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Abstract

In this thesis, we aim to learn a category-level coordinate system, which is jointly
optimized with the task of category-level 6D pose estimation, using only a single
RGB image and mesh information. We predict the translation by detecting the
learned origin with a heatmap, which we then project back into 3D space with an
estimated depth value. The rotation estimation is decoupled from the translation
and split into two tasks. First, we predict a transformation to a canonical coor-
dinate system, which we optimize with our CanonicalLoss. Secondly, we estimate
the transformation from the shared space to the camera frame.

Due to the lack of high-quality data for category-level pose estimation, we gen-
erate realistic images using the Stillleben rendering pipeline. The synthetic scenes
are heavily cluttered and complex in object interactions leading to heavy occlu-
sions, common in many warehouse settings.

Experiments with our pipeline investigate the effects of the canonical coordinate
system, the canonical loss, the performance of different rotation representations,
and the generalization to unseen instances.
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1 Introduction

In order to interact with its environment, a robot has to know the 6D pose, i.e.,
position and orientation, of the objects it wants to interact with. The task gets
increasingly more complex, with the number of instances in a scene. Cluttered
environments introduce large occlusions, which are common in warehouse settings,
making it even more important to have algorithms that solve this task robustly.
Due to their learning ability, deep neural networks can handle these conditions,
whereas other methods like template matching methods struggle to get accurate
results. A large portion of the research focuses on instance-level pose estimation,
where the network learns to predict the poses for a set of objects. However, this
approach does not scale well due to the vast number of unique objects, because each
object instance would require its own output. For example, the YCB-Dataset[1]
includes two clamps, and PoseCNN, therefore, predicts two rotations. However,
one can solve this scaling issue by organizing objects of similar geometry into
categories and learn a category-level pose estimation.

He Wang et al.[2] were the first to tackle this problem for hand-scale objects
by learning a mapping from object image pixels to a representative of a specific
category. They use the predicted correspondences and additional depth informa-
tion to estimate the full metric 6D pose and size of the objects using a pose fitting
method.

A canonical representation is vital to transfer knowledge to previously unseen
instances. Therefore, objects need to be prealigned into a common coordinate
system or have a canonical representative like [2] to perform pose estimation on
a category level. This arbitrary coordinate system, might be suboptimal for the
category.

This novel approach tries to account for all these aspects and jointly learns
category-level pose estimation and a canonical coordinate system.

We build a two-stage pipeline, where the first stage focuses on object detection
and translation, and the second stage on rotation. We use a RefineNet backbone
to predict a category-level segmentation, the distance in the z-direction, and a
heatmap that locates the object’s origin. Knowing the object’s distance and origin
in the image plane, we can estimate the 3D translation by projecting the origin
back into 3D space. In the second stage, we extract object features from a given
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1 Introduction

mesh with a PointNet and predict the canonical pose with our canonical module.
We want the objects to be similarly orientated in the canonical coordinate system.
We, therefore, introduce our CanonicalLoss that minimizes the shape differences
for a category, aligning the object while not influencing the actual orientation.
We then extract the object from the image and use slightly altered VGGs for
each category to extract category-specific image features. A multilayer perceptron
then predicts the final transformation from our canonical coordinate system to the
camera frame from the image and mesh features.

We create our own data due to the lack of high-quality data sets for category-
pose estimation. Data sets like the one used for NOCS [2] lack realistic lighting,
clutter, a variety in object poses and occlusions. We use the Stillleben[3] rendering
pipeline with the meshes from the DeepCPD data set[4] and create heavily clut-
tered scenes with occlusions of up to 40%. We provide a base train, validation,
and test set but can increase the number of training images by generating them
on the fly, allowing for life-long learning.

In the following section, we explain the concepts used for this thesis, followed by
the ideas and architectures of other approaches. Finally, we present our pipeline
in more detail and evaluate our approach in the experiments chapter.

We first evaluate the idea of higher-dimensional rotation representation, which
performs better than traditional rotation representation due to their topological
properties. Then, investigate our canonical module’s effect on the quality of our
transformation, training time, and the ability to transfer this knowledge to un-
known instances. We evaluate our approach for instance-level pose estimation by
testing on object instances present during training and category-level with previ-
ously unseen models.
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2 Fundamentals

In this thesis, we want to learn a canonical representation for an object classes
that we jointly optimize with the task of 6D pose estimation. Before introducing
the pipeline, we review fundamentals from deep learning, computer vision, and
robotics relevant to this thesis.

2.1 Neural Networks

2.1.1 Artifical Neurons
Artificial neural networks are inspired by their biological counterpart. Real neu-
rons receive impulses over their dendrites which are then processed by the cell body
to output an activation that travels to other neurons over the axons. This simpli-
fied explanation also describes artificial neurons, which take in multiple weighted
inputs and outputs an activation. We calculate the activation of a neuron by
summing over all weighted inputs and using a non-linear function.

oj = φ(
∑

i wijxi) + bj

Here oj denotes the output of the j-th neuron in the layer, wij the factor by which
the input xi gets multiplied, bj the bias and φ is the activation function. A layer is
fully connected (FC) if all neurons in the current layer connect to all other neurons
in the next layer.

2.1.2 Multilayer Perceptrons
Multilayer perceptrons (MLP) consist of three types of layers. The first layer is
called the input layer, followed by several hidden layers and an output layer. A
layer consists of neurons with weighted connections to neurons in the previous
layer, and computing the output from a given input is called a forward pass. The
universal approximation theorem states that a neural network can approximate
any continuous function given enough neurons[5, 6]. LeCunn et al.[7] explain
that MLPs can distort the input space to make classes of data linearly separable,
allowing them to learn complex functions. Linear classifiers separate their input
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2 Fundamentals

space into half-spaces with a hyperplane. However, tasks like object classification
require the network to be invariant to changes of the input. Detecting a target in
an image requires the network to be insensitive to background, illumination, and
pose of the target.[7]

2.1.3 Convolutional Neural Networks
Convolutional neural networks (CNN) inspired by the visual cortex are designed to
process array structured data like images. CNNs contain a series of convolutional
layers which are organized into feature maps. A convolutional kernel K, a N ×M

array, slides over a feature map or image channel I, calculates the neighborhood’s
weighted sum and outputs to a unit in the next feature map. Here ∗ denotes the
convolution operator:

(K ∗ I)(i, j) =
∑M

m=1

∑N
n=1 I(i−m, j − n)K(m,n)

The four main ideas behind CNNs are local connectivity, shared weights, pool-
ing, and the use of multiple layers. In contrast to MLPs, where all pixels influence
a neuron, a convolutional kernel only processes information in its receptive field.
All units in feature maps share the weights of their kernel, solving two problems.
First, it exploits the correlation of local groups of pixels. Secondly, it makes use
of the fact that local statistics of images are invariant to location, allowing it to
detect distinctive patterns that could appear anywhere in an image. The pooling
layer then aggregates semantically similar features into one. Typically, we apply
a max-pooling layerFigure 2.1 with stride s > 1. The stride specifies how many
pixels we move until we apply the kernel again. Similar to a convolutional kernel,
the max-pooling kernel slides over the image but only takes the maximum value
in its area. Pooling reduces the dimension of the feature maps and creates an
invariance to small shifts in the input space. A common practice is to increase the
number of features while downsampling the image, allowing the network to learn
an efficient representation of the input. The use of many layers is based on the
idea that many low-level features form higher-level features.[7]
Early approaches created handcrafted features that humans could understand, but
a CNN learns its own features, which we might not be able to comprehend. CNN’s
have been used for many tasks like object detection, semantic segmentation, face
manipulation and image reconstruction. [8, 7]

Activation Functions After performing a convolution, an activation function
calculates the activation of our neuron. The most popular being the Rectified
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2.1 Neural Networks

Figure 2.1: 2×2 Max pooling operation with stride=2. For each 2×2 patch, the max-
pooling layer takes the maximum, downsampling the image.

Linear Unit (ReLU), a piecewise linear function that clips the negative part to
zero and keeps the positive part. There is also the sigmoid function with a range
between 0 and 1 that is fully differentiable. The advantage of ReLu over sigmoid
is that it does not saturate for large activations. The sigmoid is saturated because
it compresses the real numbers into the interval I = [0, 1]. The gradients become
very small for large activations, causing the gradient to vanish. However, the
ReLU suffers from the dying ReLU problem. A large negative bias may cause
the neuron to output zero, which causes the neuron not to receive gradients. The
Leaky ReLU solves this by having a slope for negative values, which adds a slight
computational overhead but solves the dying ReLU problem[9, 10]

2.1.4 Optimizing Neural Networks
In this thesis, we train our network supervised and unsupervised. Supervised
learning means that we have the corresponding ground truth to our input and
optimize our network’s parameters based on the loss calculated between ground
truth and prediction. In unsupervised learning, we do not have labeled data.
Nevertheless, we can impose certain constraints on the output. Training a network
can be very time-consuming depending on the task’s difficulty and the number
of parameters. This section gives a brief introduction to the concepts used for
optimizing a neural network.

Stochastic Gradient Descent

Many problems can be formulated as maximizing or minimizing a loss function,
which are then iteratively optimized using gradient information. At each step, we
calculate the gradient of our loss function w.r.t. to the whole data set and step
in the gradient direction multiplied with the learning rate, which defines the step
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2 Fundamentals

size. After taking this step, we repeat the process until we find a local minimum.
Calculating the gradient for the whole data set is not efficient and we therefore use
stochastic gradient descent (SGD). The key difference to normal gradient descent
is that we only approximate the actual gradient with random mini-batches of the
whole dataset. This way, we do not need to save all the gradients and are thus
able to train faster on larger datasets.
Libraries like PyTorch[11] are very efficient at calculating the updates for our
network. PyTorch builds a computational graph where the nodes define the op-
erations used at each step, e.g., multiplication and addition used for convolution.
After the forward pass and calculating the loss, the backward pass computes the
gradient using the chain rule and propagates the error back to the input[12, 13].
Different optimizers like AdaGrad, RMSProp, and Adam try to improve SGD. All
of them use momentum, an aggregation of gradients, to calculate an update for
our weights.[14, 15]

mt = βmt−1 + (1− β) ∂L
∂wt

Here mt denotes the momentum at time step t, β is the weight of the past mo-
mentum and ∂L

∂wt
is the loss w.r.t. the weight wt. The update to the weights is

then computed with

wt+1 = wt + αmt

2.1.5 Learning Rate Scheduler

Figure 2.2: Comparison of learning rates. A small learning rate converges to a local
minimum and does not explore the remaining space. The optimal learning
rate explores more space and can find a better solution. A learning rate too
big causes the network to oscillate and does not converge.

We initialize the optimizer with a fixed learning rate at the beginning of train-
ing. Finding the best learning rate is not an easy task Figure 2.2. Low learning
rates lead to slow convergence, whereas larger learning rates cause the network to
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2.2 Region of Interest

diverge. Both can lead to suboptimal solutions. A learning rate scheduler adjusts
the learning rate during training, leading to faster convergence and potentially to
a better minimum. An easy example is monitoring the loss functions topology and
reducing the learning rate on a plateau. During training, we perform a check if
the loss has reduced in the last n epochs, and reduce the learning rate to find a
local optimum if this is not the case. Another approach is decreasing the learning
rate during training, which allows the network to take bigger steps to a minimum
and then finetune its parameters. However, both of these schedulers have down-
sides. For example, smaller gradients of saddle points on the loss function cause
slower convergence. Cyclic learning rate schedulers address this problem by cy-
cling the learning rate between two boundaries. Smith[16] notes that the increase
might have a short-term negative effect but beneficial effects in the long term.
One intuitive upside is that traversal of saddle points is faster. However, a more
practical reason is that the optimal learning rate lies between the two boundaries,
and learning rates close to the optimum are used during training. The obvious
downside is that the optimal learning rate has to be inside the bounds. Otherwise,
we do not get this beneficial effect. Similar to one cycle in the previous exam-
ple, CosineAnnealing sets the learning rate to a large value which is then rapidly
decreased. The learning rate is then reset to a large value, which we refer to as
warm restart and is supposed to restart the learning process. At each restart, the
network converges more, and the parameters act as a better starting point[12, 16,
15].

2.2 Region of Interest
A region of interest (RoI) specifies a region in our image that contains valuable in-
formation. Some archiectures[10, 2] use 2D bounding boxes and others[1] semantic
segmentation to predict RoIs. We can extract the regions from the image with a
RoI pooling layer [17] and use them for further processing.

2.3 Heatmaps
We use heatmaps to detect interesting points in an image. Each pixel encodes the
probability of this pixel being our point of interest. Newell et al.[18] use heatmaps
to predict human joint location, and Law et al.[10] predict bounding boxes. We
can encode a key point in a heatmap by placing a Gaussian bell over it. Our
heatmap values increase the closer we get to the center, with a maximum value
of 1. We can extract the keypoint by taking the argmax of our heatmap, which
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2 Fundamentals

Figure 2.3: Heatmaps for origin detection. Each dot in the image represents an object
center. The corresponding heatmap encodes the keypoint with an activity
blob (Gaussian bell).

corresponds to the maximum indices. If we use a 2D Gaussian function e to encode
our keypoint (kx, ky) then

(kx, ky) = argmax(e((kx, ky)))

2.4 Coordinate Systems and Transformations
To build a 3D model of our environment, we make use of rasterization-based
rendering systems like OpenGL[19]. OpenGL or applications built on top of it like
Stillleben[3] allow us to place objects in our world coordinate system and render
an image of them. A coordinate system in 3D space consists of 3 axes X,Y, Z ∈ R3

and defines every point w.r.t the axes. We call the point (0, 0, 0) the origin of the
coordinate system. For example, the object coordinate system defines the position
of points in the point cloud or vertices of the mesh. When placing an object in a
scene, we move the origin with a translation vector t ∈ R3 to the desired location.
We can also rotate objects around each axis with a rotation matrix R ∈ SO(3).
The special orthogonal group SO(3) denotes all rotation matrices in 3 dimensions.
Rotations can also be represented in four dimensions with quaternions or euler-
angles defining the rotation around each axis. A transformation T combines R

and t in a 4× 4 matrix:

T =

[
R t

0 1

]

8



2.5 3D Data Representations

We can switch coordinate systems by chaining transformations. For example,
we can transform an object from its local coordinate system to the scene with
TW
O , the transformation from object-to-world coordinates. TW

O also denotes the
object pose in Stillleben and other renderers. To get the object pose in the camera
frame, we multiply the transformations from world-to-camera and object-to-world:
TC
O = TC

WTW
O . Note that TC

W = TW−1
C is the inverse of the camera pose in the scene.

2.5 3D Data Representations
3D data has a lot of different representations depending on the device that captured
it. Eman Ahmed et al.[20] divide them into two classes: euclidean and non-
euclidean data, which are illustrated in Figure 2.4

Figure 2.4: Overview of 3D data representations. Existing representations can be
broadly categorized in euclidean and non-euclidean data. Image taken from
[20].

2.5.1 Euclidean-structured Data

Euclidean data has an underlying grid structure that allows for a global parametriza-
tion and a common coordinate system. For example, an image has an underlying
grid structure that allows us to define the position of every pixel with its coordi-
nates. Depth information for images is easily accessible through sensors like the
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2 Fundamentals

Microsoft Kinect. The additional depth channel allows the refinement of an esti-
mated pose from our network through the iterative closest point (ICP) algorithm.
Another example of this category is volumetric data like voxel grids representing
3D geometry with a 3D grid. Each cube (voxel) in this grid encodes whether an
object occupies it or not. Encoding both the presence and absence of objects is
memory-inefficient, especially when dealing with high-resolution data.[20, 21]

2.5.2 Non-Euclidean-structured Data

The second category includes data representations without a vector space struc-
ture and global parametrization like point clouds and meshes. Point clouds are
a set of points that approximates the geometry of an object. Point clouds are
permutation invariant because permuting the points results in the same geometric
features. Capturing point clouds is possible through structured light scanners like
the Kinect1, ToF scanners like Kinect2, or passive methods like multi-view stereo.
However, processing them in deep learning architectures is challenging due to the
lack of structure. Meshes represent the geometry with a list of vertices and edges,
which define which vertices are connected and form a face. They are commonly
used in rendering applications to generate images and are also crucial for training
6D pose estimators. Ahmed et al. note that point clouds and meshes can be
seen as both euclidean and non-euclidean data depending on the scale on which
processing takes place.[20, 22]

2.6 RefineNet

Semantic segmentation is a dense classification problem and is crucial for object
detection and image understanding. Deep CNNs like RefineNet achieve impressive
accuracies at this task. RefineNet uses a multi-path refinement method to exploit
features from multiple layers of abstraction. Their multi-path method uses four
ResNet blocks to extract features from multiple scales of one image, which are
then passed to their own RefineNet unit. Each RefineNet unit takes in additional
features from previous units, which are then passed through a short-range residual
convolution and fused together. Long-range residuals from the ResNets to the Re-
fineNet units allow the later stages to use low- to mid-level features. The cascaded
architecture can combine semantics from multiple levels to predict high-resolution
segmentations and achieve state-of-the-art results.[23]

10



2.7 6D Pose estimation

2.7 6D Pose estimation
Estimating the 6D pose is an essential task in robotics and scene understanding.
It allows the robot to interact and manipulate its environment but is challenging
due to varying appearances under occlusion and different lighting conditions. 6D
pose estimation is the task of estimating an object’s orientation and position using
only a RGB or RGB-D image. More precisely, finding the rigid transformation
from the object coordinate system to the camera frame.

Mcamera = T camera
object Mobject (2.1)

We define the pose in the camera coordinate system because of several reasons.
First, the same image can correspond to different poses in the world coordinate
frame. Secondly, estimating the depth is more straightforward and allows the use
of depth cameras. [1, 2, 24]

2.8 PoseCNN

Figure 2.5: Architecture of PoseCNN. Image taken from [1]

PoseCNN is a state-of-the-art 6D object pose estimator. As can be seen in
Figure 2.5, Xiang et al.[1] decouple the task of 6D pose estimation into predicting
the 3D rotation and the 3D translation. PoseCNN predicts the semantic label,
the depth, and a unit vector pointing to the object center for each image pixel.
During a Hough Voting process, each vector votes for multiple pixels, and the
pixel with the most votes is considered the center. Using object center, depth,
and camera intrinsics, we can calculate the translation. The RoIs are extracted
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2 Fundamentals

from the segmentation and passed to a fully connected layer to predict the 3D
rotation.[1]

2.8.1 Rotation Regression
PoseCNN introduces two novel loss functions to learn to regress the rotation com-
ponent of the 6D object pose. The Pose Loss and the Shape Match Loss.

PLoss(q′, q) =
1

2m

∑
x∈M

||R(q′)x−R(q)x||2 (2.2)

SLoss(q′, q) =
1

2m

∑
x1∈M

minx2∈M ||R(q′)x1 −R(q)x2||2 (2.3)

Here M denotes all vertices on the mesh, m the number of elements in M , q′

and q are the ground truth and predicted quaternion. Instead of regressing the
quaternion, they rotate the object with the predicted and ground truth quaternion
and calculate the average squared distance between corresponding points on the
mesh for unsymmetric and the average squared distance to the nearest neighbor
for symmetric objects [1].

2.8.2 Translation Regression

Figure 2.6: Illustration of the camera and object coordinate system. Knowing the center
in the image and the distance in the z-direction, we are able to recover the
translation T. Image taken from [1]

Xiang et al. propose a novel approach for predicting the translation of an object
circumventing present problems when performing direct regression. One problem is
that the network struggles to predict the correct translation when multiple objects

12



2.8 PoseCNN

of the same category are present. Instead they predict the object center (cx, cy),
shown in Figure 2.6 and the depth Tz and reconstruct the translation with known
camera intrinsics: [

cx
cy

]
=

[
fx

Tx

Tz
+ px

fy
Ty

Tz
+ py

]
(2.4)

Here fx and fy denote the focal length. They predict three output maps for each
object instance. The first two tensors correspond to a vector field pointing to the
object’s center, whereas the third tensor estimates the depth. They make use of a
hough voting layer to find the object’s center. Here, each vector in this vector field
votes for a line of image pixels, and the pixel with the most intersections is the
center. If there are multiple instances of the same object, they select all locations
over a certain threshold. Another advantage to direct regression is that the center
does not have to be visible since all other pixels vote for the center. All pixels that
voted for the center are considered inliers and are used to make the final depth
prediction. The inliers also define the RoIs, which they use to make the rotation
prediction[1]

2.8.3 Evaluation metric

Yu Xing et al.[1] evaluate PoseCNN with the average distance metric proposed
by Hinterstoisser et al., which computes symmetric and non-symmetric objects
differently.

ADD =
1

m

∑
x∈M

||(R′x+ T )− (Rx+ T )||2 (2.5)

ADD − S =
1

m

∑
x1∈M

minx2∈M ||(R′x1 + T )− (Rx2 + T )||2 (2.6)

M again denote the vertices and m the number of vertices on the mesh. In
addition to the rotation, we also take the translation T into account.
The prediction (R, T ) is correct if the error is smaller than a certain threshold
which is 10% of the object diameter in the case of the YCB-[1] and OccludedLINEMOD-
dataset[25]. Using multiple thresholds and calculating the area under the accuracy-
threshold curve more accurately represents how a method performs on incorrect
predictions[1]
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2.9 Continuity of Rotations Representations

Figure 2.7: Motivation and application of continuous representations. A discontinuous
representation is harder to learn because both bounds correspond to the
same rotation. To improve this Yi Zhou et al. propose a bijection from the
representation to the original space. Image taken from [6]

There are many ways to represent rotations, such as Euler-angles, quaternions,
etc.. We say that our network predicts a rotation in the representation space.
Since the rotational part of an object’s pose is described by 3×3 rotation, we need
a mapping f from the representation space to the SO(3) group. However, some
representations perform better than others. Yi Zhou et al. argue that this points
to discontinuities in the representation space because smoother functions are easier
to approximate. They introduce a new definition for continuous representations
and show that representations in 4 or fewer dimensions are discontinuous.
Definition 1 Let R be a subset of a real vector space equipped with the Euclidean
topology called representation space. Let X be a compact topological space called
original space. Define the mapping to the original space f: R → X, and the mapping
to the representation space g: X → R. We say (f, g) is a representation if for every
x � X, f(g(x)) = x, that is, f is a left inverse of g. We say the representation is
continuous if g is continuous

The representation (f, g) defines a homeomorphism between R and X, a con-
tinuous bijection with a continuous inverse. One can imagine this as bending and
stretching one space into the other. In the context of neural networks we prefer
g to be continuous, to create a continuous training signal making it easier for the
network to learn.
To show an example of a discontinuous representation consider SO(2). Any 2D
rotation can be expressed by

M(θ) =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
(2.7)
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with θ being the angle we rotate with. Let R = [0, 2π], we can define the mapping
f : θ 7→ SO(2); θ 7→ M(θ). But then the mapping g : SO(2) 7→ θ is discontinuous,
because the zero rotation, defined by the identity matrix, has to map to 0 and
2π respectively, which is visualized in Figure 2.7. To make this representation
continuous M needs to be defined as M(θ) =

[
cos(θ) sin(θ)

]
[6].

2.9.1 Continuous Representation
With the definition above, Zhou et al.[6] proved that there are no continuous
representations in 4 or fewer dimensions. They develop a method to create contin-
uous rotation representations using the Gram-Schmidt orthogonalization process
in the representation space. This way they are able to represent SO(n) in n2 − n

dimensions. Consider M ∈ SO(n) with

M =

 | |
a1 ... an
| |

 (2.8)

gGS drops the last column and fGS uses Gram-Schmidt to compute the last
column.

gGS(M) =

 | |
a1 ... an−1

| |

 (2.9)

fGS

 | |
a1 ... an−1

| |

 =

 | |
b1 ... bn
| |

 (2.10)

bi =





N(a1) if i = 1

N(ai −
∑i−1

j=1(bj · ai)bj) if 2 ≤ i < n

det


| | ei

b1 ... bn−1
...

| | en

 if i = n


(2.11)

N(·) denotes a normalization function and e1, ..., e2 are the n canonical basis vec-
tors. Since we use SO(3) this reduces to a simple cross-product b1 × b2. Zhou
notes that using their 6D representation is useful because the resulting matrix is
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orthogonal, whereas applying orthogonalization as a post-process prevents appli-
cations like forward kinematics. Empirical results in 3D point cloud estimation
and inverse kinematics show that it performs better than other representations
and converges quicker [6].

2.9.2 Singular Value Decomposition for Deep Rotation
Estimation

Figure 2.8: Comaprison of different rotation representations for the task of 3D pose
estimation from 2D images. Image was taken from[26]

Instead of predicting a 6D output, Levinson et al.[26] predict a 9D output and
use a singluar value decomposotion (SVD) to map onto SO(3). The 9D output
represents the entries of a 3× 3 matrix M with the singular value decomposition
UΣV T . To perform special orthogonalization, they compute

SV DO+(M) = UΣ′V T , whereΣ′ = diag(1, ..., 1, det(UV T )) (2.12)

SVDO+ is smooth and differentiable, except for the case det(M) = 0 or det(M) < 0

and its smallest singular value has multiplicity greater than 1 and therefore not
a continuous representation. Levinson et al. provide a variant SVD-Inf applying
SVDO+ only during inference and the training loss directly to M and argue that
this is a continuous representation. In Figure 2.8 they show that their 9D rep-
resentation outperforms quaternions and the 6D representation in tasks like pose
estimation from point clouds or 2D images [26].

2.10 Feature Learning on Point Sets
Knowing the 3D geometry provides essential information to our neural networks.
Meshes or point clouds represent 3D information, but extending 2D learning ap-
proaches to 3D is challenging. Recent advances use Graph Neural Networks to
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exploit the connection between vertices and defining pseudo-coordinates for a
convolution-like operation. Another approach is learning features from a point
cloud. Qi et al. introduce the PointNet++ architecture, which captures a point
cloud’s global and local structure and encodes it in a feature vector. The main
problem in processing point clouds is the permutation invariance. The geome-
try stays the same even if we scramble all points in our point cloud {x1, ..., xn}.
Since the standard 2D convolution exploits the information in neighboring pixels,
one can see that the permutation invariance is a challenge. One way is to turn
the point cloud into a voxel grid, creating an underlying euclidean structure that
makes applying a convolution possible. On the one hand, big voxels create ar-
tifacts and loose information. Small voxels, on the other hand, render the data
unnecessarily voluminous. Charles Qi et al. introduce the idea of aggregating the
features learned on the point set using a symmetric function making the resulting
architecture permutation invariant.

f(x1, ..., xn) ≈ g(h(x1), ..., h(xn)) (2.13)

With f : 2R
N 7→, h : RN 7→ RK and g : RK × ... × RK 7→ R being a sym-

metric function. For their symmetric function g, they use a max-pooling func-
tion, and a multi-layer perceptron approximates h. This approach already showed
good results; however, Qi et al. take inspiration from CNNs where local fea-
tures are grouped and processed into higher-level features. Small neighborhoods
are processed to produce a new set with fewer elements. They again sample a
neighborhood from the extracted points and get fewer points which the network
considers more important with each step. This way, they capture local and global
features[20, 27, 22].
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3.1 6D Pose Estimation
Detecting 3D objects and estimating their pose has many real-world applications
like robotics and AR, underlining the importance of this research area. The task is
finding the 3D orientation and position in the camera frame given an RGB or RGB-
D image, which is an inherently ill-posed problem because we try to reason about
3D objects with only 2D (2.5D) information available. We further assume that
we have access to the 3D CAD models and the exact object sizes. With depth
cameras like Mircosoft Kinect being so cheap, a common practice is to refine
the poses with the Iterative Closest Point algorithm (ICP)[1], but one can also
refine the pose using only the RGB image with render-and-compare methods[28].
Many papers focus on the pose estimation of object instances[1, 29]. However,
recent papers try to take it one step further and generalize to a whole category of
instances.

3.1.1 Instance-Level 6D Pose Estimation
Instance-Level pose estimation focuses on estimating the pose of objects available
during training. A large body of work[2, 1, 25, 30] focuses on hand-scale items
like drillers, mugs, and bottles, but there has also been research on bigger objects
like furniture or cars[31, 32]. Pose estimation approaches can be classified into
template matching and regression-based methods.[2, 1]

Sparse Feature-based and Template Matching Methods Traditonally, re-
searchers used template matching methods by scanning the image with a template
and computing a distance metric to find the best match[33]. Others use feature-
based methods to estimate the 6D pose by finding mesh-to-image correspondeces.
The MOPED framework[30] detects keypoints and then uses an iterative refine-
ment process to estimate the pose that fits the image features. Template methods
are still used today by matching 3D objects with pointclouds. For example, Yu
et al.[24] combine templates with deep learning by predicting a segmented point
cloud from multiple images with a deep neural network and then align 3D object
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models to this point cloud. These methods achieve impressive accuracies for clearly
visible objects, but suffer if the objects are partly occluded, which is common in
warehouse settings[25, 30, 24, 34].

Regression-based methods PoseCNN or EfficientPose use a deep neural net-
work to directly predict a 3D rotation and a 3D translation from image pixels. To
predict the rotation, these methods first predict a RoI by segmenting the image
or predicting a 2D bounding box. They then pool the extracted features from
the region and regress them to the rotation and translation. Since they do this
regression step sequentially for each RoI, Capellen et al.[35] propose to parallelize
this with a pixel-wise rotation estimation. For each pixel they predict a quaternion
and then average over the prediction. Others predict the pixel to object surface
correspondeces[36] and use the RANSAC algorithm to estimate the pose. Deep
learning approaches work well with varying lighting conditions and can also han-
dle occlusions better. However, they struggle with symmetric objects because of
shape ambiguities[1, 8, 37]. PoseCNN solves this problem by introducing a new
loss function that can handle symmetric objects. Many approaches also use a
refinement process like ICP when depth is available [1, 29, 2].

3.1.2 Category-Level 6D Pose Estimation
The problem with instance-level pose estimation is that they cannot be used in
general settings because many objects have not been seen during training. For
category-level pose estimation, we train on known instances of a category and
expect to transfer this knowledge to unknown instances. There has been some
progress on big room-scale objects but with some constraints. The rotation pre-
dictions are only along the gravity direction, and they do not deal with smaller
objects which are more present in robot manipulation task like the Amazon Pick-
ing Challenge[24]. Wang et al.[2] extend this to smaller objects. They define a
Normalized Object Coordinate Space (NOCS), which can be imagined as a rep-
resentative for each category. They then train their network on the perspective
projection of the NOCS and regress the NOCS map during test time. Together
with the depth map, they recover the 6D pose by using a pose fitting method [2,
38, 39, 31].

3.2 Semantic Segmentation
Semantic segmentation assigns labels to image pixels and is a necessary component
for image understanding.
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Neural Networks for Segmentation Deep learning dominates the field because
neural networks can learn features themself, removing the need for tediously hand-
crafted features. Semantic segmentation can be seen as a dense classification prob-
lem, meaning that instead of predicting a single layer for the segmentation, we
predict class confidences for each pixel. Notable architectures include U-Net[40],
Mask R-CNN[17], and RefineNet. Mask R-CNN builds on top of the Faster R-CNN
architecture, which detects objects in an image. They use RoIAlign[17] method to
extract the detected objects and then add a few layers to predict the segmentation.
Another segmentation network is the U-Net. It first downsamples the image to a
feature vector and then upsamples it to a segmentation in the second step while
integrating information from the previous stages. The idea behind these skip con-
nections is that we use the feature mapping from image to feature vector to map
the feature vector back to an image. Another common design choice is to reduce
the number of features when downsampling to create a bottleneck where only es-
sential features get through to the decoder network.
The repeated downsampling trough operations like max-pooling and convolution
with stride greater than one reduce the image size by a factor of up to 32, thereby
losing the finer image structure.[23]
Noh et al. try to solve this problem by learning a deconvolution that upsamples
the feature map to a higher resolution.[41] Line et al. note that the deconvo-
lution cannot recover features from previous stages because they are lost during
the downsampling process. Other approaches [42] capitalize on these mid-level
features to generate higher resolution feature maps with the idea that the middle
layers describe object parts while retaining spatial information. However, Line et
al. argue that all feature levels are helpful for higher resolution segmentation [23]
Their RefineNet uses a combination of short and long-range residual connections
to exploit features from multiple scales of the same image. This way, they can
refine a coarse-high level segmentation to a higher resolution.[17, 23, 40]

3.3 Canonical Representations

Pose estimators and 3D deep representation learning methods require large amounts
of annotated data that include meshes, point clouds, or implicits. ShapeNet and
other datasets that contain 3D models tend to have an underlying bias. These
datasets canonicalize their models to a unit bounding box with their center at the
origin and objects semantics adjusted to the coordinate system’s axes. For exam-
ple, the x-axis for bicycles always points to the front wheel and the seat’s z-axis.
The network’s prediction quality suffers if the input object is not canonicalized. He
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Wang et al.[2] try to solve this problem by learning a mapping from image pixels
to the NOCS of the corresponding category. This approach still requires creating
a canonical model and the NOCS maps and is therefore trained supervised. Sun et
al.[43] introduce canonical capsules to learn a canonical frame unsupervised. They
train their architecture on pairs of randomly rotated 3D point clouds to generate
a K-part decomposition into K keypoints. After that, they train a deep network
to output a transformation to their canonical coordinate system by regressing the
descriptors to each other. We also learn a canonical frame unsupervised, but we
minimize the point clouds’ shape difference instead of creating a decomposition
and matching the descriptors. Our module is simple to implement in a pipeline,
requires no supervision, and can optimize the canonical frame to the present task
[43, 2].

3.4 Training Data Generation
To train a neural network, we need large amounts of annotated data. There are
many real-world datasets for object segmentation or detection, with COCO[44]
and ImageNet[45] being two examples.

Real World Data Sets for Pose Estimation For other tasks like 6D pose es-
timation, there are only a few real-world data sets. One often referenced is the
LINEMOD[25] dataset, which contains cluttered scenes with large occlusions and
poorly textured objects. This dataset, which has 1,000 images, is still small com-
pared to COCO’s 80,000 training images. The lack of large datasets is due to the
cost and time it takes to annotate data with 6D poses. To annotate an image,
a human has to align a mesh with the object in the presented image. This work
is tedious and prone to human error, especially when dealing with occlusions. To
deal with this absence of training data, PoseCNN introduced their YCB-dataset
with 21 objects and 133,827 images with a few examples shown in Figure 3.1.
However, it is not useable for tasks like object-category pose estimation because
the data set only contains one instance per class [44, 45, 1, 25].

Synthetic Data To alleviate the issues in realworld datasets, synthetic data sets
are used. Synthetic data does not take much time to create and is perfectly
annotated even for occluded objects. Many of these synthetic data sets do not
model sensor noise, material, and lightning, creating a gap between real-world and
synthetic data. Different approaches are trying to bridge this gap, like rendering
objects over real background images. The main problem here is that some objects
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Figure 3.1: Image samples from the YCB-Dataset[1]. The data set consists of 92 unique
scenes.

do not have any context to their environment and look like they are flying. Tobin
et al.[46] argue that it is possible to overcome this gap by randomizing rendering
in simulations. Enough variations of object poses, object shapes and lightning,
will create scenes that are close to the real world. They train an object detector
solely on multiple low-fidelity rendered scenes with non-realistic textures and can
achieve an accuracy of 1.5cm on real-world data. We adopt this approach and
render scenes with different object positions, occlusions, material appearances,
and image noise, creating physically realistic scenes that always look different [46,
2, 1].

CAMERA He Wang et al.[2] solve the object context problem by first detecting
a surface in the image and then placing rendered objects on top of it. Figure 3.2
shows some qualitative examples of the generated images. The data set consists of
31 real scenes with six object categories from ShapeNetCore[47] and one distractor
category. They also add 4300 images of real-world annotated data to improve
the quality of their algorithm further. They provide the RGB-D image with the
corresponding NOCS map. They decided not to include the 6D pose directly but
provide code to extract it from the NOCS map. The resulting ground truth does
not fit the actual pose in the image as shown by [48].

Figure 3.2: Examples from CAMERA[2]. He Wang et al. render the objects in blender
and place them on surfaces in real images.
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DeepCPD Diego Rodriguez et al.[4] introduce the DeepCPD mesh data set to
learn 3D non-rigid registration. They want to learn intra-class deformations and
divide this data set into four object categories sprayer, bottle, camera, and drill,
which makes it also viable for category pose estimation. They took the models
from sketchfab, an online mesh database, and from [2].
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4 Our Approach
This section gives insight into how we create our data and explains the network
architecture using ideas from the papers mentioned in the previous section.

4.1 Synthetic Dataset
To the best of our knowledge, the CAMERA data set[2] is the only data set for
category-pose estimation with hand-scale objects. Other data sets like YCB[1] and
LineMod[25] are not suited because they are limited to one instance per category.
CAMERA contains both real and synthetic data. Although the CAMERA data
set has some nice properties like no flying objects or unusual poses, there are
two major disadvantages. First, lack of occlusions. The scenes present in the
data set are simple tabletop scenes with almost no occlusion. In real world bin
picking scenes, the objects lie in a pile and can use each other as support to get
in uncommon pose configurations. Not training on these kind of data results in
a underspecification of our model to real world scenarios [49]. In tasks like the
Amazon Picking Challenge[24], the network has to deal with high occlusions, which
makes it essential to include them in our training. Secondly, lack of shadows and
unrealistic lighting. The synthetic objects are rendered in blender using random
lightning sources to simulate indoor settings. However, the random light sources
do not fit the conditions in the image, which is especially noticeable with objects
in shaded areas. Also, the lack of object shadows is a common theme in many
images.
We overcome these limitations by creating a photorealistic synthetic dataset using
the meshes provided by DeepCPD[4] using Stillleben[3].

4.1.1 Realistic Cluttered Scenes using Stillleben and DeepCPD
We use the four categories driller, bottle, camera, and sprayer from [4] to create 70
object combinations for training, 10 for validation, and 15 for testing. We exclude
four meshes from each category to create our evaluation and test set with two
meshes and use the remaining meshes for training. Each scene contains one object
per category and one object from the YCB-dataset to increase the robustness of our
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Figure 4.1: Comparsion of our images to CAMERA. The top row shows three samples
taken from CAMERA[2]. Objects are realistically placed but lack shadows,
correct lightning and occlusions. The bottom row shows three examples
of our data. Our cluttered scenes introduce occlusions and have correct
lightning conditions.

network. The objects are then placed in the world by the Stillleben arrangement
engine. We choose random values for the ambient light, the lightning position, and
a random texture from the TUM texture database[50] and [51]. Stillleben then
renders all images with the same intrinsic in a resolution of 256×256. At training
time, we apply noise, chromatic aberration, blur, and random exposure.
Figure 4.1 shows that the object interactions are more complex compared to CAM-
ERA, with multiple objects overlapping, creating poses that do not occur in CAM-
ERA. These challenging conditions are also present in warehouse tasks like the
Amazon Picking Challenge [24].

Z-Translation and Origin Heatmap

Our network learns to predict the rotation and segmentation, a heatmap for the
object’s origin, and a translation in the Z direction. Stillleben provides the ground
truth segmentation in addition to the rendered image. Inspired by PoseCNN, we
use the fact that we can infer the translation in the X and Y direction if we know
the location of the object’s origin in the image and the Z-translation. We encode
the object’s distance by assigning its Z-translation to its segmentation label and
project the origin in the camera frame onto the image plane. We then place a 2D
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gaussian bell with σ = 0.001 over this pixel (cx, cy) with

f(x, y) = e−
(x−cx)

2σ2 +
(y−cx)

2σ2 (4.1)

4.1.2 Limitations of Synthetic Data Generation
We can generate physically realistic data and train our network using this image
generation pipeline. However, this approach can be very time-consuming depend-
ing on the quality and amount of the object meshes. We recommend creating a
base dataset of saved images, which allows controlled comparison of different mod-
els, and create each batch with a combination of saved and online generated data
for better performance and overfitting prevention. It is important to mention that
synthetic data only mimics real data. For example, camera noise and lightning
conditions are more complex in real-world data. A CNN trained on real data will
therefore perform better in real-world tasks. However, recent works like Domain
Randomization by Tobin et al.[46] show that it is possible to get similar results
on synthetic data by randomizing the parameters, e.g., noise, lighting conditions,
and object appearance. Some of the scenes are close to reality and are used to
train the network. This way, it is possible to bridge the reality gap and get similar
performance [3, 46, 52].

4.1.3 Canonical Coordinate System

Figure 4.2: Motivation of the canonical coordinate system. Instead of predicting the
transformation from object to scene directly, we predict an intermediate
coordinate system where all category instances are aligned. During training
we have to take the noise transformation into account.

While creating a mesh, the mesh creator defines an arbitrary coordinate system
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that defines the position of mesh vertices. The axes’ orientation and the location
of this system can vary drastically between data sets, which results in our network
learning a single transformation for each object instance if we want to perform 6D
pose estimation. Suppose we find a common coordinate system for each category.
In that case, instead of defining the canonical coordinate system manually, we
only have to learn a transformation from the category to the camera coordinate
system. Creating a common representation can be done by aligning the models by
hand or by creating a normalized representative of a category[2]. However, instead
of creating a canonical frame, which might not be optimal for the specific object
category, we can also learn a canonical coordinate system.

We assume that we have meshes available and then learn a transformation to
this canonical coordinate system. We split the task of 6D object pose estimation
into two individual transformations: transformation from object to canonical co-
ordinate system and canonical coordinate system to camera coordinate system as
shown in Figure 4.2.

T camera
obj = T camera

canon T canon
obj (4.2)

4.1.4 Optimizing the Canonical Coordinate System

Figure 4.3: Meshes from the DeepCPD data set. Objects of the same category are sim-
iliar in their geometry which allows us to introduce a loss that measures the
geometric differences. Image was taken from [4]

We design our network to have as much freedom as possible when learning a
canonical representation. However, many objects from different datasets are not
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aligned. Some of the commonly used convetions for defining the origin of the
meshes are geometric mean, center of the 3D bounding box, center point on the
base of the object, etc. These differences do not make the task of finding a common
coordinate system obvious for the network. Therefore, we define an auxiliary loss
to guide the network in learnig the canonical coordinate system. The auxiliary loss
is minimized along with the 6D pose estimation loss. Objects of the same category
are similar in shape with a few examples shown in Figure 4.3. We exploit these
geometric features by minimizing the ShapeMatchloss between all instances of the
same category. We do not explicitly specify how the objects should be oriented
or where the origin is located, instead we let the network learn its own canonical
coordinate sytem self-supervised.
Formally, let C = {c1, c2, .., cn} be the set of all categories, M the set of all meshes
and Mci ∈ M the i-th mesh of category c, Tci ∈ T the corresponding transformation
to the canonical frame.N is the number of meshes in a category.

SLossm(M1,M2, T1, T2) =
1

2m

∑
x1∈M1

minx2∈M2||T1x1 − T2x2||2 (4.3)

CanonicalLoss(M,T ) =
1

N

∑
c∈C

∑
i∈Ic

∑
j>i,j∈Ic

SLossm(Mci,Mcj, Tci, Tcj) (4.4)

4.1.5 Adjusting Ground Truth Data

Figure 4.4: Adjusting the ground truth. During the training process, the network ac-
tively learns the canonical coordinate system. Thus we create the ground
truth after the networks prediction of the canonical frame.

In section Section 4.1.1, we mention that we create a heatmap and z-map to
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estimate the translation of our object. If we do not use a canonical coordinate
system, we can use the translation of the transformation given by

T camera
obj = T camera

world Tworld
obj (4.5)

which we can calculate with Stillleben. However, our canonical representation
changes the position of the standard coordinate system, and we therefore need
to adjust the ground truth heatmap and z-map. This point is illustrated in Fig-
ure 4.4. To solve this problem, we first use the predicted transformation T canon

obj

and transform it to the original object coordinate system. Using this, we calculate
the transformation to the camera frame

T camera
canon = T camera

world Tworld
obj T canon

obj
−1 (4.6)

and project the new translation on our image plane to the pixel (cx, cy). Note that
we apply noise transformations T noise

obj to our input meshes and therefore need to
compute

T camera
canon = T camera

world Tworld
obj (T noise

obj T canon
noise )−1 (4.7)

4.1.6 Regularization

Figure 4.5: An origin that lies beyond the image boundaries cannot be detect with our
heatmaps. We therefore need to pull it closer to the object.

Another problem is that the network can place the object’s origin far away from
the object since we do not specify its position. Figure 4.5 shows the worst case
scenario. The origin is not in the image, making it impossible to detect it with a
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heatmap. We introduce a regularization term that pulls the origin closer to the
center of mass. One way of regularization is penalizing transformations that push
the object’s center of mass M too far away from the origin. In this case, the
regularization term is the squared distance to the origin.

Lreg =

{
0 if ||M ||2 < t

||M||2 else
(4.8)

Another way is minimizing the squared closest distance from one point p on the
mesh M to the origin (0, 0, 0) and set the error to 0 if we are below a certain
threshold t.

dclosest = minp∈M(p2) (4.9)

Lreg =

{
0 if dclosest < t

dclosest else
(4.10)

This way, the origin is placed somewhere near the mesh while allowing the network
to move the origin along the mesh surface. The downside is that we cannot move
the origin far inside voluminous objects like a ball or a box.

4.2 Network Architecture
In this section we explain the network architecture, which can be seen in Figure 4.6,
that we use to learn a category-level canonical coordinate system and perform
object-category 6D pose estimation.

4.2.1 Canonical Rotation Estimator + Translation - CaRET
Our CaRET architecture utilizes two stages that perform different tasks. The first
stage predicts the objects distance, a heatmap, and a segmentation. Each category
has its own rotational branch to extract relevant features from the features of the
first stage.

Features Extraction and Translation Estimation We learn two transformations
T canon
obj and T camera

canon . The first one transforms our mesh to our canonical coordi-
nate system and the second one estimates the transformation from our canonical
coordinate system to the camera frame. Yu Xiang et al.[1] decoupled the pose
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Figure 4.6: Pipeline overview. Our pipeline uses a RefineNet architecture to predict
a heatmap, z-map, and segmentation. Heatmap and z-map estimate the
translation from the canonical frame to the scene. A slightly altered VGG
extracts process the features from the backbone. One MLP predicts the
transformation to the canonical frame while the other estimates the final
rotation. Both use the PointNet features, but only the second MLP uses
image features.

Figure 4.7: Computing the RoI from a segmentation. We find the top-left and bottom-
right corner of our segmentation to extract the bounding box.
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estimation into rotation and translation estimation and we follow this approach.
The first stage of our network consists of a RefineNet backbone, pretrained on
ImageNet. Three subbranches then predict the segmentation, a heatmap for the
origin, and translation in Z direction using the RefineNet features. The segmenta-
tion branch’s output is an (N+1)×128×128 feature map where N corresponds to
the number of classes and the background. Figure 4.7 visualizes the RoI extrac-
tion process. We divide each channel by its maximum and create a segmentation
mask for each object. We refine noisy prediction, using a 3×3 erosion, followed
by a dilation of the same size to get more accurate regions of interest. Then we
calculate the object’s bounding box by finding the top left and bottom right corner
of the segmentation.
Let seg(x, y) be the value of our segmentation at pixel (x, y), the set of object
pixels is defined by:

Sx = {x | ∃ y : seg(x, y) = 1} (4.11)
Sy = {y | ∃ x : seg(x, y) = 1} (4.12)

Then the bounding box is defined by its top left and bottom right corner

tl = (min(Sx),min(Sy)) (4.13)
br = (max(Sx),max(Sy) (4.14)

We use our heatmaps and Z-translation maps to estimate the translation of our
object. The Z-translation map is of size N×64×64 and predicts the translation
in the Z direction for each visible object category pixel. The heatmap is of size
N×32×32 and predicts a probability for each pixel to be the origin. To get the
translation of our objects, we need to decode both predictions. We first calculate
the object’s distance by taking the mean over the object pixels. Secondly, we resize
the heatmap to the image resolution and compute the argmax giving us the pixel
where our network expects an origin. Reprojecting this origin into 3D space gives
the translation tcamera

canon = [tx, ty, tz] for each object.

Canonical Frame & Rotation Estimation Before we use the RoIs, we predict
T canon
object in our canonical branch. We use the extracted shape signature from a

pre-trained PointNet++ network, which encodes information about our mesh’s
geometry. We add a small MLP that takes in the signature and outputs T canonical

object

in our chosen rotation representation plus three parameters for the translation.
The segmentation does not contribute to the translation. However, it is necessary
to extract the regions of interest from our RefineNet features using an RoI pooling
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Figure 4.8: Category specific rotation branch. The modified VGG learns category spe-
cific features which are flattened and passed to an MLP. The MLP processes
the image feature vector first and then adds the PointNet features. The
output is a rotation in our choosen rotation representation.

layer introduced in Mask R-CNN. We resize the RoI to 128×128, resulting in
a 128×28×128 feature vector for each category. After that, we apply a series of
convolutions and downsample the features using a combination of max pooling and
3×3 convolutional layers with stride 2 to create a bottleneck where only essential
features get to the next stage. A detailed version of the CNN is illustrated in
Figure 4.8. Then, we predict Rcamera

canon the rotation from our canonical frame to our
camera coordinate system. We use the extracted image features, flatten them and
add them to our predicted PointNet signature and use another MLP to predict the
rotation. We then map both rotation representations back into SO(3) and create
the transformations

T camera
canon =

[
Rcamera

canon tcamera
canon

0 1

]
(4.15)

T canon
obj =

[
Rcanon

obj tcanonobj

0 1

]
(4.16)
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4.3 Training Implementation

Pose estimation is a complex task that requires many intermediate results. Our
network has to predict a segmentation to detect objects and estimate the transfor-
mation to the camera and canonical frame. This section gives further inside into
the training implementation.

Optimizer & Scheduler We train our architectures with Adam[14], a learning
rate of 1e−4 and the CosineAnnealingLR scheduler[12], which adapts the learning
rate after one epoch, which corresponds to 1000 randomly sampled images.

Data Augmentation We use the images generated by our data generator and
process them with random noise parameters that influence the blur, exposure,
chromatic aberration, and color jitter. We apply noise transformations at each
training step that rotate our point clouds with an angle between 0° and 15°.

Loss Functions To optimize our predictions, we apply a LogSoftmax to our seg-
mentation prediction to get values between 0 and 1 and use negative log-likelihood
as the loss for for our segmentation branch resulting in the loss Lseg. For the
heatmap loss Lheat, we use a variant of focal loss, which Law et al.[10] introduced
in CornerNet. We apply a sigmoid function to the heatmap and clamp the values
to the interval (1e− 4, 1− 1e− 4) to prevent NaN values. For the distance error
Lz, we calculate the MeanSquared-Error between prediction and ground truth,
resulting in the combined loss

L1 = Lseg + Lz + Lheat (4.17)

for our first stage.
Secondly, our second stage calculates T canonical

object and Rcamera
canonical in our choosen ro-

tation representation. We convert the representations to rotation matricies and
combine Rcamera

canonical and tcamera
canonical to get T camera

canon and optimize this transformation
with our CanonicalLoss. Because of the translational part of the canonical predic-
tion we include the regularization loss Lreg mentioned in section Section 4.1.6 and
let it decay. For the final pose in the scene we use the SceneLoss which applies
SLossm to symmetric and PLoss for transformation to non-symmetric objects.
For the SceneLoss we compute the predicted transformed mesh Mcamera with

Mcamera = T camera
canon T canon

objectMobject (4.18)
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and the ground truth with

M ′
camera = T camera

object Mobject (4.19)

Note that because of the applied noise transformation T noise
object we actually learn

T canonical
noise . We also weight both losses differently with α for the SceneLoss and β

for the CanonicalLoss. We set α to 1 for all experiments and varied β between 0
and 1. Our final error for the whole pipeline is

Lfinal = L1 + αLscene + βLcanonical (4.20)

Training Optimization The pipeline is trained end-to-end. However, optimizing
the segmentation first and then the rotation stage is more efficient because we use
the segmentation for our RoIs resulting in unusable data for the second stage at
the beginning of the training. We can divide the second stage into a separately
trainable canonical branch and a scene branch. However, backpropagating the
scene’s loss through the canonical branch might help find a better canonical frame.
We prerender the dataset and save it to the disk. This is more efficient than
generating images on the fly. Simulating a batch of tabletop scenes and rendering
new images takes around 640ms, whereas loading it from the disk takes 10ms.
We use the DataParallel interface provided by PyTorch[11] to train our model
efficiently using multiple GPUs.
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In this section, we analyze the prediction quality, speed of convergence of different
rotation representations, the effect of the weight for the CanonicalLoss during
training, and how our pose estimator performs on unseen objects.

5.1 Experiments with CaRE
We use a variant of CaRET that only predicts the rotation component. We abbre-
viate it with CaRE and investigate the effects of different variables on our model’s
rotation predictions. The CaRE model directly extracts features from the image
instead of taking the RefineNet features as input. To reduce training time and
complexity, we limit the task to five instances of the drill category and render each
object against a white background with a fixed translation and a random rotation.

5.1.1 Comparison of Rotation Representations

Figure 5.1: Comparison of rotation representations. Higher dimensional rotation repre-
sentations converge faster.

In section 1.10, we reviewed the 6D and 9D rotation representation. These
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representations outperformed quaternions and other rotation representations in
various tasks[6, 26]. To investigate the effect of the different rotation represen-
tations on our training, we trained the same model with three different rotation
representations for 35 epochs and a learning rate of 3e-5. We removed the back-
ground plane and other objects and fixed the drill position to simplify and speed
up the training.
Figure 5.1 shows that the higher dimensional and continuous representation per-
form better than quaternions. Quaternions are stagnant for the first 14 epochs
and then start to drop, whereas 6D and 9D converge after six epochs. In the
beginning, it looks like 9D performs slightly better than 6D. However, if we con-
tinue the training, we see that using SVD leads to instabilities in the canonical
pose, influencing the final predictions. On the other hand, Gram-Schmidt is sta-
ble and outperforms 9D after 225 epochs. Therefore, we chose 6D as our rotation
representation in all our further experiments.

Figure 5.2: Comparison of 6D and 9D rotation representations. The 9D representation
becomes unstable leading to fluctuation in the canonical loss which in return
influences the final scene prediction. 6D converges smoothly and has an
overall better performance

5.1.2 Canonical Loss Weighting
The beta factor weights our CanonicalLoss, and our experiments show that it
also impacts the network’s ability to generalize to unknown objects. We trained
two CaRE models with a beta factor of 0 and 0.5 on drills with a fixed position,
random rotation, and no occlusions for 20 epochs. An interesting observation is
that our model learns to align the objects without the CanonicaLoss. In figure
5.3 the model0 learns to align the drill after six epochs, visualized by the drop-off
of the CanonicalLoss. The freedom in choosing the position results in a slightly
faster convergence for the model0. One reason for this result is that the meshes
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Figure 5.3: Alignment without loss. The model without canonical loss minimizes the
CanonicaLoss without us enforcing it.

in our data set are already roughly aligned, and the network only has to learn
a minimal transformation. With more significant differences in the initial mesh
poses, we would need to pre-align them or use the CanonicalLoss to enforce our
definition of a canonical pose.

5.1.3 Evaluation on Unknown Drills
The canonical coordinate system allows the network to learn a rotation to the
camera frame for a whole object category. To verify this, we investigate how well
our model can generalize to previously unseen instances using the ADD metric.
We consider a prediction correct if the ADD error is smaller than 10% of the object
diameter. Figure 5.4 shows the rotation evaluation of our model0 and model0.5 on
the drill category. The model that learns the canonical pose by itself achieves an
ADD score of 85%, performing better than our other model.

Overfitting with Enforced Canonical Loss Both the β0 and the β0.5 model can
transform the unknown drills to their canonical coordinate frames, suggesting that
the difference lies in the stage where we predict the rotation from the canonical
frame to the camera frame. One possible explanation is that the transformation to
the canonical and the camera frame requires different or conflicting features from
the PointNet. The β0-model has complete freedom over its canonical coordinate
system. Therefore, the PointNet chooses mesh features that help the transforma-
tion to the scene, whereas matching points to other instances is a different task.
One could argue that these tasks are similar, but the CanonicalLoss requires the
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Figure 5.4: Generalization to unknown Instances. The graph plots the number of cor-
rect predicition using the ADD metric. The model trained with the Canon-
icalLoss needs noise to achieve similar performance compared to the model
trained without.

alignment to multiple instances instead of one. Both modules want different fea-
tures with the enforced loss, causing a conflict in the PointNet and overfitting to
solve this problem. Introducing rotational noise causes the PointNet to output
different features for the same instance, forcing the modules to generalize better.

5.2 Experiments with CaRET
CaRET is the complete pipeline, including the translation estimation. We test
this model on our synthetic dataset with four categories, rendered on a surface
with a random texture and physically realistic poses.

5.2.1 Evaluation of the Canonical Module
In this section, we analyze the canonical module. We first visualize the learned pose
and explain the limits of our module. Then we evaluate the effect on convergence,
the metrics on the known objects, and the generalization to unknown instances.
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Visualization of the Canonical Pose

To visualize the learned canonical pose, we train our CaRET model with the
canonical loss and a rotational noise of 12° on our synthetic DeepCPD data set
and visualize the pose after every epoch. In the beginning, we observe that the
canonical pose for the test instances of the sprayer category is not the same as the
pose for the training meshes. The canonical branch learns to align the objects of the
batch because of the CanonicalLoss. After enough iterations, the CanonicalLoss is
small enough that the gradients of the SceneLoss have a more significant influence
on the canonical pose, therefore, optimizing it to the task of 6D pose estimation.
Another noticeable observation is that CaRET tends to move the meshes further
away from the origin. This behavior is not desirable because detecting origins
outside the object’s boundaries is difficult and impossible if the origin is not within
the image boundaries, as shown in Figure 4.5.

We introduce a regularization, which decays over time. However, if the regular-
ization weight becomes too small, the network starts to move the meshes further
away, and we therefore remove the decay. A representation where the origin is
further away might be better for the network, but this is not compatible with our
architecture. One could remove the heat- and z-map and directly regress image
pixels to a translation vector. However, as the authors of PoseCNN[1] note, this
approach cannot detect multiple objects and is not generalizable because objects
can appear anywhere in the image.
The next question is, if training without the CanonicalLoss results in a different
canonical frame. We train another CaRET model for 500 epochs without the loss
and visualize the pose. In Figure 5.6 we can see that the two models learn different
coordinate systems, suggesting that there is not one optimal canonical pose and
that the losses influence this pose. The model0.5 receives mixed signals from the
Scene- and CanonicalLoss. In Figure 5.7 we observe that one drill instance moves
away from the others. There is an instance imbalance during training, meaning
that one object instance appears more frequently than others. The SceneLoss
wants to change the canonical pose and pulls the instance further away from the
other objects. The CanonicalLoss, on the other hand, pulls the object back be-
cause the other objects still form the majority of the batch. Hence, leading to an
unstable canonical pose where meshes are not aligned in the early stages of the
training. An improvement could be to only enforce the loss at the beginning of the
training or letting it decay over time. However, one could also use the iterative-
closest-point algorithm to align the objects once at the start and then learn the
canonical pose without the canonical loss. However, the CanonicalLoss benefits
the training, which we discuss in the next section.
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Figure 5.5: Comparison of poses. The left side is the original coordinate system and the
right side our learned canonical coordinate system.
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Figure 5.6: Comparison of canonical poses. Different betas result in different orientations
for the objects.

Figure 5.7: Evolution of the canonical pose during the trainings process. Starting from
the inital pose on the left, the SceneLoss pulls the drills apart, but the
CanonicalLoss pulls them back together.
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Evaluation of Training

50 100 150 200 250 300 350 400
0

0.3

0.6

0.9

1.2

1.5

epoch

S
ce
n
eL

os
s

w/o canonical module
model β = 0.5
model β = 0

Figure 5.8: Comparision of the trainings loss between the three networks. Adding the
canonical module improves the SceneLoss. The canonical loss further im-
proves the model if object instances are not prealigned.

We train three models to analyze the impact of our canonical module on the
prediction quality for known instances. The first two models include the canonical
module, and we train them with β = 0.5 and β = 0. We remove the canonical
module for the third model and use this architecture as a baseline. We know
that rotational noise helps the module generalize better to unknown instances
from training with different betas. We want to investigate the effect of noise on
the training and train all models with and without noise. The maximal noise
is 12°, and we do not apply any translational noise. The models have to learn
the segmentation first, resulting in worse RoIs in the early training stages. In
the beginning, the network outputs black segmentations. In this case, we pass
the 128×128×128 feature map uncropped to the rotational branch. In Figure 5.8
we can see that the network without the canonical pose starts with a SceneLoss
of 1.2 and remains stagnant for 38 epochs before it starts converging. Also, the
loss for model0 is stagnant for 35 epochs. However, the loss is already lower
than for modelnocanon. When training with the canonical loss, we start converging
after 22 epochs, almost twice as early. The higher loss for modelnocanon likely lies
within the initialization of the network. Most objects are not standing up but are
rotated around the X- and Y-axis, meaning that the network has to learn these
rotations first before the loss drops. The modelnocanon can only influence the final
transformation with the learned features from the VGG, whereas the canonical
pose directly influences the final prediction for model0 and model0.5 from the start.
Therefore, the canonical pose gives the network a better initial starting point for
convergence. Figure 5.8 shows that the convergence of the models also differs. The
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beta models converge smoothly, whereas the model without the canonical module
looks like a step function.

Effects of Rotational Noise
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Figure 5.9: Comparison of models with and without noise. Rotational noise in the input
makes every model slightly worse except the model that was trained with
the canonical loss.

We train the three models without noise to investigate if the rotational noise
influences the network’s convergence, which we illustrate in Figure 5.9. Noise
causes the model without the canonical module to converge earlier but did not
improve the training loss. The model trained with β=0.5 is also not significantly
influenced by the absence of noise during training even performing better if we
apply noise to the input meshes. However, noise affects the β=0 model the most.
This difference may be due to the prealignment of object instances in DeepCPD[4].
Without the noise, the model can arrange the objects more freely without having to
compensate for the introduced misalignment. Model0 without noise and model0.5
with noise achieve similar performance on the training dataset and the unknown
instances. The loss of the model without the canonical pose is consistently higher
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than the other models, as shown in Figure 5.8. This is mainly due to the sprayer
category.

Evaluation of Known Instances We create a test set with known instances and
evaluate the accuracy of the baseline and the proposed models. We train all
models for 1400 epochs and freeze the canonical module after 300 epochs. We
use the ADD and ADD-S metric, which takes both translation and rotation into
account to compare our models. All models achieve similar results on the drills,
but the models with the canonical module achieve slightly better results. Since the
bottle category is symmetric, we have to compare the ADD-S scores. Again the
models achieve similar scores. We can observe greater differences for the cameras
and sprayers, where the models with the canonical modules achieve better scores.
Figure 5.10 shows that the models with the canonical module have higher rotation
accuracy for smaller thresholds on the sprayer category and a higher accuracy
overall on the cameras.
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Figure 5.10: Comparison of CaRET to the baseline. CaRET achieves better rotation
estimation on the sprayers and cameras.

The default canonical coordinate system of the baseline meshes is fixed for the
whole training process, whereas our canonical module allows the network to learn
a better canonical coordinate system.

Overall, our pipeline can achieve good results with an AUC over 64.51 for all
non-symmetric categories and over 86.59 for our symmetric category. We still
need to test our pipeline on real world data, but our experiments show promising
results as our predictions are very accurate for the known instances, as we can see
in Figure 5.11. Our evaluation shows similar results for both canonical models.
We can deduce that the CanonicalLoss is not needed if we have a good initial
canonical pose, as is the case for the DeepCPD data set.
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Figure 5.11: Results on the test instances. The top row shows the ground truth, and the
bottom row the prediction rendered above the ground truth.

ADD AUC Comparison
β=0.5, noise β=0, no noise baseline

Drills 70.57 70.85 70.00
Bottles 56.68 58.88 57.68
Cameras 67.45 66.47 64.51
Sprayers 70.07 67.59 66.55

ADD-S AUC Comparison
β=0.5, noise β=0,no noise baseline

Drills 84.18 84.39 84.27
Bottles 86.71 86.62 86.59
Cameras 84.50 83.64 83.98
Sprayers 84.59 83.76 83.25

Table 5.1: ADD and ADD-s metric for the known instances.
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ADD AUC Comparison
β=0.5, noise β=0, no noise no canon

Drills 51.39 40.21 49.52
Bottles 28.61 22.3 29.26
Cameras 53.89 48.41 50.92
Sprayers 15.14 14.1 15.66

ADD-S AUC Comparison
β=0.5, noise β=0,no noise no canon

Drills 78.32 72.71 75.13
Bottles 59.98 55.74 60.8
Cameras 80.00 78.15 78.96
Sprayers 50.20 48.27 50.80

Table 5.2: ADD and ADD-s metric for the unknown instances.

10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PixelError

A
cc
u
ra

cy

Unknown Objects
Known Objects

Figure 5.12: Comparison of heatmap accuracy. Accuracy on unknown objects drop es-
pecially for smaller tresholds.
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Evaluation of Unknown Instances To evaluate how well the CaRET and the
baseline models generalize to unknown instances, we create a test data set with
unknown instances using the same rendering pipeline used to create the training
data set. We limit the number of objects per scene to two. We observe that the
models struggle with the new objects and the metrics get a lot worse. While in-
vestigating further, we notice that the new meshes combined with the occlusions
result in poor heatmaps, increasing the origin offset. Figure 5.12 shows the ac-
curacy for different distance thresholds measured in pixel. The main observation
is that the prediction quality drops by 15% for a threshold of eight pixels for un-
known objects. The flat part up to a threshold of 8 pixels is caused by resizing
our 32×32 heatmap to 256×256. On some rare occasions, the networks confuse
the bottle with a sprayer because of their geometrical similarities. If the network
cannot detect the spray nozzle, it recognizes the sprayer as a bottle and predicts
its origin in the bottle’s heatmap. In a few other cases, the prediction of one test
drill instance is flipped vertically, i.e., upside down, as seen in Figure 5.13.

Figure 5.13: Shape differences lead to wrong predictions. The test instance’s head is
shorter compared to the training examples and the network cannot distin-
guish between top and bottom.

In Figure 5.14, the models with the canonical module have a higher error rate
around 180°, i.e., a flipped rotation, compared to the baseline. Most of the drills
have a head that extends over the battery, but this is not the case for one unknown
test instance. The network with the canonical module confuses the top with the
bottom and predicts a flipped pose. More training samples with varying shapes
could help to improve the generalization. Moreover, the problem of predicting
the 6D pose for an unknown object only from RGB images is inherently ill-posed.
I.e., without depth, estimating the precise scale of an unknown object is not pos-
sible. When we assume a correct translation, our predictions get a lot better for
the unknown instances. Figure 5.16 shows the estimated rotation rendered with
ground truth translation. Here we can observe that our rotation estimation is ac-
curate. Overall our model with the canonical loss performs slightly better for the
unknown objects than the model without the canonical loss. Both models align the

49



5 Experiments

30 60 90 120 150 180
0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

Rotationerror/degree

A
cc
u
ra

cy

CaRE β = 0.5

CaRET w/o canon

Figure 5.14: Comparison of the rotation error for drills. The model with the canonical
module is more likely to flip the prediction.

instances to their learned coordinate system. However, we notice that the network
with the canonical loss is less likely to flip the prediction on the drills, as we can
see in Figure 5.15. We suspect that the CanonicalLoss helps the canonical module
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Figure 5.15: Comparison of the rotation error for drills. The model without the canonical
loss is more likely to flip the prediction.

learn better discriminative features, which allows for better predictions. A higher
β might even help to reduce the flipped predictions even more. To our surprise,
the baseline model achieves similar results compared to model0.5 and outperforms
the model without the CanonicaLoss. All models perform relatively poorly on the
sprayers, which is also the category with the fewest training instances. A larger
set of sprayer samples for training could improve the metrics.
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Figure 5.16: The top row is the ground truth, the predictions, rendered on top of the
ground truth, are in the middle, and the bottom row assumes a correct
translation.

Figure 5.16 shows some acceptable and bad predictions of our network. In the
second row, we can see that the network struggles to estimate the translation
correctly. The objects are either too big, pointing towards a false depth, or shifted
to the left or right, which is the product of a poor heatmap. The third row shows
the predictions but assumes a correct translation. The rotation is acceptable when
taking into account that the network has not seen this specific instance before. To
further improve the predictions, we need to add additional depth information.

51





6 Conclusion

In this thesis, we developed a category-level pose estimator that learns a category-
specific canonical representation. We evaluated it on our own data set, which
we created using the Stillleben[3] rendering pipeline. Our CaRET model predicts
the translation with using the same approach as PoseCNN[1]. The rotation is
split up into the transformation from object to canonical and from canonical to
camera coordinates. We optimize it using our CanonicalLoss, which applies the
ShapeMatch-Loss to a batch of object instances of the same category, exploiting
geometrical similarities. The generated data set is rich in object occlusions and
object interactions.

We achieve good results on our cluttered test set with known instances and
acceptable results for the unknown objects. Since our network can already estimate
the orientation of unknown instances, we can save training time for competitions,
where the exact CAD models are known only a short period of time before the
competition starts.

Overall, the canonical module shows promising results with improved metrics
for most known categories, but only achieves similiar results on the unknown
instances compared to our baseline. The module needs further experimentation
since it is unclear when to freeze the module. We also need to investigate if more
freedom in choosing the origin allows for better predictions. There has also been
more research on processing 3D data. Further improvements could be made by
replacing the PointNet with a graph neural network that takes the connectivity
of verticies into account. Right now, we cannot evaluate on the CAMERA data
set because our pipeline cannot handle multiple instances of the same category in
the same image. Replacing the RefineNet backbone with an object detector like
CornerNet[10], would allow us to solve this problem. For each RoI we can load
the corresponding rotational branch and get a good rotation estimation. Since
the NOCS approach by [2] belongs to the template matching methods, we can
expect better predictions for partly occluded objects. The additional use of depth
information could also lead to more accurate results on the unknown instances.
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