

Condition 2: With the increase of side length, one side of this square meets

another square.

Condition 3: s exceeds the user defined maximum value of side length smax.

In Condition 1, a corner P has no neighborhood skeleton pixel, which means

that the Euclidean distance between P and its closest skeleton pixel Pc is

larger than a user defined threshold. As shown in Figure 4.9, the radius of

the circles is the distance threshold. It is obvious that the corners P2 and

P3 have neighborhood skeleton pixels while P1 and P4 have no neighborhood

skeleton pixel.

Condition 2 prevents the square to overlap with other squares. Furthermore,

when the input skeleton contains much noise, the Condition 1 is hard to

reach, thus a too large square may be created; however, Condition 3 is intro-

duced to avoid too large squares by stopping the increases of size. Normally,

if s is as large as the line width, the square is definitely able to cover all

skeleton pixels along the line width. Thus smax is chosen slightly bigger than

the line width. As explained in Section 4.1.3.1, line detection uses different

scales of kernels for detecting lines with different widths. Similarly, we also

use three different user defined smax for different parts of skeleton region.

When the width of line become larger, a larger smax should be defined.

Step 3: Shifting center c.

A square centered at c with size s = 1 + 2k is found after performing first

two steps. In this step, the center c shifts to one of the skeleton pixel inside

the square so that the new square:

• contains maximum number of skeleton pixel;
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Figure 4.10: Computing the number of skeleton pixels inside a square.

• contains the initial skeleton pixel P (i, j);

• and has no overlap with other squares.

In order to calculate the number of skeleton pixels efficiently, we use the

similar idea behind the Integral Image (Viola and Jones, 2001) to generate

a matrix of the number of skeleton pixels. The number of skeleton pixels

(Numk(x, y)) inside a square centered at c(x, y) with size s = (2 ∗ k+ 1) can

be computed by adding the Numk−1(x, y) with the number of skeleton pixels

in the border area Numborder: Numk(x, y) = Numk−1(x, y) +Numin border

Figure 4.10.

The pseudo code of fitting squares algorithm can be found in Appendix B.

Figure 4.11d and Figure 4.12c visualize two resulting squares.

4.1.3.4 Graph Representation of Field Lines

In this section, we discuss our approach for constructing node graph by connecting

neighboring squares. Before constructing the neighborhood graph, some notations

are introduced: in accordance with the common notation of graph theory (Bol-

lobás, 2013), let a graph G be a pair of disjoint sets (V,E), where V = V (G) is

a set of vertices of G and E = E(G) is a subset of the set V × V . In our task,

the set of vertices V (G) is equal to the set of centers C of the squares found in

previous step:

V (G) := Setcenters (4.3)

The set of edges E(G) is defined by using the neighbor functions introduced above:

E(G) := {(v, w) ∈ V × V : w ∈ N(v) ∧ v ∈ N(w)} (4.4)

where N(v) denotes the neighborhood of node v.

Because the V (G) can be easily initialized as the centers of the resulting squares,

our task focus on finding the neighborhood nodes of each node, finding the set
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of edges E(G). Some definitions used in finding edge process are introduced as

follows:

• The distance between two nodes vi(xi, yi) and vj(xj, yj) is the Euclidean

distance between them.

dist(vi, vj) =
√

(xi − xj)2 + (yi − yj)2 (4.5)

• The neighborhood nodes of node vi, are a set of nodes that connected with

vj.

N(vi) := {vj|vj ∈ V (G) ∧ connected(vi, vj)} (4.6)

• The candidate neighborhood nodes of node vi are a set of nodes with a

distance to vi smaller than a user defined threshold.

CN(vi) := {vj|vj ∈ V (G) ∧ dist(vi, vj) < θn} (4.7)

where θn is the max distance for neighborhood nodes defined by user.

• The candidate connections of node vi, are a set of edges between vi and its

candidate neighborhood nodes.

CE(vi) := {(vi, vj)|vj ∈ CN(vi)} (4.8)

• All candidate connections of graph G is a union set of all candidate connec-

tions of each node.

ACE(G) := {(vm, vn)|(vm, vn) ∈ ∪Ni=1CE(vi)} (4.9)

where N is the number of nodes of graph G.

• The weight of connecting node vi and node vj is evaluated by the following

formula:

weight(vi, vj) =
si ∗ sj ∗ ske numi ∗ ske numj ∗ avg brightness response

dist(vi, vj)
(4.10)

where:

◦ si, sj are sizes of square i and square j that centered at vi and vj
respectively;
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◦ ske numi, ske numj are the number of skeleton pixels inside two squares

respectively;

◦ avg brightness response is the average brightness response along the

connection edge between vi and vj.

• The angle of node vi and its two connected node vj and vk is the angle formed

by connecting vj − vi − vk. The minimum angle of node vi is the minimum

angle of node vi and two of its connected node.

Min ang(vi) := {ang(vj, vi, vk)|vj, vk ∈ N(vi), ang(vj, vi, vk) ≤ ang(vm, vi, vn),

∀vm, vn ∈ N(vi)}
(4.11)

For later usage, we define the Minang(vi) equals to π when the number of

connected nodes of vi, num connected(vi) is less than two.

By using the definitions described above, the process for finding the neighbor-

hood nodes can be described as follows:

1. For each node vi, find its candidate neighborhood nodes CN(vi).

2. Evaluate each candidate connection CE(vi) by using equation (4.10).

3. In each iteration, choose the candidate connection (vm, vn) so that:

a) vm and vn is not connected;

b) weight(vm, vn) is highest among all weights of all candidate connections

in ACE(G);

c) the degrees of vm and vn are less than four: dm < 4 and dn < 4;

d) there is no triangle loop after connecting vm and vn;

e) Min ang(vm) and Min ang(vn) are larger than an angle threshold

αmin ang after connecting vm with vn.

4. If weight(vm, vn) is larger than a user defined threshold ωmin, connect vm
with vn, go to step 3. Otherwise stop the iteration and output the node

graph G.

Example node graphs can be found in Figure 4.11e and Figure 4.12d.
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4.1.3.5 Line Clusters

The neighborhood graph G is able to represent the field lines in the image but not

the individual field lines yet. Different field lines can be represented by a single

connected region in a graph. The next field line detection step is to split the

node graph into line clusters so each cluster contains only field line segments that

belong to the same field line. This step is extremely helpful when doing further

data registration, and more details can be found in Section 4.4.

To reach the goal that each cluster contains only field line segments that belong

to the same field line or the center circle, we have some constraints for each cluster.

• A cluster consists of a set of ordered nodes.

• All nodes except ending nodes are connected with their two neighboring

nodes.

• for each node vi except two end nodes and its two neighboring nodes vj and

vk, the angle, ang(vj, vi, vk) is larger than an angle threshold βmin ang, which

should be close to π, meaning that the neighboring edges should have similar

orientations.

Due to distortion, the angles of line segments that belong to a same field line

differs. Therefore, before extracting line clusters, we undistort nodes of graph G.

With such an undistorted node graph UG and the constraints of cluster, a greedy

algorithm can be defined to extract clusters of edges. The algorithm traverses

from the first node vi of graph G, then vi and one of its neighborhood node vj
are added to current cluster. The node vk is added to the current cluster if the

following three constraints are met:

• vk are connected with current node vi;

• for any other connected nodes of vi, say vm, ang(vj, vi, vm) ≤ ang(vj, vi, vk);

• ang(vj, vi, vk) > βmin ang

Once vk is added to the current cluster, node vk and vi are disconnected; then vj
is replaced by vi, and vi is replaced by vk. The algorithm continues to find the next

vk. A new cluster is created when there is no vk satisfies the above constraints.

Once a new cluster is created, the old one will be added to a list of the found

clusters and its edges will be removed from the current graph as well. Figure 4.11f

and and Figure 4.12e illustrate the line clusters generated by the cluster extraction

algorithm. An example shows the process of cluster extraction algorithm can be

found in Appendix A.
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As described above, the main property of a line cluster is that all nodes in the

same cluster belong to the same field line or center circle.

4.2 From Visual Features to Observations

The output of previous line detection process is a set of node clusters. Each cluster

is a set of ordered nodes which are connected with their one or two neighboring

nodes. The neighboring edges have similar orientations.

Our purpose is to associate each detected nodes to a 3D model line point with

high accuracy. To make it more efficient when doing the data registration, we

extract following high lever information for each observed cluster.

• The orientation of each node vi, ort(vi), is the average orientation of its

neighboring edges.

ort(vi) =

{
ort(vj, vi) if {vj} = N(vi)

avg(ort(vj, vi), ort(vi, vk)) if {vj, vk} = N(vi)
(4.12)

where avg(ort1, ort2) calculates the average orientation of angle ort1 and ort2.

When calculating the average angle of two angles, it is worth mentioning

that the two angles should be normalized to the range [−π, π] before doing

the numerical average of these two angles. We consider the orientation of

each node is undirected, for example, 0 and π are considered as the same

orientations. So ort(vi) is normalized to the range [−0.5π, 0.5π).

• The angle of cluster m, avg angm, is the average angle of all nodes of this

cluster:

avg angm = avg(ort(v1), ort(v1), . . . , ort(vn)) (4.13)

where n is the number of nodes of cluster m. It is noteworthy that it is

necessary to pre-process the orientation of each node before calculating the

numerical average of these angles.

• The weight of each node, weight(vi), is the sum of half length of its two

neighborhood edges:

weight(vi) =

{
1
2
dist(vj, vi) if {vj} = N(vi)

1
2
dist(vj, vi) + 1

2
dist(vj, vk) if {vj, vk} = N(vi)

(4.14)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: An example of field line detection process. (a)Input image. (b)
The output brightness response image after applying line filters. (c) Three types
of optimal values including: type 1 (red), type 2 (green) and type 3 (blue). (d)
Bounding squares found from the optimal values. (e) A node graph constructed by
connecting neighborhood squares. (f) Two clusters (in green and blue) extracted
from node graph.

46



4.2 From Visual Features to Observations

(a)

(b)

(c)
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(d)

(e)

Figure 4.12: Visualization of field line detection process. (a) Input image. (b)
Resulting gray image after applying line filters on brightness channel. (c) Skeleton
pixels and the bounding squares. (d) A node graph. (e) Resulting clusters found
from the undistorted node graph.
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4.3 Modeling the Field Lines

Figure 4.13: Humanoid robot soccer field (not to scale).

As a result, the observations can be represented as follows:

Obs = {clusterm|clusterm = (V, ort, avg ang, Weight),m = 1, 2, ..., n} (4.15)

where n is the number of clusters; V (clusterm) are all nodes belong to clusterm;

ort(clusterm) are orientations of nodes; avgang is the average angle calculated

from equation (4.13) ; Weight(clusterm) are weights for nodes.

4.3 Modeling the Field Lines

In this section, we discuss our method for projecting the 3D field line model to

the image plane. The humanoid league competitions take place in a well defined

environment. As shown in Figure 4.13, the field model consists of two goals and

field lines (Soccer, 2015), which has been pre-known to the soccer robots. Table

4.5 shows the dimensions of the soccer field for RoboCup TeenSize competition

and the soccer field for test in our laboratory.

In order to associate our observations to the 3D model, it is necessary to de-

termine which parts of lines are visible and where they are located in an image

plane. For this purpose, we project the 3D field models to the image plane. In

this process, we only leverage the filed lines painted on the grass for tracking. The

projection of field lines can be decomposed into three main steps:
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Dimension labels Dimensions SF SFL

A Field length 900 545

B Field width 600 410

D Goal width 260 260

E Goal area length 100 60

F Goal area width 500 340

G Penalty mark distance 210 130

H Center circle diameter 150 120

Table 4.1: Dimensions of the rectangular field of soccer play (in cm), and SF is
short for Humanoid robot soccer field for TeenSize competition; SFL is short for
Soccer field in Laboratory

Step 1: Sampling points on the field lines

As shown in Figure 4.14, (O, x, y, z) is the world coordinate system, with

the origin located on the center of the field. We sample a set of points

M on field lines uniformly. The coordinate of each 3D point is denoted as

Mi = [Xi, Yi, Zi]
T . It is obvious that the Z value of each point is 0 because

only field lines on the ground are used for tracking.

Step 2: Projecting each 3D point to 2D image plane and removing those projected

points outside image boundary

A 2D projected model point set m is generated by projecting each point Mi

to mi. To project a 3D point Mi = [Xi, Yi, Zi]
T to its 2D corresponding

point mi = [vi, ui]
T , we use the perspective projection model described in

Section 3.1.1. The external parameters matrix [R|t] is calculated from the

current estimated camera pose. In our system, the estimated camera pose

at time t, st is denoted as the following 6-tuple:

st : ((x, y, z, γ, β, α))Tt (4.16)

The translation vector can be acquired immediately from the position, that

is t = (x, y, z)T , and the corresponding rotation matrix R can be acquired

from the Euler angles by equation (3.7).

In order to check whether mi are visible in captured distorted image, we

calculate the distorted point m′i = [v′i, u
′
i] of mi . If m′i is outside the rectangle

of captured image (v′i /∈ [0, 640], u′i /∈ [0, 480]), mi is removed from set m.
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4.3 Modeling the Field Lines

Figure 4.14: (O, x, y, z) is the world coordinate system. The yellow points are
3D points sampled on field lines.

Figure 4.15: A 2D Projected field model.

Besides, for those points belongs to a same straight field line, only two ending

points are kept. Therefore, only one single line segment will be generated for

a straight field line. The removing of points inside a straight line improves

the efficiency of data registration, which will be introduced in Section 4.4.

However, by connecting the neighborhood points, a center circle consists of

several line segments.Figure 4.15 shows a resulting projected model.

Step 3: Normalization of the representation of the projected model

For later usage, the projected model is denoted as a set of elements. Each

element is a set of line segments.

Pm = {Em|Em = Linesm, m = 1, 2, . . . , n} (4.17)
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Figure 4.16: Examples of showing the distance of a node to a line segment: the
closest point on line segment L to v1 is c1 = s, so dist(v1, L) =‖ v1 − c1 ‖2:
while the closest point on line segment L to v2 is the projected point c2, so
dist(v2, L) =‖ v2− c2 ‖2 .

where n is the number of elements. The element corresponding to a straight

field line consists of only one single line, while the one corresponding to the

center circle may include several line segments. For each line segment, Lk,

it contains the following information:

• the starting point sLk
and the ending point eLk

;

• and the angle of this line segment angLk
, which is normalized to [−0.5π,

0.5π).

4.4 Data Registration

After obtaining observations and a projected model, we need to assign the observed

nodes to the points on the projected model, at the same time assign them to points

on 3D field. Some definitions used in data registration process are introduced as

follows:

• The distance of a node vi to a line segment Lj is the Euclidean distance

between vi and ci, where ciis the closest point to vi on the line segment Lj.

dist(vi, Lj) =‖ vi − ci ‖2, where ci = argminpi(‖ vi − pi ‖2), pi ∈ Lj
(4.18)

• The distance of a node vi to a model element Em is the distance between vi
and Lj, where Lj is the closest line segment to vi among all line segments of

Em.

dist(vi, Em) = dist(vi, Lk), , where Lk = argminLj
dist(vi, Lj), Lk ∈ Em

(4.19)
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4.4 Data Registration

• The distance between an observed cluster clustern and a model element Em
is the weighted average distance of each node in clustern to Em.

dist(clustern, Em) =
n∑
i

(dist(vi, Em) · weighti)/
n∑
i

weighti, (4.20)

where n is the number of nodes in clustern.

The purpose of data registration is to find the closest point ci from model el-

ements for each node vi of observation clusters. Because the nodes in a same

cluster is supposed to belong to a same model element, instead of finding the clos-

est model point of each node, our approach finds the closest model element Em of

each clustern that meets the following conditions:

Condition 1: The distance between clustern and Em is minimum:

Em = argminEodist(clustern, Eo), Eo ∈ Pm (4.21)

Condition 2: The angle difference between the orientation orti of each node vi in

clustern, and the orientation of the line segment Lj that is closest to vi in

Em should be smaller than a user defined threshold :

angDiff(orti, angLj
) < δmax dif (4.22)

where δmax dif is the maximum difference. With this condition, a node can

only be assigned the line segment with similar orientations.

If the distance between clustern and its closest model element Em is smaller

than a user defined threshold distinlier, then nodes in clustern are considered as

inliers; otherwise they are considered as outliers. For each inlier node vi, its closest

point ci can be obtained in the process of finding the closest model element Em
of each clustern. Figure 4.17 shows an example of associating observed node v to

projected model point c.

The 3D model point Ci = [Xi, Yi, Zi]
T corresponding to ci = [ui, vi]

T can be

calculated by the back projection process. Specifically, with the prior knowledge

that Zi = 0, the value of Xi and Yi can be acquired by solving equation (3.1).

Thus a pair of correspondence from 2D point vi to 3D model point Ci is formed.

53



4 Vision-based 3D Pose Tracking Using Field Lines

Figure 4.17: Data registration based on current estimated camera pose: the
projected model is represented by yellow line segments; the observations are visu-
alized using different colors for different clusters; each observed inlier node vi is
connected to its closest point ci by a line segment in orange; nodes in black circles
are identified as outliers.

4.5 State Optimization

In Section 4.4, we introduce our approach to set the correspondences between 2D

points v and 3D model points C. Once the 2D-3D correspondences are known,

the estimated camera pose can be updated to minimize the sum of reprojection

errors between projected 3D points and their corresponding observed points in 2D

image plane (see Section 3.2.2).

[R|t] = argmin[R|t]

N∑
i

dist2(K[R|t]Ĉi, λv̂i) (4.23)

To solve this equation, both EPnP (see Section 3.2.3) and hill climbing method

(see Section 3.2.4) are implemented in our system. The efficiency and effectiveness

of these two methods will be evaluated by experiments in Chapter 5. As we all

known, one drawback of non-iterative approaches (e.g. EPnP) for pose estima-

tion is that they are rather sensitive to noise. Therefore, EPnP is often used in

combination with RANSAC (see Section 3.2.5).

When using the hill climbing method, the error function to be minimized is the

reprojection error as follows:

E(St) =
N∑
i

dist2(K[R|t]Ĉi, λv̂i) ≡
N∑
i

dist2(ĉi, v̂i) =
N∑
i

dist2(ci, vi) (4.24)

where st denotes the current estimated camera pose. Equation (4.24) shows

that the error is the sum of square distance between node vi and corresponding

projected model point ci. In our approach, each node is assigned with a weight.
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4.5 State Optimization

Figure 4.18: Data registration based on the camera pose after optimization.

Therefore the error E(St) is the weighted sum of square distance between vi and

ci:

E(St) =
N∑
i

dist2(ci, vi) ∗ weightsi/
N∑
i

weighti (4.25)

The main steps of hill climbing method are described as follows:

Step 1 Sampling a set of neighborhood states S ′ of st.

The neighborhood pose of st is generated by adding/subtracting a value η

to/from one of the six dimensions.

Step 2 Evaluating each neighborhood state s′i

For each neighborhood state s′i, the data registration algorithm is applied to

find the correspondences. Then the reprojection error is calculated according

to equation (4.25). Finally we choose the best neighborhood state s′k, having

minimum reprojection error.

Step 3 Updating st to s′k if E(st) > E(s′k); otherwise decreasing the step size: for

example η = 0.5η, then going to Step 1.

The iteration stops if one of the following conditions meet: 1) η < ηmin;

2) E(st) < E(s′k); 3) the iteration number exceeds the maximum iteration

number.

Figure 4.18 visualizes the data registration result based on an optimized camera

pose using the same observations with the one presented in Figure 4.17 . Obviously,

in Figure 4.18 the observed nodes almost overlap with the projected model, which

means that the sum of reprojection errors of the optimized camera pose is much

smaller than the one presented in Figure 4.17 based on a estimated camera pose.
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4.6 Multi-hyphothesis for Tracking

Even through our visual tracking approach is designed to track the camera pose

all the time, the robot may lose track of the camera pose in some extreme cases.

For example, after a period of time, there are no observations when the robot

looks outside the field. As a consequence, the estimated pose st may be far away

from the actual pose. The resulting correspondences generated based on such bad

estimated state may contain many outliers. Thus, it is impossible for a robot to

find an optimal pose based on such correspondences.

Instead of only tracking the pose, our vision system follows a multi-hypothesis

approach to recover the optimal camera pose after getting lost. This approach

generates multiple hypotheses around the current estimate pose st once the prob-

ability of being lost is high. The best hypothesis is chosen to be the next estimated

state. Now, we introduce the definition for probability of being lost and how to

generate hypotheses according to this probability.

The probability of being lost is closely related to the average reprojection error

and the percentage of inliers. High average reprojection error is a strong indicator

for being lost. Moreover, a low percentage of inliers, which means that the obser-

vations and the projected model are quite different or far away, is also a sign for

being lost. Thus we combined these two values to be a normalize average error:

E(st)
N =

√
E(st)

Ninliers

/
Ninliers

N
(4.26)

where E(st)
N denotes the normalized average error; Ninliers is the number of

inliers and N is the number of all observed nodes. The probability of being lost is

calculated as follows:

plost(st) =


1 E(st)

N > ε2

(E(st)
N − ε1)/(ε2 − ε1) ε1 < E(st) < ε2

0 E(st)
N < ε1

(4.27)

where ε1 , ε2 are user defined error thresholds and ε1 < ε2.

Both the number of hypotheses nt and sample range depend on the value of

plost(st):

nt = plost(st) ∗Nmax h (4.28)
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Figure 4.19: The (C, x, y, z) is the camera coordinate system, with z-axis pointing
to the center of captured images. The origin of this coordinate is the estimated
camera position. The black arrows are hypotheses generated around the current
state.

where Nmax h is a user defined maximum number of hypotheses.



rangex = plost(st) · (0.5A)

rangey = plost(st) · (0.5B)

rangez = plost(st) · (0.5h)

rangeγ = plost(st) · (0.5π)

rangeβ = plost(st) · (0.5π)

rangeα = plost(st) · (0.5π)

(4.29)

where A is the field length; B is the field width; h is the height of the camera

when the robot stands erectly. For each dimension, we sample a value between

[−range, range] and this value is added to the corresponding dimension of pose

st. The output pose s′t is truncated so that it is located inside the soccer field

(x ∈ [−A− 0.2, A+ 0.2], y ∈ [−B− 0.2, B+ 0.2] ) and the height z is in the range

[0, h]. The truncated state of s′t is added to hypothesis list.

The hypothesis with minimum error is chosen as the optimal state estimate.

Figure 4.19 visualizes a set of hypotheses generated around state st.
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4.7 Probabilistic State Estimation

To stabilize the pose estimate, the output pose from Section 4.5 and Section 4.6

is smoothed with a specialized Kalman Filter. We use a normal Kalman filtering

approach which has been introduced in Section 3.4.2. In the context of 6-DoF

camera pose tracking, in addition to the rotation and translation parameters, the

state vector st includes additional variables such as the translational and angular

velocities. The motion model used in prediction step and the covariance matrix

used in correction step are introduced as follows:

In our approach, the translational velocities of (vx, vy, vz)
T
t and angular velocity

∆qt (in quaternion form) are retrieved from IMU and dead reckoning. The position

is updated as follows:

(x, y, z)Tt+1 = (x, y, z)Tt + (vx, vy, vz)
T
t ×∆t (4.30)

The calculate the new orientation, we convert the orientation from the Euler

angles (γ, β, α)Tt to quaternion qt. As we discuss in Section 3.2.1 the multiplication

of quaternions represents composing the two rotations. Thus the new orientation

qt+1 is calculated as follows:

qt+1 = ∆qt · qt (4.31)

In correction step, estimating the covariance matrix of the measurements plays

an important role. In our system, the approach proposed by (Bengtsson and

Baerveldt, 2003) is used. This approach estimates the covariance by examining

the shape of the error function. The idea is that the error function E(st) was a

quadratic, then the covariance of optimal least-squares estimate equals to:

cov(x̂) =
1

2

∂2

∂x̂2
E(st)

−1σ2 (4.32)

An unbiased estimate s2 of σ2 in equation (4.30) would be s2 = E(st)/(N − 3),

where N is the number of correspondences. The final expression for the covariance

estimate is:

cov(x̂) = 2
E(st)

(N − 3)

∂2

∂x̂2
E(st)

−1 (4.33)

In our system, the calculation of ∂2

∂x̂2
E(st) is as follows:

∂2

∂x̂i
2E(st) ≈ 2E(st)− E(st + ∆xi)− E(st −∆xi), i = 1, 2, . . . , 6. (4.34)

where ∆xi is a 6-dimension vector, with the value in i−th dimension to be a small

value η and the value in other dimensions to be 0.
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4.8 Summary

Until now, the normal Kalman filtering mechanism can be applied.

4.8 Summary

In this chapter, we introduce each part of our visual tracking system step by step.

Specifically, we first propose a kernel-based method for detecting line candidate

pixels inside the field boundary. And then from those candidate pixels, we find a

purified skeleton for constructing node graph, which is divided into different line

clusters in the next step. A good observation model is generated by extracting

high level information from these line clusters.

Then we introduce a method for setting up a set of 2D-to-3D point correspon-

dences between the observations and the 2D projected field model. For solving

the Perspective-n-Point (PnP) problem, two optimization techniques, hill climbing

method and EPnP are introduced to find a optimal 6-DoF camera pose. To make

our tracking process more robust, we also introduce a multi-hypothesis approach

which enables the robot to recover the optimal camera pose after losing its track.

In the end, to stabilize the pose estimate, the Kalman filter is applied for state

fusion.
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5 Experiments

Our visual tracking system is built on Robotic Operating System (ROS) (Saito,

2016) which provides libraries and tools to facilitate the development of robot

applications. ROS provides an environment where developer can easily integrate

different modules and visualize the simulation scene on a Linux platform.

We conduct several experiments to evaluate our visual tracking system from

three main aspects, computational performance, object detection performance,

and visual tracking accuracy. Due to time constraints, it is not possible to exper-

iment on our system in a real RoboCup environment. Thus all experiments were

performed in a simulated soccer field in our lab, the field dimensions of which can

be found in Table 4.1.

5.1 Apparatus

We conducted all experiments using igus R© Humanoid Open Platform (Allgeuer

et al., 2015). This robot is nominally equipped with two 720p Logitech C905 USB

cameras. Each camera is fitted with a 150◦ Field of view(FOV) wide-angle lens.

We used one of the cameras to capture images in RGB format at a resolution of

640×480 by using the Video4Linux2 library. The igus R© Humanoid Open Platform

was only used to capture images and IMU data. Further image processing and

pose estimation were performed on a PC, which has a computer with a Intel R©
CoreTM i5-4210U CPU @ 1.70GHz × 4 processor and 8GB of memory.

5.2 Experiment Design

We designed nine different tasks to evaluate the system from the three aspects. In

particular, in each of the nine tasks, we recorded the images, dead reckoning and

IMU data published by the robot while walking along the pre-defined trajectories

(Figure 5.1 ) controlled by joystick. Most of the time, the head of robot was

straight to the front, which is identified by the yellow arrows in Figure 5.1. Thereby

it ensures that the captured scenes are roughly as what we expected.
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5 Experiments

(a)

(b)

Figure 5.1: Nine pre-defined tasks: (a) T1 ∼ T4; (b) T5 ∼ T9. Each task
contains a trajectory which has a starting point (s) and an ending point (e). Some
of the trajectories also have a midpoint (m). The black/blue arrows indicate the
direction of trajectory while the yellow arrows indicates the front direction of the
trunk.
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5.2 Experiment Design

It is common to employ pre-defined trajectories as the ground truth for evaluat-

ing localization accuracy (Strasdat et al., 2006). However, the error of controlling

the robot along the trajectories by joystick may lead to moving errors. Hence we

marked the trajectories according to robot moving on the soccer field in videos

recorded by a second camera outside the field. Consequently, we used the marked

trajectories as the ground truth in our experiments.

The datasets includes about 8,000 images captured in different field locations

and orientations. Many captured images were affected by motion blur due to

walking and head panning motions. We analyzed these nine recorded datasets on

the aforementioned PC.

Firstly we examined computational performance by measuring average execu-

tion time of each part of the proposed visual tracking systems in nine tasks. For

each task, the initial estimated pose was set to a pose within 0.2 meter to the

actual start pose. Each task was repeatedly performed with three different op-

timization methods: hill climbing method, EPnP and EPnP+RANSAC. All the

three methods used the Kalman filter (KF) for state fusion by default.

In addition, we also evaluated the performance of the object detection of our

system both qualitatively and quantitatively. In order to test the object detection

system, 200 frames of images were selected randomly from all recorded datasets.

We logged all extracted field contours, obstacle contours and clustered lines of

these 200 frames. The data was evaluated frame by frame to calculate the true

positive rate (TPR) and positive predictive value (PPV).{
TPR = TP/(TP + FN)

PPV = TP/(TP + FP )
(5.1)

where TP, FP, FN denote the number of true positives, false positives and false

negatives respectively. Below shows the criteria for calculating the TP, FP and

FN, where Detected object indicates an output feature( field boundary, obstacle,

or lines) of our vision system and True object indicates a actual feature identified

by us.

TP : The objects that are correctly identified. For a True object, it is correctly

identified if at least 90% of it has been detected.

FP : The objects that are incorrectly identified. For a Detected object, it is

incorrectly identified if at least 90% of it doesn’t belong to any True object.

FN : The objects that are incorrectly rejected. For a True object, it is incorrectly

rejected if at most 10% of it has been detected.
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Task group Tasks Task difficulty level Interpretation

NT group T1 - T4 normal visible field pct. > 25%

DT group T5 - T8 difficult visible field pct. < 25%

Table 5.1: Two groups of experiments

Finally, we evaluate the visual tracking accuracy of our system. The visual track-

ing accuracy is measured by the distance error, which is the Euclidean distance

between the estimated position (x, y) and the actual position. However, since it

is difficult to generate a ground truth for the height z and the orientations of the

camera without motion capture system, we only evaluated the distance error in x

and y coordinates. The ground truth for x and y coordinates are marked by us

after checking the videos recorded by the camera outside the field.

We evaluated the visual tracking accuracy from the flowing three aspects:

• Comparing three different optimization methods tested in our system.

• Comparing the system using Kalman filter with the system without using

Kalman filter.

• Comparing our system with the system proposed by Farazi, Allgeuer, Ficht,

et al. (2016) which optimizes 3D of the pose (x, y, α)T while the other 3D of

the pose state (z, θ, φ) are retrieved from Dead Reckoning.

To compare the visual tracking accuracy of three different optimization methods

tested in our system, the first eight tasks (T1-T8) were performed. Prior to the

evaluation, according to task difficulty level we categorized the first eight tasks

into two groups, normal task (NT) group, and difficult task (DT) group. The

difficulty level is defined by the visibility of soccer field in the images captured by

the camera of robot. NT group has at least 25% of the soccer field which is visible;

while DT group has at most 25% of the soccer field which is visible Table 5.1. The

two groups of taks are demonstrated in Figure 5.1, where the trajectory and facing

directions of the robot’s trunk for each tasks are shown.

Additionally, to investigate the effects of the Kalman filter on the tracking accu-

racy, we performed two experiments on T9 test data by using the visual tracking

system with EPnP+RANSAC for pose optimization. We did not use the Kalman

filter for state fusion in the first experiment, while we used it in the second exper-

iment.

Finally, we still use T9 test data to compare the accuracy of our system with

that of the system proposed by Farazi, Allgeuer, Ficht, et al. (2016). In this
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5.3 Result

experiment, task T9 was performed once again with using Farazi’s approach for

3D pose localization.

5.3 Result

5.3.1 Computational Performance

Figure 5.2 shows the average processing time for each algorithm for pose optimiza-

tion. The execution time of line detection and pose optimization are significantly

longer than the other parts. In fact, our line detection method takes longer time

than the method proposed by Schulz and Behnke (2012). One of the reasons is

that unlike their method performing the line detection on a sub sampled images (1
8

size of the original images), our approach performs line detection on the original

images to prevent losing essential information in sub-sampling process. The other

reason be that convoluting line filters on the image is more expensive than their

color-table based approach.

In pose optimization step, the non-iterative approach EPnP (average time: 18.84

ms) and the approach of EPnP within RANSAC schema (average time: 25.28

ms) are much faster than an iterative approach, hill climbing method (average

time: 50.01 ms). Hill climbing method is slow because the current 6-DoF pose

optimization generates a great number of neighborhoods and the evaluation of each

neighborhood takes time; moreover, the data registration is performed iteratively

according to the updated estimated pose during each iteration of this algorithm.

5.3.2 Object Detection Performance

Table 5.2 shows true positive rate (TPR), positive predictive value (PPV) and the

number of features (N) that should have been recognized. The PPV of field bound-

ary and obstacle detection is 1.0, which indicates that there is no false positives in

the detection results. The TPR of field boundary and obstacle detection is very

high, which means that most of the field boundaries and obstacles are detected

correctly. The PPV of field line detection is 0.90, which indicates that the detected

results contain some false positives. The overall TPR of line detection(0.52) is low

because the lines are marked as reference even though they are barely perceivable

for a human. However, our line detection still gains higher TPR than the TPR

(0.45) of the system proposed by Härtl et al. (2013).
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Figure 5.2: Execution time of each part of visual tracking system. The error bars
in the figures indicate the standard deviations.

Features N TPR PPV

Field boundary 200 0.94 1.0

Obstacles 30 0.95 1.0

Field lines 1038 0.52 0.90

Table 5.2: TPR and PPV results for three types of features.
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5.3.3 Visual Tracking Accuracy

Regarding visual tracking accuracy, we first analyzed the results from NT group

(T1-T4) and DT group (T5-T8) mainly for evaluating the three different optimiza-

tion methods tested in our system. And then we analyzed the two experiments

results of T9 to investigate the effects of the Kalman filter on tracking accuracy.

Lastly we compared the tracking accuracy of our system to that of Farazi’s system.

1. Test results of NT group and DT group

We analyzed the evaluation result of three different optimization methods.

The distance error in x and y coordinates between estimated pose and ground

truth is calculated every four seconds. The average distance errors of three

optimization methods of NT group and DT group are shown in Figure 5.3.

As we can see from Figure 5.3, in terms of average distance errors, both hill

climbing method and EPnP are larger than EPnP+RANSAC in experiments

of two task groups. As already shown in computational evaluation result,

the hill climbing method is the most time consuming approach among all

three tested optimization methods. Moreover, the results indicate that EPnP

output will be affected by the number of outliers.

The output of EPnP+RANSAC approach shows smallest average error,

which indicates that using RANSAC makes the EPnP method more robust.

In NT group tests, the average distance error of EPnP+RANSAC approach

is 12 cm which is better than the average error (14 cm) of the method

proposed by Schulz and Behnke (2012). It is noteworthy that they tested

their vision algorithms in a more color-coded environment which is relatively

easier for object detection than in the environment we are using. Based

on the results of three approaches, we recommend the EPnP+RANSAC as

the most effective algorithm for our system. The trajectories generated by

EPnP+RANSAC approach and the corresponding ground truth (in dark

brown) are visualized in Figure 5.4:

To examine the visual tracking accuracy of our system while performing

difficult tasks, we compare the accuracy results of DT group to that of NT

group. As we can see from Figure 5.3 and Figure 5.4, the tracking accuracy

of NT group is higher than that of DT group. Furthermore, we computed

the probability of being lost Problost using the following formula:

Problost =
N(Plost(st) > 0.8)

N
× 100% (5.2)

Where Plost(st) is a parameter defined in equation (4.27) that evaluates
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(a)

(b)

Figure 5.3: Tracking accuracy: the average distance error of three types of op-
timization approaches of (a) NT group and (b) DT group. The error bars in the
figures indicate the standard deviations.
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5.3 Result

(a)

(b)

Figure 5.4: Pose tracking output using EPnP+RANSAC approach. The ground
truth is illustrated by dark brown trajectories. (a) Trajectories generated from NT
group tests. (b)Trajectories generated from DT group tests. The ellipses visualize
the covariance of the corresponding estimated pose in x and y directions

69



5 Experiments

the estimate st. The higher the Plost(st) is, the worse the estimate st is.

N(Plost(st) > 0.8) is the number of bad estimates and N is the total number

of estimates.

Before using multi-hypothesis approach, the Problost of NT group is 5% while

DT group is 20%. Such high probability of being lost in DT group may be

resulted from two aspects:

• There are many optimal solutions for 6-DoF pose optimization problem

when the number of observed features is low; however, only one from

these optimal solutions is the true pose. Hence, the optimization algo-

rithm tends to converge to a false optimal solution rather than the true

one. For example, when the robot moves from the starting point to

the middle point along the trajectory of T7, the output (red trajectory)

deviates in left and right directions from the ground truth trajectory.

• It may not be sufficient to update estimated pose only according to

odometry input in case of no observations. For examples, at the end of

T5, the estimated pose moves too fast; and at the end of T6 the robot

moves too slowly.

However if the multi-hypothesis approach (see Section 4.6) is used then the

Problost of NT group decreases to 3.5% while DT group decreases to 15%.

The decrease of Problost shows that the multi-hypothesis approach helps the

system to recover from a false pose estimation as long as the number of

observations is enough. For example, in T7, when the camera moves from

s7 to m7, the uncertainty of estimated state is increased with the decreasing

of the number of observed features. However, when the robot turns around

and moves to e7, the system helps the robot recover better estimated states.

2. Test results of T9

Figure 5.5 shows the resulting trajectory from three localization approaches.

As we can see from the Figure 5.5a and Figure 5.5b, using Kalman filter

helps system smooth the trajectory and reduce the average distance error

from 16.0 cm to 12.90 cm (see Figure 5.6). The mechanism of Kalman filte

is to correct the predicted pose according to the value and covariance of new

measurements. A bad measurement tends to have relatively larger covari-

ance, thus it will have less influence on the pose correction step. Therefore

the system become more robust after applying Kalman filter .

To compared our approach (EPnP+RANSAC+KF) with Farazi’s approach,

we first transform our output camera pose to the trunk pose, so that the
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5.3 Result

(a) (b) (c)

Figure 5.5: Evaluation on T9 test: (a) EPnP+RANSAC for pose optimization;
(b) EPnP+RANSAC for pose optimization and Kalman filter for state fusion; (c)
using Farazi’s approach. The unit of grid is 20 cm * 20 cm.

Figure 5.6: Average distance error of three types of localization approaches. The
error bars in the figure indicates the standard deviations.
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comparison is in the same coordinate system. The average error of our

approach (12.9 cm) is slightly larger than that of Farazi’s apprpach (11.8

cm). This may result from the following four reasons. First, our approach

aims to optimize the 6-DoF pose, which has larger state space than 3D

localization approach. Thus, the problem of finding the optimal state is

more difficult and may take longer time. Further improving the optimization

speed may improve our tracking accuracy. Second, currently in our visual

tracking system, only the field lines painted on the soccer field are used for

tracking, however, in Farazi’s system, the goal posts which are important

field landmarks are detected and used for localization. In fact, the errors

in IMU data may also effect our result because we use transformation from

IMU data to compare the two system results in a same coordinate system.

5.4 Summary

In this chapter, we start from describing the structure and design of our experi-

ments. Then we analyze the results of the empirical experiments conducted with

the visual tracking system. In general, EPnP+RANSAC+KF is regarded as the

most favorable approach among all tested approaches in our system. By consider-

ing 6-DoF camera pose, this new localization approach obtains a good tracking ac-

curacy which can be comparable to the traditional 3D pose localization approaches

such as Farazi’s approach. Thereby, a good overview of the characteristics of this

approach could be established:

• Extracting field lines in the original full size images has higher accuracy in

object detection than using the subsampled images. However, it makes line

detection process time longer than other algorithm part in our vision system.

• Our object detection system detects field boundary and obstacles with very

high accuracy and there is almost no false detections. The generated node

graph represents the field line structure well.

• The execution time of hill climbing method is influenced by the large number

of neighborhood states of the current 6D state to be exploited. This makes it

the most time consuming among all the three tested optimization methods.

• Using EPnP in RANSAC schema makes the optimization more robust.

• Multi-hypothesis approach reduces the probability of being lost in the sys-

tem.
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5.4 Summary

• Using Kalman filter for state fusion makes the tracking approach more robust

to noise measurements.

• The output of our system can be used as a source for correcting the dead

reckoning messages. Better dead reckoning messages can further help to

improve the visual tracking accuracy.
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6 Conclusion

In this chapter, the content of the thesis will be summarized and discussed, followed

by several interesting directions for future work of this work.

Improving the tracking accuracy so that the robot in Humanoid league compe-

tition has better performance in motion planning is the main motivation for this

thesis. However, tracking a 6-DoF camera pose is much more challenging than

tracking a 3-DoF pose, since the solution space for a pose optimization problem

increases exponentially with the state dimension thus more efficient search strate-

gies are required to explore all interesting regions within a given time budget.

In this work, we present a visual tracking system which leverages the field lines

to track the 6-DoF camera pose of the soccer robot that has less dependence on

IMU and dead reckoning data than traditional 3-DoF localization approaches. The

system can be adapted quickly for different applications since it is built on a Linux

platform with ROS, an open source software.

In visual detection part, we propose an effective approach for detecting line

segments and constructing node graph. Using line kernels for detecting relative

brighter pixels makes this approach less sensitive to light changes than thresholding-

based approaches. By processing the local optimal values, a purified skeleton is

constructed, form which a better node graph can be obtained.

In general, our system achieves high accuracy in the data registration and it

is robust to outliers. This is due to applying following rules in data registration

process: i) nodes in a same cluster should be assigned to a same model element.

ii) the registration can only be formed when the angle difference between a node

and a model element is small enough.

In the optimization step, we evaluate the performance of three optimization

approaches. The evaluation results indicate that hill climbing method is not

preferable in our 6-DoF pose tracking task due to long execution time, while

EPnP+RANSAC is the most favorable one because it’s fast and robust to outliers.

Moreover, the Kalman filter makes the system more robust to noise measurement,

thus the tacking accuracy is further improved.

Regarding the accuracy of our system, the evaluation result shows that our

tracking systems generate a better result while performing tasks of NT group (Ta-

ble 5.1) than the method proposed by Schulz and Behnke (2012). Whereas, when
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our system performs difficult tasks, the tracking accuracy is decreased since the

probability of being lost is increased. This is because that most of the captured

images from difficult tasks only have a few observations, which makes the track-

ing process more challenging. However, the multi-hypothesis approach is able to

reduce the probability of being lost because it enables the system to recover from

a false estimated pose after losing its track to some extend.

Additionally, in order to investigate the utility of 6-DoF pose tracking in our

system, we therefore compare the tracking accuracy of our system with that of

Farazi’s system. In terms of tracking accuracy, although the results do not show

the superiority of 6-DoF pose tracking over traditional 3-DoF pose tracking, they

still maintain the accuracy in a same level. In addition, since our system maintain

a 6-DoF pose in 3D space, the output of 6-DoF pose tracking can be used in

variety ways to improve the performance of the soccer robot. For example, it can

be served as a source for correcting the IMU or dead reckoning data. Thereby,

better IMU or dead reckoning can further improve the visual tracking accuracy.

However, we also noticed some drawbacks of our visual tracking system which

can be summarized as follows: 1) Convolution of line filters for detecting high

response pixels takes longer time than what we expect thus the overall frame rate

is low. 2) The multi-hypothesis approach is not always able to recover from a false

estimated pose, and its result depends on both the maximum number of hypothesis

and the quality of following observations.

Further work on this system may include improving the processing speed in line

detection thereby the frame rate can be increased. Moreover, the multi-hypothesis

approach can be improved in several possible ways. For instance, instead of only

keeping the best hypothesis in each run, it would be better to track a set of

candidate best hypotheses. In addition, it is possible to test another iterative

optimization method that minimizes the error by using iteratively re-weighted

least squares (IRLS) (Drummond and Cipolla, 2002) which is able to achieve

higher accuracy than EPnP approach as they claimed.
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Appendix A

To make the cluster extraction algorithm easier to understand, we show an example

in Figure 1. The input is a set of nodes i, l,m, k, j, o, n, q. The steps are as follows:

• Traversing from the first node vi. Because num connectedi > 0 and vi /∈
V isitedList, adding vi to cluster 1 and V isitedList.

• Because ang(vj, vi, vk) is the max angle of vi, and this angle is larger than

βmin ang, cluster 1 can be expanded in two directions:

◦ In vj direction: adding vj to cluster 1 and V isitedList; disconnect(vi, vj).

Stop expanding in this direction because ang(vl, vj, vi) < βmin ang.

◦ In vk direction: first reversing the order of elements in cluster 1 then

adding k to cluster 1 and V isitedList; disconnect(vi, vk). Because

ang(vi, vk, vo) > ang(vi, vk, vn) and ang(vi, vk, vn) > βmin ang, adding

vo to cluster 1 and V isitedList; disconnect(vo, vk). Stop expanding in

this direction because num connectedo = 0.

• Going to node vl, because num connectedl = 1 and vl /∈ V isitedList, adding

vl and its connected node vj to cluster 2 and V isitedList; disconnect(vl, vj).

Stop expanding because num connectedj = 0.

• Going to node vm,, similar to previous step, adding vm, and vi, to cluster 3.

• Going to node vk,, adding vk, and vn, to cluster 4.

• skipping node vj, and vo, because both of them are in V isitedList and have

no connection.

• Going to node vq,, which is not visited yet, adding vq, to cluster 5. Stop

expanding because num connectedq = 0. The resulting clusters can be found

on the right side of Figure 1.
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Figure 1: An example for extracting clusters from a node graph. Five clusters:
four of which are in red, orange, blue, green respectively, and the fifth cluster
contains a single node are extracted from the left node graph.
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Here shows the pseudo code of fitting squares algorithm:
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Algorithm 4: Fitting Squares Algorithm

Data: Sskel pixels
Result: Ssquares
for P ∈ Sskel pixels do

if P /∈ V isitedList then
current square = square(k = 0; c = P );
while True do

k++;
if Num of corners that has no neighborhood pixel ≥ 2 or
k > KMAX then

break;
end
if overlap with other squares then

k = k − 1;
break;

end

end
cmax = P ;
current skel num = Skel Num[k](Px, Py);
for P ′ inside current square do

new square = square(k = 0; c = P ′);
new skel num = Skel Num[k]((P ′)x, (P

′)y);
if new square overlap with other squares or P is not inside
new square then

continue;
end
if new skel num > current skel num then

cmax = p′; current skel num = new skel num;
end

end
Optimal square = square(k = 0; c = cmax) ;
Ssquares = Ssquares ∪Optimal square;
for Po ∈ Optimal square do

V isitedList = V isitedList ∪ Po;
end

end

end
return Ssquares
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