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Abstract

Robots in the environments interacting with humans need to be able to predict

future changes of the scene to make a proper decision and act on it. Within the

literature, the task of generating future images based on a sequence of past frames

is called video prediction. Video prediction requires analyzing the video taken from

environment temporally and spatially and then constructing a model of how the

environment evolves over time. Different approaches have been proposed to predict

future frames, but the most successful ones are based on artificial neural network

architectures. For example, video pixel network(VPN) by encoding the time, space

and color structure of video tensors as a dependency chain, reported state of

the art result over the Moving MNSIT dataset. Video ladder network(VLN),

a neural encoder-decoder model, augmented at all layers by both recurrent and

feedforward lateral connections, yields a competitive result to state of the art with

simpler architecture. However, applying deep learning techniques still involves

various difficulties such as inherent blurriness and long-term coherency. Especially,

long-term coherency cannot be considered in VPN and VLN due to the memory-

intensive backpropagating errors over many times steps. To address this problem,

we propose a new method to learn temporal features by encoding the temporal

dependencies with different timescales for the video prediction task. By applying

both spatial and temporal pooling, we can load more over time to memory and

therefore we can model long-range dependencies both within and across video

frames. Furthermore, the hierarchy allows us to extract features which change

slowly over time, which helps us gain a better understanding of the video over

long time horizons.

We also employed semantic segmentation based on the idea of multitask learning.

The advantage of multitask learning in convolutional neural networks is that mul-

tiple types of supervision lead to better performance with the same input [stitch].

In addition to an improved performance and the extraction of useful high-level

understanding of the video in shape of semantic segmentations, we tested whether

semantic segmentations can help alleviate the inherently blurry prediction problem

in video prediction[57].



Furthermore, we worked on the predictive gating pyramid(PGP) architecture[43],

which its primary goal is to learn and predict transformation between frames. It

uses a bilinear model to extract features temporally. We proposed a fully con-

volutional PGP(Conv-PGP) which not only reduces the number of parameters

significantly but also extracts more spatial features.
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1 Introduction

1.1 Motivation

One of the main difficulties with the autonomous robots, especially the ones oper-

ating in the human environment, is anticipation of the scene. Also, in self-driving

vehicles, machines need to reason beyond the present and predict the future frames

to react properly in the real world [76].

In these applications, we need to analyze the video received from the environ-

ment and train the agent to understand the scene. Recent experiments demon-

strate that the task of video prediction helps to extract more useful features in

comparison to the classical way of analyzation and reconstruction of the frames

in a video[57]. The learning of internal video representations during the task of

video prediction support collaborative robots in their action decision process in

accordance with human actions on the shared environment.

Deep learning approaches made significant improvement in different fields of

computer graphics including the task of video prediction. Although the task of

video prediction has been studied by many researchers, still learning to predict

future frames poses many challenges. One of the main difficulties is blurriness of

the frames due to the inherent stochasticity in the highly dynamical environments.

It is not only inherently challenging to train neural networks over many time steps

due to high resource demands, but also subtle errors can easily add stepwise and

quickly lead to divergence. Moreover, recurrent networks tend to forget the recent

past quickly.

Furthermore, current methods predict in the pixel-level using approaches like

GANs[40], VAE[98] or PixelCNN[92]. Pixel-level prediction is semantically unin-

terpretable. To utilize video forecasting for representation learning, higher level of

abstraction is required[108].

This thesis strives to fix the issues addressed above. The main problem is

outlined in the upcoming section.

1



1 Introduction

1.2 Problem Definition

Video prediction is the task of generating future frames based on a sequence of

past frames. By predicting the future frames of a video sequence, the internal

representation, which models the image evolution, is constructed through learning

the content and the dynamics of the video frames[57].

As mentioned previously, uncertainty is the nature of the future. Thus, to per-

form video prediction we need to deal with the inherent stochasticity of the video

which leads to blurriness. To overcome this issue in pixel-level prediction, different

approaches have been proposed. Use of adversarial loss and also use of generative

models are among the promising ones[108]. Adversarial loss is important because

theoretically solves the blurriness problem addressed in L2 and L1 norm losses

[57]. Most recent experiments which predict pixels directly utilize recurrent neu-

ral network, especially LSTMs to extract features temporally[108]. Despite of the

attempts, still the problem of blurriness in the task of video prediction is unsolved

especially for non-synthetic datasets.

Moreover, the second main difficulty in video prediction is that it has semanti-

cally uninterpretable outputs as they are pixel-level prediction.

1.3 Approach

To do the task of video prediction we need to extract features both temporally

and spatially. To this end, we improved and compared two existing algorithms:

Video Ladder Network(VLN) and Predictive Gating Pyramid(PGP).

VLN, a neural encoder-decoder model, augmented at all layers by both recurrent

and feedforward lateral connections, yields a competitive result to state of the

art with simpler architecture. To extract more temporal features in VLN, we

proposed the use of temporal hierarchies in the recurrent neural network to ease

training over many time steps [77]. In addition, the predicted frames in VLN are

semantically uninterpretable. To deal with this issue, we proposed applying the

task of segmentation with the VLN architecture.

Furthermore, we proposed the fully convolutional PGP(Conv-PGP) [43]. The

PGP architecture, which its primary goal is to predict transformation between

frames, uses a bilinear model to extract features temporally. This modification

not only reduced the number of parameters significantly but also extracted .

2



1.4 Structure of Thesis

1.4 Structure of Thesis

The structure of the thesis will be as follows

• Chapter 2 reviews the related work on the field of video prediction, multiscale

recurrent neural network, multitask learning and video segmentation

• Chapter 3 describes prerequisites for designing neural network architecture

for the task of video prediction.

• Chapter 4 presents the detailed view of Video Ladder Network(VLN) and

Predictive Gating Pyramid(PGP) architecture and discusses the advantage

and disadvantage of both methods, which are the baseline of this thesis.

• Chapter 5 outlines the proposed modifications to PGP and VLN. First, the

fully connected architecture of PGP is changed to fully convolutional archi-

tecture. Second, Time pooling, segmentation of frames, position and velocity

of objects in frame is explored with VLN baseline architecture.

• Chapter 6 specifies the datasets and the environments we evaluate our ex-

periments. It also explicates the experiments followed by their results and

comparisons. It also does the comparison with results of state-of-the-art

approaches.

• Chapter 7 encloses the thesis by representing the conclusion with subsequent

limitations and future work.

3





2 Related Work

2.1 Feature Extraction

Prior works on learning to predict videos have investigated different learning meth-

ods. Early researches concentrated on learning specific features. Generally, all

feature learning models can be represented as bipartite network, which maps a set

of latent variables to a set of observable variables[36]. First attempts in the task

of video prediction consisted of detecting Gabor-like feature representations but it

could not tolerate changes in motion, lighting, and other aspects. To achieve invari-

ant representation hierarchical feature extraction were introduced but they could

not extract transformation features. To be able to extract transformation features,

multiple independent groups of hidden variables were represented. One of the ap-

proaches was bilinear models which contained two groups of hidden variables. It

preserved transformation and invariance information. Grimes and Rao[18], based

on the earlier work of Freeman and Tenenbaum [10], proposed an unsupervised

algorithm for learning localized features and their transformations simultaneously

from images. In this algorithm, multiplicative interactions between pixels were

used to represent correlation patterns across multiple images. The drawback of

this architecture was that it could not learn the temporal features but it learns just

shifted set of features over time. Olshausen et al. [23] introduced a completely un-

supervised bilinear model to extract both invariance and transformation features

in natural images temporally. They addressed interpolating among the feature

descriptors coefficients via phase shifting and by conditioning transformed images

on untransformed ones.

Memisevic and Hinton [26] introduced a conditional factorized model with a

single group of hidden variable, where the feature extractors behaved as deter-

ministic functions. It was based on the restricted Boltzmann machine[22], which

addressed modeling the transformation between two successive images based on

the three-way multiplicative interactions which raised a cubic computational or-

der. To reduce the computational order Memisevic and Hinton [26], introduced

sum of factors, each factor could be represented as image filter which could extract

specific transformation features.

Michalski et al.[43] designed a recurrent network based on gated autoencoder, a

5



2 Related Work

bilinear transformation model, to learn transformations specifically rotation angles

between pairs of consecutive images ([36], [26]). To predict next future frames by

learning latent variables in cascading manner, they proposed a bi-linear model of

transformations which were applied to pairs of frames (framet−1, framet) to predict

framet+1. Particularly, by stacking multiple layers of the transformation model,

the PGP architecture learned transforms between transformations[43].

2.2 Architecture Design

The task of video prediction, in case of enough training data and also a reasonable

architecture, can be solved. Therefore researchers instead of dealing with selecting

features, started shifting the paradigm to design the architecture. To this end, we

need to extract features both spatially and temporally and merge them in three

dimension properly.

2.2.1 State of the Art

Different approaches have been explored. Ranzato et al. proposed a baseline for

video prediction inspired by language models [44]. Walker et al. [98] proposed using

variational autoencoder to encode any necessary information that is not available

in the image. Bhattacharyya et al. [75] predicted image boundary extrapolation

of future frames to improve the sharpness of the predictions.

Mathieu et al. [57] proposed gradient-based loss function, as well as a loss func-

tion based on adversarial training [40] for sharper frame predictions. In generative

adversarial training(GAN) [40], using a discriminative network to distinguish be-

tween a sample from a dataset and the result of a generative model, force the

generative model to generate frames as much as close to samples of the dataset.

This method makes the discriminator not be able to discriminate between frames

better than 50% chance. Though the combination of regression and adversarial

losses causes improvement in comparison to regression models which leads to the

mean, still the problem of sticking to one mode of the distribution and disregarding

the other modes exist [66].

Fragkiadaki et al.[102] propose an architecture based on the variational autoen-

coder to learn samples of the model which corresponds to future motion trajectories

of the objects in frame. This approach is beneficial for the models with uncertainty

beyond motion, especially when the number of conditioning frames is little.

Kalchbrenner et al. [87] address the issue of stochasticity, based on PixelCNN

architecture [91]. PixelCNN computes the discrete probability of the raw RGB

pixel values based on the computed probability of its left and up pixels followed

6



2.2 Architecture Design

by a softmax layer. In VPN architecture same as PixelCNN, the authors propose

a probabilistic video model that estimates the discrete joint distribution of the raw

pixel values in a video. The model and the neural architecture reflect the time,

space, and color structure of video tensors and encode it as a four-dimensional

dependency chain [87]. VPN largely solves the blurriness problem by predicting

multimodal distributions over pixel intensities and by sampling from these dis-

tributions conditioned on samples for the neighboring pixels. Downsides of VPN

are that it needs a lot of computational resources, especially at inference time,

and it neither solves the problem of long term predictions nor does it provide an

interpretable intermediate representation of the moving objects.

Finn, goodfellow, and Levine [81] predict object motions instead of predicting

pixels directly. The geometric transformations of objects in the scene are predicted

by using Dynamic Neural Advections (DNAs), and the video pixel value is then

computed under the motion estimates. However, the method is limited to the ap-

plications which require following conditions: relatively simple environment, static

background, and slow moving objects. Using masks for changing image parts both

reduces blurriness and provides a largely explicit representation of the predicted

changes in the shape of geometric transformations which is potentially useful for

other tasks such as object classification, tracking, and localization. However, the

method is limited only to affine transformations and flow fields for constructing

the next frame, thus, for example, complex deformations, illumination changes

and objects moving into view cannot be predicted accurately or not at all.

Villegas et al.[105] decompose motion and content for video sequence predic-

tion. These two architectures are trained simultaneously with one teacher and in

an unsupervised way. The motion prediction architecture contains three convolu-

tional LSTMs to identify local dynamics of frames rather than complicated global

feature tensor encoding motion. For the content prediction they simply propose

convolutional LSTM for the current frame. This architecture achieves state of the

art in real videos. Watters et al. [109] extend objects of frames and maps them to

the list of vectors. By analyzing the list of vectors, motion features are extracted

and then based on that the next frame is predicted.

Cricri et al.[79] proposed video ladder network (VLN) by adding recurrent con-

nections to ladder network [62]. Ladder network extracts latent hidden variables by

lateral connections using semi-supervised architecture. Similar to ladder network,

VLN employs shortcut connections from the input to the output whereby it relieves

the deeper layers from modeling details such as textures, as well as static parts of

the scene. Instead, the deeper layers can expand more model capacity for modeling

the semantic contents of the video. VLN is a fully convolutional encoder-decoder

network, where both the encoder and decoder blocks are feed-forward neural net-

7
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works. To reduce computational efforts, the resolution is reduced when going up

in the model hierarchy. The idea of hierarchy is not new and before was proposed

by Behnke [15] to represent images at multiple abstraction levels. In [15] the image

was passed as input to the architecture and in each level the spatial resolution was

decreased which helped to increase the feature diversity and invariance. It could

help in case of noise representation, low image contrast, partially occluded objects,

and complicated interpretations.

VLN uses residual connections between convolutional layers to improve the re-

sults of predicted frames. Residual connections[85] addresses the problem of degra-

dation in deep neural networks. Degradation problem means though by adding

more layers we expect to get at least as good result as before, the results become

worse. This is because of learning f(x) = 0 is easier for the network than learning

f(x) = x. By representing few stacked layer by H(x) and also hypothesizing that

multiple nonlinear layers can asymptotically solve complicated functions then we

can conclude that it can solve H(x) − x where x denotes the input to the first

layer. If we suppose that added layers play role of identity mapping then residual

learning can be adopted to every few stacked layers.

F (x) = H(x)− x (2.1)

Which is equivalent to

H(x) = F (x) + x (2.2)

Wagner et al. [107] proposed a similar idea to VLN architecture and changed

a feed-forward network to a predictive model using teacher-student [48] approach.

Teacher-student [48] is similar to Buciluǎ et al.[19] approach but uses distilling

method for compression. As mentioned in 3.3 , ensembling methods are set of

classifiers that learns classifying over the dataset independently and then the final

result in the test dataset is the average over the independent weighted classifiers

prediction[14]. This approach though it is very simple, it is computationally quite

expensive and also memory consumptive. Distillation model compress a Deep

CNN in a much smaller network with a reasonable approximation, which results

as same as the original one. The compressed model (student) in teacher-student

approach instead of being trained on the raw data directly, is trained to mimic

the output of the teacher network. Wagner et al.[107] similar to teacher-student

approach trains the network at each layer independently and with different losses

to optimize the weights of the model. Their results represent that the architecture

can learn dynamics of the model.

8



2.2 Architecture Design

2.2.2 Multiscale Recurrent Neural Network

First attempts in multiscale recurrent neural network done by Schmidhuber[5]

and El Hihi and Bengio[9] to deal with the issue of computational and learning

efficiency. They proposed stacking multiple RNNs with lower updating frequency

in upper layers. Schmidhuber introduced a self organizing hierarchical multiscale

structure while El Hihi and Bengio proposed layer-wise updating with a fixed value

but a different rate for different layers[77].

LSTMs[11], most popular RNNs, applies multiscale recurrent neural network

implicitly based on the fact that each hidden layer contains its own forget and

update gate, but this architecture is not hierarchically organized. The clock-

work RNN(CW-RNN) [42] similar to El Hihi and Bengio[9] propose using hard

timescales to resolve this issue in LSTMs. Clockwork architecture [42] deals with

the vanishing problem in ConvLSTM. It proposes partitioning the hidden layer into

separate modules, each processing its input temporally independent. As shown in

figure 2.1, the architecture contains input, output, and hidden layers. Hidden

layers are broken into k independent modules and each of them works with its

own temporal clock Tk. The input layer is connected to all hidden layers and the

connection between hidden layers are from the ones with lower clock rate to the

ones with higher clock rate. module i has a clock period of Ti = 2i−1.

Figure 2.1: Clockwork-RNN Architecture, Source:[42]

This architecture performs better than LSTM but still finding a proper clock

rate is an issue which recently considered by Chung et al. [77]. They propose using

another gate which adaptively learns layer-wise timescale.

9
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2.2.3 Multitask Learning

The advantage of multitask learning in convolutional neural networks is that mul-

tiple tasks lead to better performance with the same input [90]. In general, the

goal of multitask learning(MTL) is to learn related tasks at the same time, hop-

ing the auxiliary tasks benefit each other and improves their results[24]. In MTL

architectures, the auxiliary tasks play the role of inductive bias for each other. In

inductive bias, we want to make the hypotheses space small enough to have reli-

able generalization and large enough to contain the solution the network is trained

for [13]. MTL parameters shared in hidden layers are either soft parameter shar-

ing or hard parameter sharing. In hard parameter sharing[6], the hidden layers

are shared between all tasks, while keeping several task-specific output layers. It

helps to reduce the risk of overfitting. In soft parameter sharing each task has its

own hidden layers but the distance between parameters of layers are regularized

in order to make tasks similar.

Doing the multitask learning implicitly is equivalent to augment more data to

the model, as it learns more generalized features in comparison to just having one

task. In other words, tasks play the role of regularization for each other. In case of

limited data for one task, doing MTL helps the task to learn useful features based

on the other task and helps to distinguish between the noise and features for the

task[103]. The other benefit gained in doing MTL is learning features which are

difficult for one task to be learned but it is easy for the other one to learn it.

One of the recent successful MTL[55] approaches proposes sharing the convo-

lutional layers which forces the model to learn the relation between tasks. The

main problem though with this architecture is that it needs predefined sharing

structure which is not adequate for all computer vision tasks. The other MTL

approach introduced by Lu et al. starts with thin neural network architecture and

dynamically increases it during training. The main issue of this architecture is

that it does not return the optimum architecture.

The main issue with MTL is finding good tasks which can be learned together.

The research done by Alonso and Plank concludes auxiliary tasks with compact

and uniform label distributions returns better results for sequence tagging prob-

lems in Natural language processing(NLP), which has similar results with experi-

ments done by Ruder et al. Limited scope research also represents that main tasks

that quickly plateau with non-plateauing auxiliary tasks return promising results

[101].
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The proposed approaches in [69], [72], [58], and [54] reach state of the art in

semantic segmentation by providing pixel-wise labels. The problem with using

these approaches which returns nearly optimal results for the task of semantic

segmentation is that it does not use the embedded information over time, which is

needed for the task of video segmentation. To gain information temporally, semi-

supervised approaches which propagate labels of annotated frames to the entire

video are proposed [25], [61], [38]. Pavel et al.[60] to do object class segmentation

suggested a recurrent neural network architecture. However, training their pro-

posed architecture was difficult due to vanishing gradient. Furthermore, it could

not deal with large images due to the significant increase of number of parameters.

Siam et al.[96] utilized a fully convolutional network through convolutional gated

recurrent networks to segment frame at time t based on the information in its

preceding frames.
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3 Theoretical Background

3.1 Neural Network

The formal definition of artificial neural network(ANN) is a ”directed graph with

the following properties: a state variable ni is associated with each node i, a

real valued weight wik is associated with each link (ik) between two nodes i and

k, a real valued bias vi is associated with each node i, and a transfer function

fi[nk, wik, vi, (i 6= k)] is defined for each node i, which determines the state of the

node as a function composed of its bias, the weights of incoming links, and the

states of nodes connected to it.”[8]. The network which contains hidden layer(s) in

addition to the input and output layer and bounded and non-constant activation

function is universal approximator function [4]. In this chapter, the principals of

artificial neural network is defined.

3.2 Learning and Backpropagation

Learning in ANNs for a specific task looks for minimum of an objective func-

tion[47]. It sets the neural network’s parameters θ based on the training dataset,

which minimize a cost function J(θ). The cost function measures the performance

which is evaluated on training set and additional regularization terms[83]. The

test and validation dataset are used to make sure that the network is generalized.

They should have the same probability distribution as training dataset.

One of the most used approaches for computing the train loss is binary cross

entropy [57].

Lbce(Y, Ŷ ) = −
∑
i

Ŷilog(Yi) + (1− Ŷi)log(1− Yi) (3.1)

where Yi takes its values in {0, 1} and Ŷ is in range of [0, 1].

Softmax cross entropy is usually used to compute segmentation loss. To compute

cross entropy for softmax function with C classes from c = {1 . . . C} and the correct

label of t = c for the given input z, the multi-class categorical output probability

13



3 Theoretical Background

distribution by the softmax function ζ is defined as

yc = ζ(z)c =
e(zc)∑C
d=1 e

(zd)
for c = {1 . . . C} (3.2)

which can be reformulated to

y =

P (t = 1|z)
...

P (t = C|z)

 =
1∑C

d=1 e
(zd)

e
(z1)

...

e(zC)

 (3.3)

Computing the cost function for the softmax function for the parameters θ based

on likelihood function L is:

argmaxθL(θ|t, z). (3.4)

where the likelihood L(θ|t, z) is equal to compute joint probability of P (t, z|θ)

P (t, z|θ) = P (t|z, θ)P (z|θ) (3.5)

If we suppose that θ is fixed, then:

P (t|z) =
C∏
i=c

ytcc . (3.6)

As maximizing likelihood is equivalent to minimizing log-likelihood, we have:

−log
C∏
i=c

ytcc = −
C∑
i=c

tclog(yc) (3.7)

which is the cross entropy function.

Backpropagation is a method which is used to compute gradient based on the

loss function through recursive application of chain rule with respect to all train-

ing variables of the model. For two inputs x1 and x2 and generating activation

functions y1, y2 and y3, as represented in Figure 3.1, the error E is the difference

between the ground-truth and output of the network y3. It is backpropagated

through the network using the concept of chain-rule.
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3.2 Learning and Backpropagation

Figure 3.1: Backpropagation, Source:[47]

Once the backpropagation is applied and the gradients are computed, a gradient

based optimization method is used to update the weights. The most common

optimizers are the ones with adaptive learning rates. The learning rate is a scalar

which sets the size of the step. RMSProp[33] and Adam[41] are among the most

effective and practical ones. After computing the backward pass we can compute

through the network during forward pass [47].

Learning Paradigms

We have three major learning paradigms, supervised, unsupervised, and semi-

supervised. In supervised learning, the dataset contains features and the preferred

label for each example[83]. The algorithm analyses the training data and learns a

generalized function which infers the correct label for the unseen input data. On

the other hand, in unsupervised learning task, it extracts features and there is no

supervision signal [83]. Semi-supervised learning is supervised learning task which

takes advantage of hidden features extracted with unsupervised learning methods.

Activation Function

A neuron’s function f(x) is the summation of its weighted input functions gi(x)

and the bias b; f(x) = A(
∑

i(wigi(x)) + b) where A is the activation function.

Each neurons activation function represents the presence of a specific feature[83].

The most used activation functions are sigmoid, hyperbolic tangent, ReLU, and

LReLU. If we suppose x as input then

ReLU : f(x) = max(0, x) (3.8)
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LReLU :

{
f(x) if x ¿ 0

ax otherwise; where 0 ≤ a ≤ 1
(3.9)

Sigmoid(x) :
1

1 + e−x
(3.10)

tanh(x) :
ex − e−x

ex + e−x
(3.11)

LReLU and ReLU are the most preferred activation functions.

3.3 Regularization

The goal of the neural network is to solve the problem on not previously seen

data, based on the dataset which is trained on[83], so the network should be able

to generalize well. Regularization techniques are used to avoid overfitting during

training. One of the most used approaches of regularization is the dropout [46],

in which, a specific percentage of the activation functions are set to zero during

training. Dropout is similar to bagging which has k different models and k different

dataset and each model is trained over one specific dataset [83]. Dropout makes the

network learn relevant computational information in multiple activation functions

by setting a set of random nonlinearity functions to zero which causes a more

robust computational graph.

In some cases, batch normalization can also be used as a regularizer, which

obviates applying dropout[49]. Formally, batch normalization for the layers l =

{1 . . . L} is formulated by

z(l) = NB(W (l)h(l−1)) (3.12)

where NB is a component-wise batch normalization

NB(xi) = (xi − µ̂xi)/σ̂xi (3.13)

and h(l)

h(l) = φ(γ(l)(z(l) + β(l))) (3.14)
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3.4 CNN

where β(l) and γ(l) are trainable variables and φ is the activation function [67].

Lreg(x, x
′) = L(x, x′) + λ1w1 + λ2w

2
2 (3.15)

where λ1 and λ2 control the effect of regularizers in the total loss.

Variants of the artificial neural network include Convolutional neural network

(CNN) and Recurrent neural network(RNN).

3.4 CNN

Neurons in a fully-connected layer have full pair-wise connections in adjacent lay-

ers but contain no connection within a layer. Fully-connected layer causes an

increasing number of parameters, which is wasteful.

CNN architecture, unlike fully connected layers, have a 3D volume of neurons:

width, height, and depth. This 3D volume takes advantage of being connected

to small regions of its previous layer, which is called receptive field, but still fully

connected in depth. CNN has three specific hyperparameters; depth, stride and

padding. Depth represents the number of filters which are used to extract different

features in the input. Stride specifies the sliding factor of CNN and padding is

responsible for padding the input volume with zeros around the border, which

gives the advantage of controlling the size of the output volumes. In CNN the

parameter sharing scheme is used to reduce the number of parameters based on

the assumption that if one feature is useful at position (x1, y1), it is also useful at

position (x2, y2). Considering that if all neurons in one depth using same weights

then the forward pass can be interpreted as a convolution of the neuron’s weights

with the input volume[83]. Dilated Convolution[71] is a specific type of convolution

which has one extra hyperparameter named dilation. Dilation represents space

between each cell within a filter. Formally, if we suppose a discrete function

F : Z2 → R and k : Ωr → R , where Ωr = [−lr, lr]2 ∩Z2, is a discrete filter of size

(lr + 1)2, then the discrete convolution ∗l is defined as

(F ∗l k)(p) =
∑
s+lt=p

F (s)k(t) (3.16)

In this thesis, we also used another specific type of convolution named 1 × 1

Convolution proposed by Lin et al. [35]. In CNN as we use 3D volumes, such

a filter extend through the full depth of the input volume. The method can be

applied to change the number of channels to any arbitrary number of channels.
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3.5 RNN

In many cases, we have to deal with sequential data. The RNNs[2] are designed

to extract features temporally. In the RNNs, the parameters are shared [83]. Due

to feedback connections temporal features can be stored in the form of activation

functions. A simple RNN is represented in Figure 3.2.

Figure 3.2: RNN Structure, Source:Nature

Where st contains the summary of past sequence of inputs, up to time t. U , V ,

and W are weights between input and the state, state and the output, and two

hidden states respectively.

To backpropagate in RNN, the algorithm of backpropagation through time(BPTT)

is applied, which computes the derivatives with respect to weights of the network

overtime.

Figure 3.3: BPTT Structure, Source: [110]

The main problem with basic RNNs is that the weights either vanish or explode

very fast[11]. In case of explosion, weights oscillate and in case of vanishing,

convergence either happens very slowly or never happens. To deal with these issues

different approaches were proposed. Echo state networks[21] propose setting the

recurrent and input weights W and U slightly close to 1 such that the recurrent

hidden units capture the history of the past inputs and just learn the output

weights V . The other proposed method is long delays which does BPTT every

d > 1 steps which delays the problem for dT times. The most common method
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3.5 RNN

which is used recently is based on the gating mechanism. long short term memory

(LSTM) is one of the most important gating RNNs.

3.5.1 Fully Connected LSTM

In fully connected LSTM(FC-LSTM)[34], not only the hidden state was used but

also the cell state was proposed, which helps the network to deal with vanishing

or exploding problem.

In the first step, the forget gate decides how much of the data should be elimi-

nated from the cell state based on the results of sigmoid activation function over

the input xt and history ht. It outputs a number between 0 and 1. The more the

value is close to 1 the more information in the cell state is kept.

In the second step, the FC-LSTM decides about the new information which

should be augmented to the cell state. This phase follows two parts in parallel.

The first part contains a sigmoid layer called input gate layer which decides about

the values we update and the second part is hyperbolic tangent layer which creates

new candidate values that can be augmented to the state. Finally the two steps

are merged based on Hadamard product.

Finally, the LSTM needs to decide which parts of cell state should be returned

via the output gate which is the sigmoid activation function applied over input xt
and hidden state ht−1. Also, hyperbolic tangent is applied over the cell state to

push the cell state in the range of −1 to 1. Then the output of hidden state will

be the Hadamard product of the output gate and the output of hyperbolic tangent

layer. The formulation of FC-LSTM is:

it = σ(xtWxi + ht−1Whi + bi), (3.17)

ft = σ(xtWxf + ht−1Whf + bf ), (3.18)

c̃t = tanh(xtWxc̃ + ht−1Whc̃ + bc̃), (3.19)

ct = ftct−1 + itc̃t, (3.20)

ot = σ(xtWxo + ht−1Who +Wcoct + bo), (3.21)

ht = ot tanh ct (3.22)

it, ft, and ot are the input gate, forget gate and the output gate at time t respec-

tively. The hidden state and the cell state are represented as ct and ht respectively.

ht−1 is the previous hidden state at time t − 1. Wxi, Wxf , Wxo, Whi, Whf , Who,

and Wxc̃ are convolutional kernel tensors. bi, bf , bo, and bc̃ are bias terms. σ and

tanh are sigmoid and tangent hyperbolic activation functions.
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Figure 3.4: LSTM Architecture, Source:[111]

3.5.2 Convolutional LSTM

Convolutional LSTM [70] proposed by Xingjian et al., has same structure as FC-

LSTM [34] except that the main problem of not encoding information over space

is solved by replacing inputs in three dimensions where the second and third di-

mensions are rows and columns instead of full connections between input-to-state

and state-to-state transitions. Therefore, the formulation becomes as

it = σ(xt ∗Wxi + ht−1 ∗Whi + bi), (3.23)

ft = σ(xt ∗Wxf + ht−1 ∗Whf + bf ), (3.24)

ot = σ(xt ∗Wxo + ht−1 ∗Who + bo), (3.25)

c̃t = tanh(xt ∗Wxc̃ + ht−1 ∗Whc̃ + bc̃), (3.26)

ct = ft � ct−1 + it � c̃t, (3.27)

ht = ot � tanh(ct) (3.28)

which allows the network to preserve the spatial information. � is the element-wise

multiplication and ∗ is the convolution operator.

3.6 Autoencoder

An autoencoder is a kind of ANN which learns to copy its input to its output.

It can be interpreted as two networks; encoder network and the decoder network.

Formally, the deterministic autoencoder is

h = f(x) (3.29)

r = g(h) (3.30)

where the hidden layer h represents the coded input[83] and r represents the

reconstruction. The method can be expanded to stochastic mappings for the
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3.6 Autoencoder

encoder and the decoder part pencoder(h|x) and pdecoder(x|h). The loss function, L,

is defined as

L(x, g(f(x))) (3.31)

Variants of autoencoders include denoising autoencoder and variational autoen-

coder.

The input to denoising autoencoder is corrupted by some noise and represented

by x̃. Therefore the loss function is defined as

L(x, g(f(x̃))) (3.32)

Adding the noise makes f and g to learn the structure of pdata(x)[83].

Variational autoencoder(VAE) is another type of autoencoder which is used to

regularize autoencoder by imposing an arbitrary prior on the latent representation

of the autoencoder [56]. Basically VAE wants to find a solution for p(z|x). To

this end, the objective function can be represented as minimizing Kullback–Leibler

divergence between q(z) and p(z|x).
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4 Approach

We have chosen the VLN architecture as a starting point for our research. VLN has

a competitive result with respect to VPN which is the state of the art architecture

for the Moving MNIST dataset but with reduced a number of parameters. VLN

learns to predict frames by extracting both spatial and temporal features.

We also investigated PGP architecture. PGP relies on a bi-linear model which

learns explicit transformations. The advantage of PGP in comparison to other

spatiotemporal prediction models within the field of deep learning is that hidden

states can be monitored[43].

In the first two subsections, the complete PGP and VLN models are presented

respectively. In the next two subsections the Conv-PGP and VLN improvements

are described.

4.1 PGP

4.1.1 PGP Architecture

PGP is designed based on the fact that two temporally consecutive frames can be

interpreted as a linear transformation of each other. The linear transformation,

L, between two frames xt and xt+1 can be represented as:

xt+1 = Lxt (4.1)

By using gated autoencoder(GAE) as a bi-linear model, the layer of mapping units

m, which encodes transformation can be described as:

m = σ(W (Uxt · V xt+1)) (4.2)

where W , U , and V are weight matrices. U and V weight matrices contain the

invariant subspace transformation class while W matrix makes it independent of

the absolute angles in the subspaces. The sigmoid function σ, is used as non-

linearity function. Based on this setup the frame xt+1 can be reconstructed using
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the m latent variable and frame xt

x̂t+1 = V T (Uxt ·W Tm) (4.3)

The PGP model is expanded to learn higher order relational features by com-

puting the layered order mappings in a pyramidal manner, as represented in Figure

4.1. For instance, to infer second-order relational features after computing first-

order mappings, we use the following equations:

m
(t−2:t−1)
1 = σ(W1(U1x

(t−1) · V1x(t−2))) (4.4)

m
(t−1:t)
1 = σ(W1(U1x

(t) · V1x(t−1))) (4.5)

m
(t−2:t)
2 = σ(W2(U2m

(t−2:t−1)
1 · V2m(t−1:t)

1 )) (4.6)

Where Wi, Ui, and Vi are weight matrices of ith layer, m
(t−2:t)
2 is the mapping unit

between m
(t−1:t)
1 and m

(t−2:t−1)
1 , m

(t−1:t)
1 is the mapping unit between framet−1

and framet, and m
(t−2:t−1)
1 is the mapping unit between framet−2 and framet−1.

This expansion relaxes the assumption of constancy of the transformation between

frames.

Figure 4.1: PGP architecture, Source: [43]

After extracting features in each layer based on the architecture of relational

autoencoder(RAE)[36], which is explained in detail afterward, we use the extracted

features to predict the future frames. The inference-prediction equations are:

m̂
(t:t+1)
l = σ(Wl(Ulx

(t) · Vlx(t−1))) (4.7)

x̂(t+1) = V T
l (Ulx

(t) ·W Tm
(t,t+1)
l ) (4.8)

where l represents the layer.
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Relational Autoencoder

RAE[36] learns transformation between temporally consequent frames. The idea

of RAE is based on multiplicative interactions. Multiplicative interactions learn re-

lation between frames independent of the frame content. For two one-dimensional

binary images x and y, every component of the outer product between them repre-

sents one type of transformation and act like AND-gates. In multiplicative inter-

action any of the components can be computed using the other two components.

In the following, we show that latent variables in RAE learn subspace-rotations

after being trained over temporally consecutive frames.

In gated autoencoders[], latent variable z learns to transform two inputs x and

y into the other by,

zk =
∑
ji

wijkxiyj (4.9)

yj =
∑
ki

wijkxizk (4.10)

The above equation can be reformulated to

y = L(z)x (4.11)

Lij(z) =
∑
k

wijkzk (4.12)

If L is orthogonal, the eigen-decomposition of L becomes complex where the eigen-

values are 1. Due to the shared variables, which means shared eigenspaces, the

only way that two transformations differ is the rotation angles between eigenvalues

in shared eigenspaces. Thus, with a single set of features, multiple transformations

are represented. For each eigenvector v and rotation angle θ, vθ is:

vθ = eiθv (4.13)

By applying weighted sum over rotation detectors to represent a single transfor-

mation and breaking down the imaginary and real part for each eigenvector and

represent them by U and V respectively, the representation of the transformation

for images x and y becomes:

t = W T (UTx) · (V Ty) (4.14)

One of the main problems of RAE is that the number of parameters in wijk is

in cubic order (O(nx × ny × nz) where ni is number of pixels in input i), leading
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M
W1 W2

ft

ft+1

ft

f̂t+1

U

V

U

V

Figure 4.2: RAE architecture

to large memory consumption for input images. To overcome this drawback the

parameter tensor is factorized to inner multiplication of three components wxif ,

wyjf , w
z
kf from matrices wxI×F , wyJ×F , and wzK×F respectively, where I = J is the

input size and K and F is the number of latent variable and number of filters,

respectively.

wijk =
F∑
f=1

wxifw
y
jfw

z
kf (4.15)

The model uses the symmetric reconstruction loss to train in an unsupervised

fashion. Given two input images x and y, the loss L is:

L = (x− x̂)2 + (y − ŷ)2 (4.16)

4.1.2 Convolutional PGP

The fully connected PGP architecture contains a significant number of parameters.

It also abstracts away the spatial features[]. To deal with these issues, we modified

the fully connected PGP to the fully convolutional PGP architecture similar to

[50]. In convolutional PGP, the same setup as its equivalent fully connected version

is used except that instead of multiplication, convolution is applied. The fully

convolutional PGP architecture is represented in Figure 4.3.
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Figure 4.3: Conv-PGP Architecture
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4.1.3 Implementation

We implemented Conv-PGP and PGP architectures in Python both with Ten-

sorflow and Pytorch libraries. We ran the model over four NVIDIA TITAN X

graphics card in parallel. We used multi-threading approach for the implementa-

tion. It took two days to train the network.

To initialize weights in the fully connected PGP and Conv-PGP, pretraining was

required in the reconstruction phase. Furthermore, to stabilize learning, instead of

predicting ten frames simultaneously we iteratively increased the number of pre-

dicted frames. The input data was a 5D tensor of size: (batchSize×sequenceLength×
frameWidth×frameHeight×frameChannel). The batchsize of length 20 was passed

as an input to the network architecture. We used 15 frames in each sequence, and

each frame was 64 × 64 × 1. The first corrupted five frames with Gaussian noise

in each sequence were used as seed in the reconstruction phase. Similar to the

original PGP architecture sigmoid function was used for the non-linearity after

mapping unit. To reduce blurriness in frames, we also used sigmoid function be-

fore outputting the reconstructed and predicted frames. We utilized the MSE loss

during the training phase in the reconstruction and prediction frames with respect

to their equivalent ground-truth frames. For the Moving MNIST dataset we uti-

lized sigmoid cross entropy in test mode to make our results comparable with VLN

and its improvements.

In PGP architecture as well as Conv-PGP architecture the first five frames

were reconstructed using RAE and Conv-RAE respectively. By using the learned

variables in each layer during the reconstruction phase and copying the topmost

mapping unit variables, as shown in figure 4.1, the predicted frames were recon-

structed by predicting from the topmost layer and continuing it to the bottommost

layer.

As explained in section 3.2, in our experiments we used RMSProp[33] optimizer

with learning rate of 10−4 both for reconstruction and predictive training instead

of using Stochastic Gradient Descent (SGD), which is used in the original PGP

architecture[43].

The parameters of PGP and Conv-PGP architectures are represented in table

4.1 and 4.2 respectively.

Parameters Layer1 layer2 layer3 layer4

m size 1000 500 200 100
U & V size 500 250 100 50

Table 4.1: PGP Parameters
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Parameters Layer1 layer2 layer3

number of features 20 10 5
kernel size 11 5 3

Table 4.2: Conv-PGP Parameters
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4.2 VLN

4.2.1 VLN Architecture

VLN[79] is proposed for the task of video prediction based on the architecture of

ladder network.

Ladder Network: Ladder network[67] is a deep unsupervised architecture

that contains lateral shortcut connections. The lateral shortcut connections which

connect encoder part to decoder part relieve the upper layers from learning details

in lower layers, therefore the upper layers will be able to learn more abstract

features. In this architecture, the cost function is the aggregation of independent

cost functions applied to each layer. The loss in each layer is the difference between

the clean path of the encoder and its correspondent decoder.

The main goal of ladder network is to design an unsupervised architecture to take

advantage of the large unlabeled data that is available. To make the ladder network

semi-supervised, the unsupervised architecture should be augmented to supervised

one in the fashion that it extracts features related to supervised architecture and

discards the non-related features.

In general, many unsupervised learning methods can be reformulated as recon-

structing input x(t) by utilizing latent variables s(t).

x(t) = g(s(t); ξ) + n(t) (4.17)

where ξ is the parameters of mapping function g and n(t) is the noise. The equation

can be reformulated to

px(x(t)|s(t), ξ) = pn(x(t)− g(s(t); ξ)) (4.18)

where pn represents the probability density function of the noise n(t). px represents

the probability density function of being x(t) with respect to s(t) and ξ. The main

problem with this setup is that it cannot discard the information due to the increase

of reconstruction error. To deal with this problem, a hierarchical latent variable

was proposed [67]. The usage of the hierarchical latent variable introduced two

new problems which are not easy to deal with. We not only need to deal with

probabilistic methods but also need to do layer-wise training which leads to slow

training.

Concerning the discussed issues, ladder network architecture is proposed. The

method is similar to autoencoders except that it utilizes lateral connections. Lat-

eral connections make the reconstruction part of the architecture not only to be

function of the top-down flow of information but also a function of encoder part
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flow of information.

Augmenting lateral connections require a new loss function and the difference

between the reconstructed x̂ and input x cannot be used. The routine loss, forces

the lateral connection in the first layer to learn directly from the input and does

not let the error goes through all the layers which leads to a worse situation. This

problem does not exist in simple autoencoders as the error goes through all the

layers in a hierarchical way though it makes the training very slow. To solve this

issue, the method of distributed learning rather than learning from a single error

term was proposed.

Rasmus et al.[62] extends the ladder network architecture to semi-supervised

architecture by augmenting supervision to the model. The loss is the summation

of supervised and unsupervised cost functions which is minimized by the back-

propagation algorithm.(Figure 4.4).

Figure 4.4: Ladder Network architecture, Source:[ln]

The supervised cost function is

Cc = −1/N
N∑

(n=1)

logP (ŷ = t(n)|x(n)) (4.19)

where t(n) is the target, ŷ is the noisy output, and x(n) is the input. The cost can

be interpreted as the average negative log probability of ŷ and t(n) due to given

input x.

The unsupervised cost in the decoder part of the architecture is to denoise

the latent variable z̃ = z + n. z and n are the clean latent variables with the

variance of Gaussian distribution σ2
z and σ2

n respectively. Notifying that latent

variables z need normalization as otherwise, the network has an obvious solution
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of z = ẑ = constant. Then the total cost function becomes:

Ctotal =
L∑
l=0

λl||z(l) − ẑ(l)B N ||
2 + Cc. (4.20)

In VLN architecture three independent blocks are used; encoder block, decoder

block, and ConvLSTM block.

The encoder block contains two dilated convolution layers and one strided con-

volution layer, followed by LReLU activation function and batch normalization.

Dilated convolution as explained in chapter 3, is a way of increasing receptive view

of the network exponentially without loss of resolution or coverage[71]. The batch

normalization is needed for two reasons; the first reason is the speed up in the

convergence rate [49] and the second reason is to discourage the network from the

trivial solution where the encoder outputs content value as this is the easiest one

to denoise.

The batch normalizations in encoder blocks are followed by LReLU activation

function and strided convolution is followed by ReLU activation function.

In video ladder network this residual connection helps removing loss computing

in each layer like ladder network architecture.

The decoder block contains one upsampling layer followed by two convolution

layers. To make the training fast, two batch normalization layers are added. Same

as encoder block, the LReLU activation function is used after batch normalization.

Same as encoder blocks, all decoder blocks have residual connections to avoid

degradation problem.

The third block proposed in this article is convolutional LSTM.

Finally in the decoder part of the architecture the output of the blocks hlt, z
l
t

and the upper decoder layer z̃l+1
t+1, are summed up together as

z̃lt+1 = LReLU((LReLU((z̃l+1
t+1) ∗W l

h), z
l
t) ∗W l

z) (4.21)

Where (., .) denotes channel-wise concatenation(Figure 4.5).
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Figure 4.5: VLN architecture

The loss function used to measure the error in this architecture is sigmoid cross

entropy [ 3.2].

4.2.2 VLN Improvements

To improve the results of the predicted frames in VLN architecture we explored the

semi-supervised VLN by augmenting the velocity and position of the two digits

as well as making the predicted frames object level by applying the semantic

segmentation. Furthermore, we made use of temporal hierarchy and explored the

effect of the backpropagation with coarser time steps.

The VLN architecture includes three Conv-LSTM blocks. The upper blocks of

Conv-LSTMs extract more abstract features than the lower blocks. This leads

to a slower rate of evolution between consecutive frames in the topmost Conv-

LSTM. Due to the similarity of the consecutive frames in the topmost Conv-

LSTM, the temporal backpropagation with coarser time steps can be applied.

The temporal pooling helps in extracting more features over time which leads to
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Figure 4.6: Architecture of improved VLN

a better comprehension of the video. The more comprehensive information over

the video leads to a better predicted frames.

The main problem with the current methods of video prediction is that they

are semantically uninterpretable. To interpret the predicted frames we utilized

the task of semantic segmentation. Both prediction and segmentation can be

regarded as auxiliary tasks to each other. We applied the segmentation after the

second decoder block extended with two more decoder modules. The augmented

decoder modules are similar to the decoder block with a small change that just the

first module does the upsampling. The softmax cross entropy3.2 loss was applied

to compute segmentation.

Furthermore, To explore whether the network can extract the velocity and po-

sition of the objects in the frame, we made the fully unsupervised architecture

of VLN supervised. We trained the VLN architecture by explicitly applying the

velocity and position of the two digits after the first decoder block. To this end,

we increased the number of input channels to three by supplying mesh grid to the

input. The MSE loss was applied. The architecture is represented in Figure 4.6.

In each iteration, we minimized the summation of the three losses.

4.2.3 Implementation

We used Python and specifically Tensorflow library to implement the VLN archi-

tecture and all its extensions. The models were run over four NVIDIA TITAN X

graphic cards. It took two days to train the network.

The VLN architecture contains three encoder and three decoder blocks with 28,

58, and 90 channels respectively. The Conv-LSTMs also contain the same number
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4.2 VLN

of channels 28, 58, and 90 respectively. Each encoder block contains two dilated

convolutional layers with the kernel size of (3, 3) and dilation rates of 1, 2, 2, 4, 4, 8.

The decoder blocks also contain two convolutional layers with no dilation. All

encoder blocks contain element-wise sum of skip connections followed by strided

convolution and ReLU activation function. In each decoder block we have an up-

sampling layer followed by batch normalization and LReLU activation function.

The architecture is represented in Figure 4.7.
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Figure 4.7: The detailed VLN architecture

To apply the idea of time pooling in the topmost Conv-LSTM, we updated the

previous hidden state values in the case when the frame number is a multiple of

the time-pooling step and kept its previous hidden state otherwise.

For the task of segmentation, two segmentation blocks with 58 channels each,

were inserted into the architecture. The segmentation blocks similar to the decoder

blocks contain two convolutional layers with no dilation. In the first segmentation

block, we have an up-sampling layer while in the other block it is just a convolution

layer. Each convolution is followed by batch normalization and LReLU activation

function.

To apply the position and the velocity of the digits after the first decoder block,
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we extended the input dimension by augmenting Numpy[99] mesh grid to the

input. A convolutional layer after the first decoder block with stride (2, 2) was

applied.
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5 Evaluation and Results

5.1 Dataset

We test our architectures on moving MNIST dataset[64]. We also did the sanity

check of the PGP architecture using bouncing ball dataset[43].

5.1.1 Moving MNIST dataset

Each video in moving MNIST dataset contains 20 frames with two digits moving

inside a 64 × 64 patch. Digits chosen randomly from the training set and placed

initially at random locations inside the patch with random velocity. The digits

bounced-off the edges of the 64 × 64 frame and overlapped if they were in the

same location (Figure 5.1).

Figure 5.1: Moving MNIST dataset

5.1.2 Bouncing Ball dataset

The bouncing ball dataset contains sequences generated in real time. Each se-

quence contains 20 frames, each containing 2 balls interacting in a box of size

64 × 64 × 1 pixels. The radius for the balls is r = 1. When the balls bounce the

wall or bounce each other their velocity mirrors. One sequence is represented in

Figure 5.2.

Figure 5.2: Bouncing ball dataset
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5.2 PGP Results

In primary tests, PGP and Conv-PGP architectures have been applied to bouncing

ball dataset and their results were compared After reproducing the result of the

article for bouncing ball dataset, the convolutional version of PGP architecture

was evaluated on Moving MNIST dataset to compare its results with the VLN

architecture and its improvements.

5.2.1 Original PGP for Bouncing Ball Dataset

The results of the original PGP for bouncing ball dataset were reproduced with

five seed frames and ten predicted frames. The entire 64×64 frame is passed to the

fully connected architecture, leading to significant number of parameters of 6M .

The results are represented in Figure 5.6a. The model generating the sequences

uses the architecture 4.1 and parameters in table 4.1. The input data during both

the reconstruction and prediction phase was corrupted with Gaussian noise before

being passed to the network architecture.

To eliminate the blurriness of the frames, we applied nonlinearity function be-

fore outputting both the reconstructed and the predicted frames. We conducted

the experiment with the sigmoid nonlinearity function. In the original architecture

[43] sigmoid nonlinearity was also applied after the mapping unit m. We replaced

the sigmoid function with ReLU and LReLU nonlinearities to test if sparse ac-

tivations would improve the results. Neither of the nonlinearity functions could

improve the results. It could be because of firing the mapping units leads to more

information loss in decoder part of the architecture, while in the sigmoid version

of the architecture fewer mapping units are fired and thus the decoder can access

and extract more information about transformation.

The value of MSE loss for the bouncing ball test dataset was 0.001. Pretrain-

ing model with the MSE loss on reconstruction phase during the training steps

improved the performance of the fully-connected model as well as increasing the

number of the predicted frames instead of predicting all ten frames at once. Apply-

ing noise to the input during reconstruction and predictive phase during training

helped as well.
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5.2 PGP Results

5.2.2 Conv-PGP for Bouncing Ball Dataset

The output results of Conv-PGP for bouncing ball dataset is represented in Figure

5.6b. The results are competitive with respect to the original PGP but with 0.005%

of the total number of parameters. The filter size of W in Conv-PGP architecture

is 1 × 1 with 20 number of channels. The weight parameters U and V have the

kernel sizes of 11, 5, and 3 with 20, 15, and 10 number of channels from the

bottommost layer to the topmost one. Similar to the original PGP, it consists

of pretraining in reconstruction phase as well as inferring phase. Furthermore,

same as its equivalent PGP architecture number of the predicted frames increased

iteratively and the next ten frames are predicted.

The output result of each layer is represented in Figures 5.3 to 5.5 respectively.

The first experiments were conducted with a one-layer Conv-PGP. The model

consisted of 20 filters of size 11 × 11 and 20 mapping units of size 7 × 7. With

three layers of Conv-PGP architecture the network could learn the transformation

as well as the boarder and the balls did not disappear. The sequence in figure

5.6b shows a predicted series of a network with parameters from Table 4.2. The

network was trained on 10-step prediction and seeded with the first 5 frames from

a previously unseen test dataset.

The experiments conducted with datasets containing balls of different sizes. The

large balls with radius two although could learn the transformation from the seed

frames, could not predict the frames. Reducing the size of the radius to one let

the network learns the transformation and generalize it to predicted frames. The

model was trained to minimize the predictive error for the next ten predicted

frames as well as the five seed reconstructed frames utilizing the MSE loss.

Figure 5.3: First layer
output of Bouncing Ball

Figure 5.4: Second layer
output of Bouncing Ball

Figure 5.5: Third layer
output of Bouncing Ball

5.2.3 Conv-PGP with Moving MNIST dataset

To test functionality of Conv-PGP with respect to VLN and its improvements,

we produced the results for Moving MNIST dataset. Furthermore, to make the

results comparable BCE test loss was applied instead of the MSE test loss. The

hyperparameters of Conv-PGP are represented in table 4.2. Conv-PGP could not

return competitive results with respect to VLN and its improvements over Moving

MNIST dataset. It is due to the fact that PGP and Conv-PGP architectures are
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5 Evaluation and Results

(a) Original PGP (b) Conv-PGP

Figure 5.6: The first five frames are reconstructed frames followed by ten pre-
dicted frames on the bouncing ball test dataset

designed to learn transformation and they cannot extract spatial features as good

as VLN and its extensions. The results of Conv-PGP are represented in Figure

5.7. The first five frames are reconstructed frames and the next ten frames are the

predicted ones. As it is represented in Figure 5.7, Conv-PGP can completely learn

the transformation but it cannot completely extract the spatial information.
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5.2 PGP Results

Figure 5.7: Conv-PGP Moving MNIST Results; The first five frames are the
reconstructed frames and the next ten frames are the predicted ones
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5 Evaluation and Results

5.2.4 Analysis

The PGP architecture solves the vanishing/exploding problem during backpropa-

gation due to orthogonality of the weights to each other[43].

Furthermore, in contrast to other spatiotemporal architectures, the output fea-

tures of each layer can be visualized.

Moreover, the higher order relational features in this architecture can be inter-

preted as velocity for the first layer, accelaration for the second layer, etc. This

interpretation arises when one thinks of the first layer of the architecture as first-

order Taylor approximation of the input sequence. Thus, the second layer becomes

the second-order Taylor approximation of the input sequence and so on. There-

fore, the hidden representations model the first, second, and third derivitives of

the input with respect to time [43].

One major drawback of the PGP architecture is that it cannot be extended

to large frames.This architecture is fully connected and therefore the number of

parameters grows significantly. For our experiments with five seed frames and ten

predicted frames over bouncing ball dataset with four layers of backpropagation,

the number of parameters were 6M . To deal with this issue, we modified the

original PGP to the fully convolutional PGP architecture. The number of param-

eters in Conv-PGP architecture is 60K, which is reduced by a factor of 0.01 while

competitive MSE loss results with respect to its equivalent fully connected version

is returned.

The PGP architecture does not extract features spatially and abstracts away the

image content. Although conv-PGP solves this issue to some extent still neither

of them can produce competitive results with respect to VLN and its extensions.

Also, PGP and Conv-PGP architectures neither can be generalized to generic

transformations [97], nor they can work well with novel environments [39].
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5.3 VLN Results

5.3.1 Original VLN

We implemented and reproduced the results of VLN. It backpropagates through

time for ten backpropagating time steps. The results are represented in Figure

5.12.

Figure 5.8: VLN Results on the Moving MNIST test dataset
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5.3.2 VLN Result with coarser timesteps

In the topmost ConvLSTM, we changed the time pooling to backpropagate in

coarser steps of 2 and 3 with 5 backpropagation time steps. In neither of them it

could improve the results. Modifying the backpropagation time step to ten and the

time pooling step to two improved the results. To make the results comparable,

we conducted the experiments with the backpropagation time step of ten and the

time pooling step of one. The reasons of the achieved results are discussed in

section 5.3.5. Figure 5.12 represents the results of the backpropagation time step

of ten and the time pooling step of two.

Figure 5.9: Coarser VLN Results on the Moving MNIST test dataset
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5.3.3 VLN with the task of Segmentation

The segmentation of each frame is applied after the second decoder block of the

VLN architecture. The predicted frames and the segmented frames are represented

in Figures 5.10 and 5.11 respectively. The predicted frames are competitive to the

original VLN-ResNet.

Figure 5.10: VLN-Seg Results on the Moving MNIST test dataset
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(a) First sequence (b) Second sequence

(c) Third sequence (d) Fourth sequence

(e) Fifth sequence

Figure 5.11: Ten predicted segmentation frames on the Moving MNIST test
dataset; Frame ten is the most left in each sequence.
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5.3.4 VLN, Segmentation with Velocity and Position of both

digits

By applying the velocity and positions of the digits after the first decoder, the

results slightly improved with respect to VLN-Seg. Figure 5.12 and 5.13 represent

the results of prediction and segmentation respectively.

Figure 5.12: VLN-Seg with velocity and position of the digits on the Moving
MNIST test dataset
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(a) First sequence (b) Second sequence

(c) Third sequence (d) Fourth sequence

(e) Fifth sequence

Figure 5.13: Ten predicted segmentation frames on the Moving MNIST test
dataset; Frame ten is the most right in each sequence.
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5.3.5 Analysis

The VLN architecture returns competitive results with respect to VPN with 1.3M

parameters which is 3% of the total number of parameters in VPN architecture.

As mentioned before, VPN returns a near-optimal result for the Moving MNIST

dataset using binary cross entropy loss. The VLN utilizes both the skip connections

as well as the lateral connections. The lateral connections in the VLN architecture

allows the upper layers of the VLN architecture to extract more abstract features

resulting in better prediction frames.

Increasing the number of backpropagation steps from five-time steps to ten-

time steps during training in Conv-LSTMs of the VLN architecture leads to a

better result due to more temporal feature extractions. Furthermore, changing

the pooling time step in the top-most Conv-LSTM improved the results with

respect to specific hyper parameters. The evolution between consecutive frames

in the topmost Conv-LSTM is slow and thus time pooling can be applied. The

time-pooling method leads to more backpropagation time steps and therefore more

temporal information extraction and consequently better predicted frames.

We conducted the experiment with various hyper-parameters. The primary tests

were done with pooling time steps of two and three by backpropagating through

time using five-time steps. In neither of them the results were improved. One

possible explanation could be that adapting the architecture to learn different

coarse time in different iterations would be difficult for the network. To deal with

this problem we modified the backpropagation timestep and pooling timestep for

the topmost Conv-LSTM to ten and two respectively. The reason for selecting

these hyper parameters was that ten is divisible by two which relieves the network

to adapt itself with different pooling timesteps. The results were improved with

respect to VLN with backpropagation timestep and pooling timestep of ten and

one respectively. The positive aspect of this experiment is that it improved the

result without increasing the number of parameters. We also did the experiment

with pooling timestep not only for the topmost Conv-LSTM but also for the middle

one. We selected four and two as the hyper parameters for the topmost one and the

middle one respectively. We set the backpropagation time step to twenty. These

sets of hyper parameters made the results worse. The reason could be that the

Conv-LSTMs skip too much information temporally. One training criteria with

potential improvements for dealing with this issue is to connect the Conv-LSTMs

from the bottommost Conv-LSTM to the topmost one. It makes the upper Conv-

LSTMs have temporal information of the skipped previous frames while extracting

more temporal features. Though, the downside of this experiment could be the

growth of the number of parameters.
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Figure 5.14: Test-set loss of VLN improvements

To make the results of the predicted frames semantically object level inter-

pretable, we applied the task of semantic segmentation after the second decoder

block. We utilized the softmax cross entropy to train the network. The primary

tests were conducted with one segmentation block after the second decoder block.

Though it could return a reasonable results just for the task of segmentation, the

two tasks of segmentation and prediction could not collaborate with each other. We

did several experiments to deal with this issue. The first experiment was to double

the number of channels in the second Conv-LSTM block but it could not improve

the results reasonably. One possible explanation could be that the common part

between the two architectures extracted the features which could be shared among

the two tasks. In the second experiment we augmented one more segmented block

after the second decoder block. This experiment could return reasonable results

for both architectures. The auxiliary task of semantic segmentation could work

with the VLN architecture. The predicted frames were competitive with respect

to its equivalent VLN architecture.

Furthermore, deploying position and velocity of the digits to the VLN-Seg ar-

chitecture could help to improve the result with respect to VLN-Seg architecture.

This represents that the network could not extract these features by itself. So

explicitly feeding this information to the architecture improved the results of the

predicted frames.
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5.4 Conclusion

Theoretically, the minimum possible achievable result for predicting the next ten

frames on the Moving MNIST dataset using the metric of sigmoid cross entropy is

86.5 [87]. The results of the conducted experiments are presented and compared

in table 5.1.

Model Prediction Test loss #Parameters

conv-LSTM (Shi et al.) 367.1 7.6M
VPN-BL (Kalchbrenner et al.) 110.1 30M
VPN (Kalchbrenner et al.) 87.6 30M
VLN-ResNet-BL (Cricri et al.) 187.7 1.3M
VLN-ResNet-bptt5-1,1,3 194.8 1.3M
VLN-ResNet-bptt5-1,1,2 191.3 1.3M
VLN-ResNet-bptt10-1,1,1 184 1.3M
VLN-ResNet-bptt10-1,1,2 173.1 1.3M
VLN-ResNet-bptt10-1,1,3 191.2 1.3M
VLN-ResNet-bptt10-1,1,2-Seg. 194.3 1.5M
VLN-ResNet-bptt10-1,1,2-Seg.-Vel.&Pos. 191.15 1.5M
Conv-PGP 409.3 35K

Table 5.1: Results on Moving MNIST test dataset

The segmentation results on test dataset in the last two experiments in table

5.1 using softmax cross entropy are 0.09 and 0.08 respectively.
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6 Conclusion

To conclude the results of our work, first we summarise the contributions of this

thesis, then we discuss known limitations, and, finally, we present possibilities for

the future work.

6.1 Summary

In this thesis the prediction of the next frames over the synthetic datasets has

been investigated. The fully convolutional version of the PGP architecture and

the temporal hierarchy and the semantically interpretable version of the VLN

are proposed. The proposed methods have been evaluated during series of ex-

periments and their performance were compared against several video prediction

architectures.

In order to extract more features temporally we proposed time pooling in the

topmost Conv-LSTM. Also to semantically interpret the predicted frames, we ap-

plied multitask learning to the VLN architecture with the task of semantic seg-

mentation.

Furthermore, we explored the PGP architecture. This architecture extracts

transformation features temporally but in contrast to RNNs the extracted features

are transparent. We proposed its equivalent fully convolutional architecture which

has 1% of the total number of parameters of the original PGP.

6.2 Limitations and Future Work

We explored the task of video prediction for the application of human robot an-

ticipation. We utilized the VLN and PGP architectures as baseline. The VLN

architecture uses Conv-LSTMs to extract features temporally. The extracted fea-

tures of Conv-LSTMs are not transparent. On the other hand, the architecture of

PGP is designed to extract transformation features but not the content features.

However, modeling both structure and dynamics of the scene in one architecture

leads to an uninterpretable results[108]. For the application of human robot an-

ticipation higher level of abstraction is required.
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6 Conclusion

Given the limitation of the two architectures, as a future work, we propose

breaking down the process of video prediction into two parts by combining the

two architectures of PGP to extract transformation features and VLN to extract

pixel-level spatio-temporal features. In the VLN architecture after reducing the

resolution of the frame in each step, the PGP is applied and its output is multiplied

pixel-wise by the output of its relevant decoder block. This proposed architecture

makes the network learn transformation separately in hierarchical manner, which

leads to achieve the higher level of abstraction.
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