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Abstract

For task planning and execution of the complex tasks in an unstructured

environments, an autonomous robot needs the ability to recognize and lo-

calize relevant objects. When this information is stored persistently in a

semantic map, it can be used, e. g., to interact with humans. In this master

thesis, I present a novel approach to learning semantic maps. This approach

relies on measurements of RGB-D Kinect camera by means of simultaneous

localization and mapping. I use random decision forests to segment ob-

ject classes in images and exploit dense depth measurements of the Kinect

camera to obtain scale-invariance. My object recognition method integrates

shape and texture seamlessly. The probabilistic segmentation from multiple

views is filtered in a voxel-based 3D map using a Bayesian framework. I

report on the quality of the object-class segmentation method and demon-

strate the benefits in performance when fusing multiple views in a semantic

3D map.
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Chapter 1

Introduction

1.1 Importance of Semantic Maps

Autonomous robots need semantic information about their environment in order

to plan and execute complex tasks or to interact with human users on a semantic

level, since the human may refer to an object. In order to gain such world

knowledge, a robot not only needs the capability to recognize and localize objects,

but also to represent this information persistently. For the task planning, the

autonomous robot requires environment knowledge, which is knowledge about

the objects in the world, their properties and relations between the objects. For

example, given the task to pour a milk from the bottle to the cup, a robot

should perform a sequence of actions like ”Go to fridge, open it, find the milk

in the fridge, grasp it, open it, pour it in the glass”. To perform these sequence

of operations, the robot needs to know that the milk is in the fridge, and to

recognize and localize milk.

Knowledge about the structure and the current state of the environment is

mostly stored in form of a map. The approach of how to represent, construct, and

maintain maps has been one of the most active areas of research in robotics in

the last decades. Typical robot maps are represented usually in 2D, in 3D, topo-

logically and, additional sensor-relevant information such as specific features, or

texture [29]. The autonomous robotics has an increasing interest in the semantic

maps, which integrate semantic information into traditional robot maps. The

importance of the semantic maps is that they provide an autonomous robot with

deduction abilities (beside basic skills like navigation, localization, etc.) to infer

information from its environment even when it has not been completely sensed.

Using the semantic knowledge from the semantic maps, enables robot to perform

more intelligent and autonomous. For example, if the robot is searching for a

computer mouse, and it finds a monitor and a keyboard on a desk, then it can

3



4 CHAPTER 1. INTRODUCTION

deduce that a computer mouse is close from the keyboard.

1.2 Problems of Semantic Maps

The main problems of semantic maps are how these maps can be automatically

acquired, how the semantic knowledge can be integrated with other types of

knowledge in the maps (metric, topological, etc.), and how it can help robot to

plan and execute tasks.

Autonomous robot needs to recognize and localize objects in the maps and

store the semantic information in the map. The approach in which the robot uses

RGB-D camera to recognize and localize objects, has certain limitations. The

RGB-D cameras have valid depth measures only indoors, which constraints the

robot to build semantic maps only in the indoor environment. The problem of

recognizing objects are: speed and quality of object recognition. RGB-D Cam-

eras work usually at 30Hz, 640x480 resolution images, thus they produce large

amounts of data. Although the processing speed and storage capabilities of com-

puters increased significantly in the last decades, the processing high-resolution

images is today a very challenging task. Limited computational power constrains

object recognition algorithms much more for real-time applications then for off-

line applications. The hardware is developing more and more over years, and

this makes the prediction possible that limited computational power constraints

will relax within the next years. Another difficult problem is invariance to ob-

ject transformations. Many object recognition algorithms require normalization

of common variances, such as position, size, and pose of an object. Here, the

normalization parameters cannot be estimated without reliable segmentation.

Another challenging problem is to recognize ambiguous objects.

1.3 Contributions

In this master thesis, I propose a novel approach for learning semantic 3D maps

containing object information. I combine object recognition in RGB-D images

with simultaneous localization and mapping.

For object recognition, I apply random decision forests to classify images

pixel-wise. The random decision forests classifier provides the probability over

class labels for each pixel (see figure 1.1). Using depth information from RGB-

D camera for the object-class segmentation algorithm, I obtain a scale-invariant

classifier that incorporates shape and texture cues. In my approach, the random

decision forest classifier is using color and depth features, which improves the

classification performance comparing to approach where only color or only depth

features are used.
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Figure 1.1: I apply random decision forests to classify images pixel-wise. The
random decision forests classifier provides the probability over class labels for
each pixel. Using depth information from RGB-D camera for the object-class
segmentation algorithm, I obtain a scale-invariant classifier that incorporates
shape and texture cues.

Given the camera trajectory estimate of an RGB-D SLAM method, I filter

the soft labelling provided by random decision forests in a voxel-based 3D map

using a Bayesian framework (see figure 1.2). This enables me to fuse classifica-

tion evidence from several views and improve the robustness of the method for

classification errors. This approach results in 3D maps augmented with voxel-

wise object class information. In experiments, I evaluate the performance of the

object recognition method and demonstrate the benefits of fusing recognition

information from multiple views in a 3D map.
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Object-class segmentation of individual views

Back-projected 3D object-class segmentation

3D fusion

Figure 1.2: I fuse learned object-class segmentations of various views in 3D in
a Bayesian framework.I not only obtain 3D object-class maps: Filtering in 3D
from multiple views also reduces false positives and improves segmentation quality
significantly. This reflects in the crisp back-projection of the 3D object-class map
into the images.
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1.4 Organization of the Thesis

The master thesis is organized as follows:

Chapter 2: Related work is discussed in the chapter 2, focusing on the fields

semantic mapping, object class segmentation methods, and RGB-D SLAM meth-

ods.

Chapter 3: Basic knowledge is presented in this chapter, explaining the fun-

damentals of SLAM approach, VSLAM, Graph-SLAM, followed by object recog-

nition approach using random decision forests. At the end of this chapter, the

basics of semantic mapping are described.

Chapter 4: Methods which I was using in my thesis are explained here. An-

notation tool, which is used for annotating the objects in RGB-D images in a

semi-automatic way is described in the beginning of the chapter, followed by ran-

dom decision forests used to solve the task object recognition, and at the end

semantic mapping is described, using the trajectory from RGB-D SLAM and

softly labelled images from random decision forest.

Chapter 5: Evaluation is described in this chapter, showing the performance of

the object recognition method and demonstrate the benefits of fusing recognition

information from multiple views in a 3D map





Chapter 2

Related Work

2.1 RGB-D SLAM

Many mapping approaches construct geometric representations of the environ-

ment. They have been using different sensors for this in the past, such as 2D

and 3D laser scanners, monocular cameras, and stereo cameras. Recently, sev-

eral methods were proposed that acquire full 3D maps from RGB-D images. For

example, Henry et al. [9] present RGB-D mapping, which is a full 3D mapping

system which applies graph-optimization algorithm combining visual features and

shape-based alignment to obtain an accurate map. In Henry’s approach, visual

and depth information are also combined for view-based loop closure detection,

which is followed by pose optimization to achieve globally consistent maps. En-

gelhard et al. [7] extract SURF features from the input color images taken from

Kinect camera, and they match those features with features extracted from the

previous images. They estimate the relative transformation between the camera

frames using RANSAC algorithm. The pose refinement is done using ICP algo-

rithm. As the last step, they optimize the resulting pose graph using a HOGMAN

pose graph optimization. In the RGB-D SLAM method which I used in my work,

they apply rapid registration of RGB-D images [26] and graph optimization to

learn multi-resolution surfel maps. Such approaches do not incorporate valuable

semantic knowledge like place or object labels into the 3D map.

2.2 Semantic Mapping

Some systems have been proposed that do semantic mapping. While most ap-

proaches use SLAM as a front-end to estimate a sensor trajectory [30, 28, 16, 17,

4, 5], some methods also incorporate the spatial relation of objects into SLAM.

Tomono et al. [27], for example, builds a structured map, which consists of ob-

9
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jects like furniture. They represent a map as a graph, where a node represents an

object and an arc represents a relative pose between objects. SLAM is done by

using odometry readings and sensor data obtained by object recognition. Loops

are utilized as geometric constraints to correct the map distortion caused by er-

rors in the data. They detect polyhedral object models in images and perform

SLAM in 2D maps using the detected objects as landmarks. In contrast to the

RGB-D SLAM approach which I use in my work [26], this method is restricted to

objects with clearly visual linear edges. Zender et al. [30] presented an approach

for creating conceptual representations of human-made indoor environments us-

ing mobile robots. Their approach refers to spatial and functional properties

of typical indoor environments. Their model is composed of layers representing

maps at different levels of abstraction. They apply SLAM in 2D maps using

laser scanners, recognize objects using SIFT features, and map their locations in

the 2D map. In addition to SIFT-based recognition, Vasudevan et al. [28] also

detect doors by analysing laser scans, since they are important topologic objects

that connect rooms. He presents a hierarchical probabilistic representation of

space that is based on objects, and proposes a global topological representation

of places with object graphs as local maps.

Meger et al. [16] combine semantic 2D mapping of objects with attention

mechanisms. He presents a system, which performs robust object recognition in

a realistic scenario, where a mobile robot moving through an environment must

use the images acquired from its camera to recognise objects. The system in

this work can be trained to localize the objects of interest in robots environment,

and subsequently construct a spatial-semantic map of the region. They combine

techniques like a peripheral-foveal vision system, an attention system combin-

ing bottom-up visual saliency with structure from stereo, and a localisation and

mapping technique.

Nuechter et al. [17] apply ICP, plane segmentation, and reasoning to label

planar segments in 3D maps that they acquire using 3D laser scanners. In their

approach, they present integrated robot system for semantic mapping using a 3D

laser scanner. They use 6D SLAM to register individual scans into a coherent 3D

geometry map. Semantic labelling determines scene features. Trained classifier

is detecting objects and localizing them. They visualize the semantic maps for

human inspection. AdaBoost is applied on Haar wavelets and SVM classifiers

on contour descriptions to detect objects and persons in the 3D maps. In my

approach, I segment the original image data and fuse segmentation evidence

from multiple views.

Castle et al. [4] and Civera et al. [5] propose purely vision-based means to

acquire 3D maps with object labellings. In both approaches, SLAM is solved

with feature-based monocular EKF-SLAM formulations. Objects are recognized

using SIFT features and persistently maintained in the 3D feature map. Castle
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et al presented approach where objects locations are incorporated as additional

3D measurements into a monocular SLAM process, which is using images to

acquire and maintain a map of the environment, irrespective of whether objects

are present or not. Civera et al. proposes a semantic SLAM process that merges

in the estimated map traditional meaningless points with known objects. Here,

using only the information extracted from a monocular image sequence the non-

annotated map is built, and using the sparse set of images the known object

models are automatically computed. When an object is recognized, its measured

position is inserted in the 3D map and later refined by the SLAM algorithm in

subsequent frames.

The approach of Ranganathan and Dellaert [18] learns 3D constellation mod-

els of places composed of objects using SIFT features. Their model is a 3D

extension of the constellation object model, in which the objects are modelled

by their appearance and shape. In this work, in a coordinate frame local to the

place, the 3D location of each object is maintained. Using supervised learning,

the object models are learned using roughly segmented and labelled training im-

ages. They use stereo range data to estimate 3D locations of the objects. They

use the Swendsen-Wang algorithm, a cluster MCMC method, to solve the corre-

spondence problem between image features and objects. The map consists of a

set of places with associated models. The aforementioned approaches, however,

do not build 3D maps with dense object information.

In my work, I integrate image-based object-class segmentation with SLAM

from RGB-D images into a semantic 3D mapping framework. Each image is

segmented pixel-wise into object classes and irrelevant background. Based on

the SLAM trajectory estimate, this information is then projected into 3D to

fuse object recognition results from multiple views into a consistent 3D map.

This approach provides 3D segmentations of objects, and improves significantly

classification performance.

2.3 Object-Class Segmentation Using Random Decision

Forests

Object-class image segmentation is a challenging, actively researched problem

in computer vision [24, 13, 10, 21]. One branch of research applies variants of

random decision forests (RF, [3]). RFs are efficient classifiers for multi-class

problems. They ensemble multiple random decision trees and achieve lower gen-

eralization error than single decision trees alone. RFs have been demonstrated

to achieve comparable performance to SVMs [2]. Their major advantage is their

high computational efficiency during recall. Implemented on GPU, training can

be performed on massive datasets [23].

Shotton et al. [24] propose semantic texton forests, which are efficient and
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powerful low-level features. It consists of collection of decision trees, which are

directly applied on image pixels, thus they do not need the expensive computation

of filter-bank responses or local descriptors. They are extremely fast to both

train and test. The nodes in the decision trees provide an implicit hierarchical

clustering into semantic textons, and an explicit local classification estimate. In

their work, they use bag of semantic textons, which combines a histogram of

semantic textons over an image region with a region prior category distribution.

Then, over the whole image for categorization, the bag of semantic textons is

computed, and over local rectangular regions for segmentation. They include

both histogram and region prior which allows their segmentation algorithm to

exploit both textural and semantic context. Semantic Texton Forests use simple

features of luminance and color at single pixels or comparisons between two pixels

in a RF classifier. Using image-level priors and a second stage of RFs, local and

scene context is incorporated into the classification framework.

Schroff et al. [20] propose random decision forests for class based pixel-wise

segmentation of images. They connect random decision forest classifiers using

local features to classifiers using nearest neighbour matching class models. In

this work, it has shown that quite different classifiers, such as nearest neighbour

matching and texton class histograms, can be mapped onto a random decision

forest. They improve classification performance of random decision forests by

incorporating the spatial context and discriminative learning. In their work, they

are using textons, colour, filterbanks, and Histograms of Oriented Gradients [6]

features simultaneously, and it is shown that the combination of such multiple

features increases the classification performance of random decision forests. They

extends the node function of the random decision forest to incorporate global

knowledge about the object classes. Single-histogram class models SHCMs are

used to segment a test image into classes by a sliding window classifier. SHCMs

are effectively mapped within random forests classifier.

Ladicky et al. [13] propose approach, where a hierarchical random field

model, which is allowing integration of features computed at different levels of the

quantisation hierarchy. In this work, using powerful graph cut based move making

algorithms, they performe MAP inference in this model efficiently. A segment

based conditional random field (CRF) is defined over the image, and inference is

performed to estimate the label of each segment. The image quantisation enables

the computation of powerful region-based features which are partially invariant

to scale.

Schulz et al. [21] proposed approach in which object-class segmentation

method is using a convolutional neural networks. It is assuming that the ob-

ject of interest is centered and at a fixed scale, i.e that the segmentation problem

has been solved. It is overperforming the challenging INRIA-Graz02 [15] dataset

with regards to accuracy and the speed. It is using a convolutional architecture
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with a multi-scale input. The method is using a HOG, and color image as a input,

intermediate outputs, and epsilon-insensitive loss error function. First they com-

pute HOG features at twice the map resolution and then they are subsampled.

These operations are performed at three scales, where the resolution decreases

by the factor of two. The teacher of the network is an image, where each pixel

is marked with the class it belongs to, and is split into one map per class where

the pixels are 1 when they are belonging to the class and are 0 when they don’t

belong to the class. In the end, the teacher image is smoothed and downsampled

for each scale. They update the weights with the accumulated errors after each

epoch using the RPROP [19]. It avoids the need to cross-validate a learning

rate. It is using a fast GPU implementation, achiving a framerate of about 10fps

during a recall. All the operations except preprocessing are performed on GPU.

Ion et al. [10] presented an approach a statistical model that collects larger

scope image interpretations by selecting subsets of hypotheses from a bag of mul-

tiple figure-ground segments, based on mid-level scene constraints. They define

a problem of image segmentation as optimization over sets of maximal cliques,

which are sampled from a graph that connects all nonoverlapping figure-ground

image segments. Here, the clique is a possible image segmentation composed of

subsets of the figure-ground segments in the bag. They design and learn clique

potentials, which are encoding both intrinsic, unary Gestalt segment properties

and pairwise spatial compatibilities that account for plausible configurations of

neighboring, spatially non-overlapping segments. By using the cliques, they are

able to eliminate many implausible image segments and tilings that can’t arise

from the projection of surfaces in structured scenes. They based the learning the

model parameters on maximum likelihood, which is alternating between sampling

image tilings and optimizing their potential function parameters.

Recently, Shotton et al. [23] propose method which rapidly and accurately

predicts 3D positions of body joints from a single depth image, without using

temporal information. Their object recognition approach designs an intermediate

body parts representation that maps the difficult pose estimation task into a

simpler per-pixel classification task. Their object-class segmentation classifier

estimates body parts invariant to pose, body shape, clothing, etc. by using

the large and highly varied training dataset. They used confidence-scored 3D

proposals of body joints and they reproject the classification result and find local

modes. They show performance of 200 frames per second, and high accuracy on

test set. They propose to normalize feature queries with the available depth to

obtain scale-invariant recognition.

Stueckler et al. [25] presented an approach where object-class segmentation

combines depth and color cues. They use Time-of-Flight (ToF) camera, which

provides color images with depth information, to improve classification perfor-

mance under scale and viewpoint changes. They normalize color and depth image
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features with regard to scale and viewpoint by using depth and local surface ori-

entation which are extracted from the ToF image. Local 3D shape features is

incorporated into the classifier. Random decision forest classifier makes an effi-

cient combination of depth and texture features.

In my work, I extend RF classification by incorporating both depth and color

features. In contrast to Stueckler et al. [25], I use simple region features in color

and depth and only normalize for scale changes to gain an efficient classifier for

RGB-D images.



Chapter 3

Basics

3.1 SLAM

SLAM addresses one of the most fundamental problems in robotics. It is an

acronym for Simultaneous Localization And Mapping, originally comes from

Hugh Durrant-Whyte and John J. Leonard [14]. SLAM has the task to build a

map of an unknown environment by a mobile robot (without a priori knowledge)

or to update a map within a known environment (with a priori knowledge from

a given map), and while doing that, at the same time it is keeping track of the

its current location. SLAM is applicable for both 2D and 3D motion.

Maps are usually an answer to: ”What does the world look like?”. Maps

are used to determine a robots location in an environment and to depict an

environment for planning and navigation tasks. Maps represent in general the

state of the environment at the time when the map is created. Localization has

the task to estimate the place (and pose) of the robot relative to a map. It is

giving the answer to the question: ”Where am I?”.

Figure 3.1: SLAM as a chicken and an egg problem. A map is needed for localizing
a robot, and a good pose estimate is needed to build the map.

SLAM problems arise when the robot doesn’t know its environment nor its
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own position. All the robot knows are given measurements z1:t and controls u1:t.

In SLAM process the robot builds a map of its environment while simultaneously

localizing itself relative to the current map. SLAM is one of the most difficult

problems in the robotics community. SLAM is more difficult than the task of

localization in the known map, because in SLAM the map is unknown. It is also

more difficult task than mapping with known poses, because in SLAM the poses

are also unknown.

The SLAM problem can be divided in two categories from the probabilistic

perspective:

1. Online SLAM problem: evolves estimating the posterior over the current

pose together with the map:

p(xt,m|z1:t, u1:t) (3.1)

Here xt is the pose at the time t, m is the map which robot is building, z1:t
are all the measurements which the robot made up to the time step t, and

u1:t are all the controls which the robot performed up to the time step t. It

is called online SLAM because it only estimates the variables which persist

at the time step t (robots current position and current map). Many of

the online SLAM methods are incremental, meaning that they discard past

measurements and controls after they are processed. The online SLAM is

depicted in Figure 3.2

Figure 3.2: Online SLAM: evolves estimating the posterior over the current pose
together with the map

2. Full SLAM problem: the posterior over the entire path x1:t together with

the map m is calculated, instead of calculating posterior just for the current

pose xt and the map m (as in online SLAM problem): p(x1:t,m|z1:t, u1:t)
The full SLAM problem is illustrated in Figure 3.3.

The online SLAM problem is actually the result of integrating out past

poses from the full SLAM problem:
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Figure 3.3: Full SLAM: the posterior over the entire path x1:t together with the
map m is calculated

p(xt,m|z1:t, u1:t) =

∫ ∫
· · ·
∫
p(x1:t,m|z1:t, u1:t)dx1dx2 · · · dxt−1 (3.2)

These integrations in SLAM are usually performed one at a time.

Practically, calculating a full posterior is in most cases infeasible, because of

the following two reasons:

1. The continuous parameter space has high dimensionality

2. The number of discrete correspondence variables is large (many SLAM al-

gorithms construct maps with tens thousands of features).

Because of these two reasons, in practice, SLAM algorithms must rely on

approximations.

The SLAM problem can be divided into another two categories according to

the nature of the estimation problem:

1. Continuous estimation problem: pertains to the location of the objects in

the map and the robot’s own position. The objects can be landmarks in

feature-based representation, or they can be object patches detected by

range finders.

2. Discrete estimation problem: has to do with correspondence. Once an

object is detected, the SLAM should find the relation of this object to

previously detected objects. The reasoning is discrete (either the object is

the same as a previously detected object, or it is not the same).
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3.1.1 Problems of SLAM

SLAM is usually considered as a chicken and egg problem: Map is needed for

localization, but at the same time an accurate pose estimate is needed to build

that map. Another problem in SLAM comes from noisy sensors. Because of the

noisy sensors, the observation of the landmarks are uncertain, thus the estimated

location of the robot and a map are uncertain as well. After each iteration of

updating the map, any new feature added to the map will contain more and

more error. The error of building a map, and keeping track of the location of

the robot, increases over time cumulatively, and it is distorting the map and

therefore the robot’s ability to accurately determine its location and orientation.

Another problem which can occur in SLAM is picking wrong data associations,

which can have catastrophic consequences. This problem can occur when the

robot has the error in its position, and this causes the robot to make a mistake

in data association. The problems of SLAM are visualized in Figure 3.4.

Figure 3.4: Problems of SLAM: a) Robot path error correlates with errors in the
map (if there is error in the robot path, there will be also error in the map) b)
Pose error correlates data associations

There are techniques to compensate the errors of mapping and localization,

such as recognizing features which the robot has previously seen, and accordingly

updating the map and robot’s trajectory. Some of the SLAM methods use tech-

niques like Kalman filters, particle filters, scan matching of range data to update

the current map and robots trajectory using the previously seen landmarks.
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3.1.2 Mapping

SLAM in the robotics community is the process of building geometrically consis-

tent maps of the environment. There are different kinds of maps, used to model

the environment:

1. Feature-based maps: store landmarks of the environment (e.g. lines,corners,

circles, etc.)

2. Occupancy grid maps: store at each cell in the map the probability that

the cell is occupied

3. Topological maps: represent the environment, by showing the connectivity

of the environment, rather than creating a geometrically accurate map.

The algorithms which are building topological maps are not considered as

a SLAM methods, because they are not giving geometrically accurate map.

Figure 3.5: Illustration of different types of maps. In feature based maps, features
like trees are stored in the map. The example of topological map is a subway
connectivity map, where the stations are the nodes and edges are the paths
between the stations.

The general task of mapping is given the sensor data to calculate the most

likely map:

d = {u1, z1, ..., un, zn} (3.3)

m∗ = arg max
m

P (m|d) (3.4)

Here, d is the sensor data consisting of N actions (u1...un) and N measurements

z1, ..., zn. The most likely map is m∗

Some of the problems in mapping in the SLAM are:

1. The size of the maps (big environments are more difficult to map)

2. Noise in the sensors and actuators: more noise in sensors less accurate maps
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3. Self-similar environments are hard to map

4. Cycles: When a robot comes to the same position in the map where it

was previously, but from the different path, it must recognize it despite the

accumulated error. This is called loop closure.

3.1.3 Sensors Used in SLAM

SLAM method are use different kinds of sensors to acquire data. The sensors

typically used in SLAM are: one dimensional (single beam) or 2D- (sweeping)

laser rangefinders, 3D Flash LIDAR, 2D or 3D sonar sensors. The SLAM which

is using the monocular or stereo cameras is referred as visual SLAM (VSLAM).

3.1.4 Graph-SLAM

Graph-SLAM belongs to the SLAM category of methods, and it solves full SLAM

problem (the full robot trajectory and a map). The posterior of the full SLAM

problem naturally forms a sparse graph [22]. This sparse graph leads to a sum

of nonlinear quadratic constraints. Optimizing nonlinear quadratic constraints

gives a maximum likelihood map and corresponding robot trajectory. The Graph-

SLAM consists of five poses, which are labelled with x0, · · ·x4, and two features

m1 and m2. In the graph, there are two types of arcs: motion arcs and mea-

surement arcs. Motion arcs connect any two consecutive robot positions, and

measurement arcs connect poses and features which robot observed. Each edge

in the graph is a nonlinear constraint.

In order to compute a map posterior, Graph-SLAM linearises the set of con-

straints. The result of linearisation of the set of constraints is an information

vector. The information matrix inherits the sparseness from the graph which is

build by Graph-SLAM. The sparseness allows Graph-SLAM to apply the vari-

able elimination algorithm, by transforming the graph into smaller graph, which

is defined over robot poses. The path posterior map is computed using stan-

dard inference techniques. The full map posterior is quadratic in the size of the

map, and because of that reason it is usually not recovered. The advantage of

the Graph-SLAM is that growing of the graph is not computationally expensive,

but it requires additional inference when recovering the map and the robots tra-

jectory. The Graph-SLAM is collecting the information about the environment

all the time into its graph without resolving that information. Because of that

Graph-SLAM can build maps that are very large (e.g. many orders of magnitude

larger than EKF SLAM map).

Graph-SLAM calculates posteriors over robot trajectory, and because of that

it is not incremental algorithm. It can access to the full data during building the

map, and it can apply improved linearisation and data association techniques. It

has three important iteration steps in the mapping: the building of the map, the



3.1. SLAM 21

computation of corresponding variables and the linearisation of the measurements

and motion models. Because that iteration steps, Graph-SLAM is constructing

the maps with superior accuracy (e.g. more accurate than EKF-SLAM).

3.1.5 Visual SLAM

The visual SLAM belongs to the category of SLAM tasks. It considers using

the vision sensors, such as the monocular and stereo cameras. It is doing the

simultaneous localization and mapping by extracting and storing in the map the

features from the images, and it is matching these features between the consec-

utive frames in order to find a transformation between the frames, which gives

the trajectory of a mobile robot.

A stereo camera is a type of camera with two or more lenses with a separate

image sensor. This is simulating the human binocular vision, thus it captures the

three-dimensional images.

Figure 3.6: Example of a stereo camera

Monocular camera is a type of camera with only one lens. There is also a

special type of camera with 2 lenses, which is providing RGB + depth information

for each pixel in the image. Example of such a camera is a Microsoft Kinect

camera, which is visualized in the figure 3.7. Kinect camera became extremely

popular in the robotics community recently, because it is providing very precise

depth measurement. It is successfully used for the visual SLAM. It works with a

30Hz frame rate, has a resolution of 640x480, and it can be used also for smaller

resolutions. It reads depth values precisely at the distance more than 40cm and

less than 6m.

The visual SLAM problem can be subdivided into 4 categories:

1. Visual SLAM using monocular camera, extracting sparse image features.

2. Visual SLAM using monocular camera, extracting dense image features.
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Figure 3.7: Example of a Microsoft kinect camera

3. Visual SLAM using stereo camera, extracting sparse image features.

4. Visual SLAM using stereo camera, extracting dense image features.

Some of the advantages of visual SLAM are:

1. The visual sensors are long-range, high-resolution, passive sensor

2. For the feature detection and feature descriptors it is using low level features

(edges, corners), high level features (objects, complex structures)

3. It enables feature tracking and matching techniques between the consecu-

tive camera frames.

Some of the disadvantages of visual SLAM are:

1. Problems in textureless or repetitive environments (e.g. white walls)

2. Difficulty to determine range from single measurement

3. It enables feature tracking and matching techniques between the consecu-

tive camera frames.

4. rgb and depth image noise

3.1.6 RGB-D SLAM

The RGB-D SLAM method is based on fast and accurate RGB-D image regis-

tration using multi-resolution surfel maps [26]. The registration approach aligns

640×480 images at a frame-rate of about 10 Hz.
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Since small registration errors may accumulate in significant pose drift over

time, a graph of probabilistic spatial relations is established and optimized be-

tween similar view poses (see Fig. 3.8). A view pose in the graph is denoted as

key view and register the current camera frame to the most similar key view in

order to keep track of the camera pose. Similarity is measured by distance in

translation and rotation between view poses. New key views are added to the

graph, if the similarity measure indicates a significant motion of the camera. This

also includes a spatial relation between the new key view and the reference key

view. In addition, relations between further similar key views are established.

This probabilistic registration method provides a mean and covariance es-

timate for each spatial relation. The likelihood of the relative pose observa-

tion z = (x̂,Σ(x̂)) of the key view j from view i is obtained by

p(x̂|xi, xj) = N (x̂; ∆(xi, xj),Σ(x̂)) , (3.5)

where ∆(xi, xj) denotes the relative pose between the key views under their

current estimates xi and xj .

From the graph of spatial relations the probability of the trajectory estimate

given the relative pose observations is inferred

p(x1,...,N |x̂1, . . . , x̂M ) ∝
∏
k

p(x̂k|xi(k), xj(k)). (3.6)

This graph optimization problem solve by sparse Cholesky decomposition using

the g2o framework [12]. Finally, the mapping framework supports the fusion of

the RGB-D images in a single multi-resolution surfel map using the optimized

trajectory estimate.



24 CHAPTER 3. BASICS

Figure 3.8: Simultaneous localization and mapping is performed by registering
multi-resolution surfel maps of RGB-D images and optimizing spatial relations
in a key view graph. The example maps are visualized by samples from the surfel
distributions at 2.5 cm (bottom) and 20 cm (top) resolution.
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3.2 Object Recognition

One of the goals in robotics is to give the robots visual capabilities like humans

have, so they can sense their surrounding, understand what they sense and ac-

cording what they sense take certain actions. Object recognition has the task to

find objects of interest in a given image. The robot should be able to recognize

several object classes (e.g. tea box, human, chair, computer mouse) and different

object instances (plastic chair, metal chair, black chair, white chair). The visual

appearance of objects can change due to different shape, color, texture, orien-

tation, size, scale, occlusion and illumination. The objects of interest are not

presented alone and isolated in the scenes, but there are other objects classes,

which makes the problem more complicated.

Figure 3.9: Example of object recognition. The task is to recognize several classes
and surround them with the rectangle box. http://www.cs.washington.edu

Computational complexity is one of the challenges for the Object recognition

task. Some systems need too much time to recognize objects in the single im-

age. An object recognition method should be fast and robust. The task is still

considered to be very challenging.

The objects can be recognized using a variety of sensing devices. The most

commonly used sensor for robot mapping and navigation, 2D laser range scanners,

provides information that is surely not sufficient to recognize objects, and it is

restricted to a single plane. 3D lidars give a richer source of information, but its

price and working conditions make them difficult to use in robotics. A time-of-

flight camera (ToF camera) is able to acquire a 3D image in an indoor scenario in



26 CHAPTER 3. BASICS

Figure 3.10: Object-class segmentation. The image on the left is the input image.
Right image is the object class segmented image. The objects of interest are
human labelled with yellow, canister with green, pallet with blue, and barrel
with red.

a convenient way. It calculates the distance based on the known speed of light, by

measuring the time of flight of a light signal between the camera and the object

for each point of the image. Further, it can only obtain images with a resolution

of less than two hundred pixels with a maximum depth of five meters. Recently,

the new Microsoft Kinect camera has appeared in the market. It provides depth

and color images, has a resolution 640x480 pixels, and has range of 0.7 - 6m.

Classification has the task of assigning the object class label to the previously

unseen object instances (is this a chair?). Recognition is the task of identifying a

particular object instance (is this my chair?). Detection has the task to (roughly)

decide where is the object of interest located in the image (where is the chair?).

3.2.1 Object-Class Segmentation

Object-class segmentation belongs to the object recognition category of tasks.

It classifies images pixel-wise into objects and background. It assigns to each

recognized pixel in an image a probability that it belongs to the certain class.

For example, if the system is able to recognize 3 different object classes (human,

barrel, coffee mug) then it would assign to each pixel of the image 3 probabilities.

These probabilities are p1(pixel = human), p2(pixel = barrel) and p3(pixel =

coffeemug), and each is defined as the probability that a pixel belongs to the

class human, barrel and coffee mug. In Figure 3.10 the example of object class

image segmentation is illustrated.

3.2.2 Randomized Decision Forests

Randomized decision forests is a precise and fast object recognition method. It

consists of a collection of randomized decision trees. Each randomized decision

tree consists of nodes and edges which connect the nodes. There are branching
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nodes, and leaf nodes. At the leaf nodes, the distribution probabilities for each

object class are stored. For example, if the system should train on 3 different

classes (coffee mug, tee box and a chair) then at each leaf node, 3 probabilities

are stored. They are defined as the probability that a pixels which end up in

that leaf node belong to the coffee mug, tea box and a chair. The probabilities

distributions are visualized in Figure 3.11. These trees are binary decision trees,

meaning that starting from the root node (which is usually at the top of the tree)

each branch node has exactly two children.

Each branching node consist of a feature function, and a threshold. Feature

function at each node represents one decision made by the classifier. If the feature

function applied on an input pixel q returns value less than a threshold τ , then

the input pixel q is forwarded to the left child node, otherwise it is forwarded to

the right child node.

The reason why randomized decision forests ensemble multiple randomized

decision trees is that they achieve lower generalization error. They have been

demonstrated to achieve comparable performance to the support vector machines

SVMs [2]. Their biggest advantage of the randomized decision forests is the high

computational efficiency during the recall, because for each pixel in the image

which is being recognized, only several feature functions from the root node down

the leaf node need to be calculated. If the algorithm would be implemented on

GPU, training can be performed on huge image datasets (e.g. 100000 images).

In order to determine the distribution of the class labels at query pixel, it

needs to be evaluated on each decision tree belonging to the collection of decision

trees in the randomized decision forests. The query pixel is associated a distribu-

tion over class labels from each evaluated decision tree, and the final distribution

is the average over all distribution taken from the decision trees. That is, if a ran-

domized decision forests F consist of a collection of 3 decision trees, then a query

pixel needs to be evaluated on all 3 decision trees, and it gets the distribution

over class labels from each decision tree and outputs the average distribution.

p(c|F, q) =
1

K

K∑
k=1

p(c|lk, Tk, q) (3.7)

In the last equation, the F is a randomized decision forests, Tk stands for

a k decision tree, K is a total number of decision trees in the forest F , c is a

class label assigned to the query pixel q, and lk is the leaf node which gives the

distribution over all class labels for the decision tree Tk.

For training a randomized decision forests, each decision tree is trained inde-

pendently on a random subset of the training images. At each branching node

in a decision tree, many features and thresholds are randomly sampled. The one

that separates the training examples in a best way is selected according to the
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Figure 3.11: Randomized Decision Forests: A forest is an ensemble of decision
trees. Each node of the tree makes a binary decision on a pixel. It maintains
a classification probability of pixels that reach this node. A query pixel q is
assigned the average posterior distribution at the leaves it reaches in the forest.

measure of information gain. This allows to mix different kinds of features such

as functions in color and depth cues.

Training the Randomized Decision Forest

The training of the randomized decision forest starts by choosing the K number

of decision trees. At the beginning of the training, the whole training dataset is

randomly split into K equal size subsets. Each of the k subsets is an input for

the training of each k decision trees. Starting at the root node, from each image

in the subset, 2000 random pixels are chosen. If the total number of images in

the k subset is L, then the total number of pixels at the input of the decision tree

will be 2000 ∗ L.

Each decision tree is build using depth-first approach. One starts at the root

and creates left and right child nodes. Then it process the left child node and

again makes a left and a right child node. This repeats until the leaf node is

reached. Starting from the root node, each node is splitting the input pixels

on left and right child. The feature function and a threshold which splits the

pixels in the best way according to the measure information gain is chosen, and

stored at the node. Further, pixels from the child nodes are again split, until the

leaf node is reached. The leaf nodes don’t store a best feature function and a

threshold, but only the distribution probabilities for each class object.
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The information gain is the measure which is used during the training to

estimate how good the pair feature function and a threshold ψ = (θ, τ) separate

the pixels from the input of the node on the left and right subsets:

Ql(ψ) = {(I, x)|fθ(I, x) < τ} (3.8)

Qr(ψ) = Q \Q1(ψ) (3.9)

In the last two equations, Q is the set of all input pixels at the node, Ql(ψ)

is the set of pixels which are forwarded to the left branching node, and Qr(ψ) is

the set of pixels forwarded to the right branching node. The information gain, is

formulated as:

Q(ψ) = H(Q)−
∑

s∈{l,r}

|Qs(ψ)|
|Q|

H(Qs(ψ)) (3.10)

The Shannon entropy for the input set of pixels of the node is as following:

H(Q(ψ)) = −
∑

c∈classes
p(c|ψ)log2(p(c|ψ)) (3.11)

Here, H(Q(ψ)) is the Shannon entropy for the set of pixels at the input of the

node, and p(c|ψ) is the probability that a pixel which reaches the node belongs

to the object class c. This probability is as following:

p(c|ψ) =
nc
N

(3.12)

Here, nc is the number of pixels at the input of the node, belonging to the

class c, and N is the total number of the pixels at the input of the node.

Training the Randomized Decision Forest

1. Choose the number of decision trees K.

2. Split the whole training dataset on the k partitions, randomly.

3. For each k decision tree

4. Calculate label weights

5. Create a root node

6. Generate M number of candidates of pairs of color feature function

and a threhsold ψcm = (θcm, τ
c
m)
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7. Choose the best pair of color feature function and a threhsold

ψcb = (θcb, τ
c
b ) according to the Information gain

8. Generate M number of candidates of pairs of depth feature function

and a threhsold ψdm = (θdm, τ
d
m)

9. Choose the best pair of depth feature function and a threhsold

ψdb = (θdb , τ
d
b ) according to the Information gain

10. Choose between color feature function and depth feature function

according to the information gain, ψb = (θb, τb)

11. Separate the input pixels of the node to the left Ql(ψ) and right Qr(ψ)

subsets, using the best pair of feature function and threshold ψb = (θb, τb)

12. Create a left and a right branch node, and forward the

left Ql(ψ) and right Qr(ψ) pixel subsets to their inputs

13. For left and right branch nodes, If the maximum depth D of the tree

is reached, or the number of input pixels is smaller

then a minimum node pixel capacity assign the node as the leaf node,

otherwise assign the node as the branch node.

14. Go to the step 6

15. END
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3.3 Semantic Mapping

Semantic information can help an autonomous robot to act goal-directly, thus

part of this information has to be about objects, functionalities, events, or rela-

tions in the robot’s surrounding. The map is the data structure which consists

the space information about the robots environment. Typical robot maps are

represented usually in 2D, in 3D, topologically and, additional sensor-relevant

information such as specific features, or texture [29]. The nowadays typical pur-

pose of the semantic maps is the robots navigation, planning, prediction, and

sensor data interpretation. A semantic map stores an information about entities,

i.e., objects, functionalities, or events, that are located in 3D space.

To enable the reasoning about robots navigation, planning, explanation, pre-

diction, and sensor data interpretation, the knowledge about entities is required

(e.g the computer mouse is typically standing on the desk left or right from

the keyboard, in front of the monitor). In Figure 4.20 is shown the example of

semantic map where different objects are stored in the map.

The main problems of semantic maps are how these maps can be automatically

acquired, how the semantic knowledge can be integrated with other types of

knowledge in the maps (metric, topological, etc), and how it can help robot to

plan and execute tasks.

Autonomous robot needs to recognize and localize objects in the maps and

store the semantic information in the map. The approach in which the robot

uses RGB-D camera to recognize and localize objects, has certain limitations.

The RGB-D cameras have valid depth measures only indoors, which constraints

the robot to build semantic maps only in the indoor environment. The prob-

lem of recognizing objects are: speed and quality of object recognition. RGB-D

Cameras work usually at 30Hz, 640x480 resolution images, thus they produce

large amounts of data. Although the processing speed and storage capabilities

of computers increased significantly in the last decades, the processing high-

resolution images is today a very challenging task. Limited computational power

constrains object recognition algorithms much more for real-time applications

then for offine applications. The hardware is developing more and more over

years, and this makes the prediction possible that limited computational power

constraints will relax within the next years. Another difficult problem is in-

variance to object transformations. Many object recognition algorithms require

normalization of common variances, such as position, size, and pose of an ob-

ject. Here, the normalization parameters cannot be estimated without reliable

segmentation. Another challenging problem is to recognize ambiguous objects.
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Figure 3.12: Semantic mapping. In the 3D semantic map, the human is labelled
with yellow, canister with green, barrel with red and pallet with blue. Image on
the left is showing the front view and image on the right top view.

3.4 Pinhole camera model

A 3d point is projected onto the image plane by using a standard pinhole camera

model, and perspective transformation [1]:

Figure 3.13: Pinhole camera model. The object is inverted in the image plane.
Image taken from http://3.bp.blogspot.com

s ·m′ = A[R|t]M ′ (3.13)
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In the previous equation, (u, v) are the 2D coordinates of the projected pixel

in the image plane, (X,Y, Z) are the coordinates of a 3D point in the world

coordinate space which is projected on the image plane. A is a matrix of intrinsic

parameters, which incorporates a principal point (cx, cy), which is usually at the

center of the image, and focal lengths fx, fy which are expressed in pixel units.

If an image would be scaled by some factor, all of these parameters should be

scaled by the same factor. The matrix A is independent of the scene, once when

it is estimated, can be always re-used as long as the focal length is fixed. A

rotation-translation matrix [R|t] is a matrix of extrinsic parameters. This matrix

incorporates the transformation of the current coordinate system of the 3d point

to some other coordinate system. This transformation can also be written as:xy
z

 = R

XY
Z

+ t (3.15)

x′ =
x

z
(3.16)

y′ =
y

z
(3.17)

u = fx · x′ + cx (3.18)

v = fy · y′ + cy (3.19)

Real camera lenses usually have some distortion, in the most cases radial

distortion and tangential distortion. So, the above model can be formulated as:xy
z

 = R

XY
Z

+ t (3.20)

x′ =
x

z
A (3.21)

y′ =
y

z
(3.22)

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) + 2p1x

′y′ + p2(r
2 + 2x′2) (3.23)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y′2) + 2p2x
′y′ (3.24)

r2 = x′2 + y′2 (3.25)
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u = fx · x′′ + cx (3.26)

v = fy · y′′ + cy (3.27)

Here, k1, k2, k3 are radial distortion coefficients, and p1, p2 stand for tangential

distortion coefficients. The distortion coefficients, k1, k2, k3, p1, p2 do not depend

on the scene, thus they also belong to the intrinsic camera parameters. They

remain always the same no matter the image resolution.

3.5 Octree

An octree is a tree data structure with a property that each internal node has

exactly eight children. Octrees are used to partition a three dimensional space by

recursively subdividing it into eight octants. Octrees are the three-dimensional

analogue of quadtrees. The octree is visualized in Figure 3.14

Figure 3.14: Octree visualization. Octree partitions three dimensional
space by recursively subdividing it into eight octants. Image taken from
http://en.wikipedia.org/

The octree data structure enables to efficiently merge point cloud data from

several sources. Point clouds are huge data sets describing three dimensional

points, and they have for each point in the point cloud information like distance,

color, normals, etc. Additionally, they can be created at high rate and because

of that they can occupy a significant amount of memory. These are the reasons

for compressing the point clouds and merging in the octree.

Another advantage that ctrees are offering is that at each cell of the octree,

the certain value can be stored, which is the same for all the 3D points which

belong to the cell.



Chapter 4

Methods

4.1 Image Annotation Tool

Image annotation tool enables cropping of the objects from the background and

annotating them in a semi-automatic way. At the input, the tool receives multiple

rgb images taken from different camera views for the same scene. For each rgb

image, there is associated depth image, transformation between camera views

and a point cloud. This data is provided by RGB-D SLAM method [26], using

the Kinect camera [11]. After the objects are successfully segmented from the

background, the class label is associated to each object in the image. Object

classes are represented in the image by using different colors for each class. For

example, if one scene consists of a set of 50 images with barrel, canister, human

and a euro palette which all need to be annotated in the image, the tool should

segment all mentioned objects from the background and assign corresponding

class to each object in all 50 images like shown in Figure 4.1.

Figure 4.1: Example of annotated objects:barrel, canister, human and a euro
palette

35
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Figure 4.2: Constructing the rectangle box of the 4 projected points p1, p2, p3, p4,
which are left upper most pixel, right upper most pixel, down left most pixel, and
down right most pixel. The points P and Q are the left upper and down right
points of the constructed rectangle box.

4.1.1 Tools

Image annotation tool is providing a set of tools which assist the user to segment

and annotate multiple images at the same time. Some of these tools are using

only rgb image and some are using the depth image to help the user to segment

the objects in the image.

1. Set rectangle: Sets the rectangle around the object in the rgb image. The

user selects first the upper left pixel of the rectangle and then the down right

pixel and the rectangle is set using these two points:

rectx = px (4.1)

recty = py (4.2)

rectw = qx − px (4.3)

recth = qy − py (4.4)

Here, rectx and recty stand for a upper left pixel of the rectangle box, and

recth and rectw are the height and width of the rectangle. p is the upper
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Figure 4.3: Setting the rectangle box around the object. All pixels inside the box
are not labelled and out of box assigned as background and cannot be changed
by other tools.

left point and q is the lower right point chosen by the user. All the pixels

around the rectangle are assigned as background label, and all inside the

rectangle are not labelled. The purpose of this tool is to segment the most

parts of the image, and assign it as the background, and all other tools

which will be used are applied only on the pixels inside the rectangle. This

speeds up the time of executing the tools because the tools are applied on

less pixels, and also makes sure that the pixels out of the rectangle are

staying as the background (other tools cannot label them incorrectly). The

example of applying the rectangle box tool can be seen in Figure 4.3.

After the rectangle tool is applied on the seed image, all the pixels inside

the box are projected to all other images. Then the rectangle boxes are set

on all other images by choosing the left upper most pixel, right upper most

pixel, down left most pixel, and down right most pixel. The construction

of the projected rectangle box can be seen in Figure 4.2:

The problems of projecting the rectangle to other images is that sometimes

the part or most of pixels inside the rectangle box of the seed image are not

visible in the images which are taken from totally different views, so the

rectangle box would cut off some parts of the object. Another problem is

that the shiny or black objects don’t have depth values in some parts, thus

it is not possible to project pixels from the seed image to the parts which

are missing depth values and this can cause that the rectangle box cuts off

the part of the object.

2. Extract plane: Assigns all the pixels as the background which have the

property to belong to the same plane as the seed pixel which is selected by

the user. First, the normals of all pixels in the image are calculated using

the point cloud of the corresponding image. Normals are smoothed with

the block size 25 in order to get more precise normals. Then all the pixels

in the rgb image which belong to the same plane as the seed pixel, are on
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the similar height and have the similar orientation of the normal as the seed

pixel are assigned the background class. In order to see if a point belongs

to the same plane as the seed point, the following conditions needs to be

met:

(px − seedx) · ~nx ≤ ε (4.5)

(py − seedy) · ~ny ≤ ε (4.6)

(pz − seedz) · ~nz ≤ ε (4.7)

Here, seed is the point clicked by the user p is the point in the image for

which is checked if it belongs to the same plane as the seed point and ε is a

small constant. This means that the point p is belonging to the same plane

as the seed point, because the vector drawn from p to seed is perpendicular

to the normal n, as it is visualized in Figure 4.4. The second condition

which needs to be met that the point belongs to the same plane as the seed

point, is that their normals should have similar orientation:

α = acos( ~nseed · ~np) (4.8)

Here, α is the angle between the normal of the point p and seed normal.

If this angle is less then a small constant, then it means that both points

belong to the same plane.

This tool is very useful in a scenes where the object is standing on the

support plane, then if the user selects the seed point from the support

plane, the whole support plane will be assigned the background class, and

then the Depth foreground region can be used to assign all the object pixels

to the foreground class. For this tool, the threshold for the height of the

plane and the block size for smoothing the calculation of normals can be

adjusted. The problem of this tool is that it assigns always a few millimetres

of the bottom of the object as the background. The big advantage of this

tool is that it extracts the support plane no matter which color it has,

and after applying this tool if the object of interest is not touching other

objects in the image, the whole object is surrounded by the background

pixels and then it is easy to label the object as the foreground using the

tool usedepthforeground. The example of the plane segmentation can be

seen in Figure 4.5:
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Figure 4.4: Point p is belonging to the same plane as the seed point, because the
vector drawn from p to seed is perpendicular to the normal n

3. Color foreground region: Uses the seed pixel taken by the user, and

assigns it as the foreground. It assigns further all the neighbouring pixels

as the foreground class which have the rgb channels value similar as the

seed pixel. This tool is useful in the scenes where the object has the color

different from the background as can be seen in the example in Figure 4.6.

seedch− lowThresch ≤ neighborch ≤ seedch+ upThresch (4.9)

Here, seedch represents the one of the rgb color channels intensity value

of the seed pixel from the rgb image, neighborch stands for one of the

eight neighbouring pixels channel value. lowThresch and upThresch are

the lower and upper thresholds for the specific color channel, which can be

modified by the user.

4. Color background region: similar like the Color foreground region but

assigned the background class to the pixels. The tool is useful for the situa-

tions when the background has specific color and it can be easily annotated

as the background. The example of using this tool is shown in Figure 4.7.

5. Depth foreground region: Uses the depth image to assign pixels of the

object as the foreground. Usually, the objects have the depth jump between
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Figure 4.5: Example of extracting the whole support plane of the object barrel.
After applying this tool, the tool usedepthforeground can easily annotate the
object as the foreground.

the object itself and the background. The tool assigns first the seed point

as the foreground and then all the neighbours as the foreground if they

satisfy the following condition:

seedd − lowThresd ≤ neighbord ≤ seedd + upThresd (4.10)

Here, seedd represents the depth value of the seed pixel in the depth image,

neighbord stands for one of the neighbouring pixels depth value. lowThresd
and upThresd are the lower and upper thresholds for the depth value.

6. Depth background region: works similar like the Depth foreground re-

gion but it assigns pixels the background class. For all tools which extract

the regions using color or depth values, it is possible to change the lower and

upper thresholds. This enables the user to take advantage of these 4 tools

even when the color or depth jump between the object and the background

is very low.

7. Assign class: Assigns all foreground pixels in the image the chosen class

label. The class label is represented with the specific color, so all the fore-

ground pixel are given that color. All the background pixels are given the

black color which always stands for the background class. The example can

be seen in Figure 4.1
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Figure 4.6: Assigning the whole region as foreground, which has the similar rgb
channel values as the seed pixel.

8. Add background pixel: assigns the pixel chosen by the user as the

background class. The tool is useful when small parts of the background

are wrongly assigned the foreground label, and this tool can fix the this

incorrectly labelled parts. This usually happens after applying the tool

usedepthasforeground, which labels the most of the object as the fore-

ground, but also some parts of the background which have the similar depth

value as the object. Example of this tool is shown in Figure 4.9.

9. Add foreground pixel: assigns the pixel chosen by the user as the fore-

ground class, meaning that the pixel belongs to one of the objects of in-

terest. Example is shown in Figure 4.10. This tool is useful for example

after applying the extractplane tool, the whole support plane is assigned

the background class label, but this tool also labels few millimetres of the

bottom of the object as the background, so the user can manually correct

these parts.
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Figure 4.7: Assigning the whole region as background, which has the similar rgb
channel values as the seed pixel.

4.1.2 Projection of a Seed Point to Other Images

The main advantage which the Annotation tool is giving is that after one tool

is used on one image, the seed point chosen by the user is projected to all other

images in the scene and the same tool is applied. For example, if the tool Extract

plane is used on one image, the plane is extracted first on that image, and then

the seed point is projected to all other images and the Extract plane tool is used

on all images using projected points.

The projection of the seed point from one image to another image is done using

the corresponding transformations from the RGBD-SLAM method [26]. Each

image has associated transformation from the initial position from the camera.

It is represented with a quaternion (q1, q2, q3, q4) which stands for a orientation

from the initial camera view and a position vector (x, y, z) which stands for a

distance from the initial camera view. The projection of a pixel from the image

where the user applied a tool onto all other images is done by applying next 3

steps:

1. A 3D point is calculated for the 2D seed pixel from the corresponding point

cloud.

2. The 3D point of a seed pixel, is transformed from the seed coordinate frame

to the coordinate frame of the image where the seed pixel is projected. All

images have the position of the camera described by the transformation
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Figure 4.8: Assigning the whole parts of the object as foreground, for all pixels
which have the similar depth values as the seed pixel.

from the initial camera view, which is represented by the orientation and

translation from the initial camera view. In order to transform a 3D point

of a seed pixel to the other image coordinate frame, we need first to apply

the transformation to the initial coordinate frame, and then from the initial

coordinate frame the inverse transformation is applied. For example, let an

image where the tool is applied be a F1 frame, and image where we want to

project the seed point F2 frame, and initial frame is F0. The transformation

matrix from F1 frame to the initial frame is T1,0 and the transformation

from the frame F2 to the initial frame is T2,0. So on the seed 3d point

from the frame F1 is first applied T1,0 transformation, and then inverse

T−12,0 transformation because once the seed 3d point is transferred to the

initial coordinate frame, it needs to be transferred to the coordinate frame

F2. The transformation between different coordinate frames is visualized

in Figure 4.11.


X2

Y2
Z2

1

 = T−12,0 · T1,0


Xseed

Yseed
Zseed

1

 (4.11)

Here the 3D points (X2, Y2, Z2) and (Xseed, Yseed, Zseed) are represented in

a homogeneous coordinates by adding 1 as the 4th coordinate, because they

are multiplied with the transformation matrix which is 4x4 matrix. The
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Figure 4.9: Adding a background pixels at the places where the foreground pixels
were added wrongly. This happens for example after applying the usedepthtool,
which is assigning the foreground pixels to the most pixels belonging to the object,
but also some additional pixels wrongly assigns as the background.

transformation matrices are constructed using quaternion (q1, q2, q3, q4)

which stands for a orientation from the initial camera view and a position

vector (x, y, z) which stands for a distance from the initial camera view.

The quaternion is transformed to the rotational 3x3 matrix R and the

transformation matrix is constructed in the following way:

T =

[
R t

0 1

]
(4.12)

The transformation matrix T is actually the rotation-translation matrix

[R|t] from the equation 3.13.

3. The transformed 3D point is then projected onto the image plane using the

pinhole camera model, which is explained in the section 3.4.

The rotation-translation matrix [R|t] from the equation 3.13 is constructed

using the transformation between the current image viewed and the image onto

the seed pixel is projected. The quaternion (q1, q2, q3, q4) is transformed to the

rotation matrix R and the position vector (x, y, z) is a translation t.
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Figure 4.10: Adding a foreground pixels at the places where the foreground
pixels were added incorrectly. This tool is helpful for example after applying
the usedepthtool, some pixels of the object are not assigned as foreground nor
background, so the user can easily add the missing pixels as foreground.
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Figure 4.11: The 3D point of the seed coordinate frame is transformed from
the seed coordinate frame to the initial frame by applying the transformation
T1,0 and then from the initial coordinate frame to the frame F2 by applying
the transformationT−12,0 . This is analogue as applying directly the transformation

T−12,0 T1,0 on the seed 3D point
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Figure 4.12: The foreground pixels are added to the seed image, and the tool is
automatically projecting these foreground pixels to the frames 1, 2 and 3.
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4.2 Randomized Decision Forests

For the object recognition method, I used randomized decision forests. This

method is chosen because, it is a precise, fast, and robust object recognition

method. A query pixel of the image, can be classified by traversing the decision

trees from root to leaf node, visiting only several nodes (depending on the depth

of the tree) and computing several feature functions. It is scale and translation

invariant, but it is not rotational invariant. Randomized Decision Forests can be

implemented on GPU, the features can be computed parallel on multiple GPU

kernels, which would speed up the training of Randomized Decision Forests and

recall of the image.

The Randomized Decision Forests is used for soft labelling of the image pixels,

by assigning to each pixel of the image the class distribution (the probabilities

that a pixel belongs to the certain class).

In my approach, Randomized Decision Forests are using the rgb and depth

images from the Kinect sensor. At each split node, the color and depth fea-

tures are used. During the computation of the features, the individual pixels are

compared, and also regions are compared.

We train the decision trees in a depth-first manner by choosing feature param-

eters θ and a threshold τ at each node and splitting the pixel set Q accordingly

into left and right subsets Ql and Qr:

Ql(θ, τ) := {q ∈ Q|fθ(q) < τ} , and

Qr(θ, τ) := {q ∈ Q|fθ(q) ≥ τ} .
(4.13)

Since the parameter space cannot be evaluated analytically, we sample P

random parameter sets and thresholds (e. g., P = 2000) and select feature and

threshold that yield maximal information gain

I(θ, τ) := H(Q)−
∑

s∈{l,r}

|Qs(θ, τ)|
|Q|

H (Qs(θ, τ)) , (4.14)

where H(Q) := −
∑

c∈C p(c|Q) log2 (p(c|Q)) is the shannon entropy of the distri-

bution of training class labels in pixel set Q. This splitting criterion finds feature

parameters and threshold that most distinctively seperate the pixel set at a node.

Each node is split until a maximum depth is reached in the tree, or the number

of pixels lies below a minimum support threshold.

At each leaf node l, we want to maintain the distribution p(c|l,D) of pixels

of class c that arrive at the node from the original training set. Since we train

the decision tree from pixels with equally distributed class labels, we actually

measure the class distribution p(c|l, Q) of training pixels Q at the leaf, i. e.,

p(c|l, Q) := p(c(q)|l, q ∈ Q) = p(c(q)|l, q ∈ Q, q ∈ D). (4.15)
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The distribution of interest can be obtained by applying Bayes rule:

p(c|l, Q,D) =
p(q ∈ Q|c(q), l, q ∈ D) p(c(q)|l, q ∈ D)

p(q ∈ Q|l, q ∈ D)

=
p(q ∈ Q|c(q), q ∈ D) p(c(q)|l, q ∈ D)

p(q ∈ Q|q ∈ D)
.

(4.16)

For the desired distribution we obtain

p(c(q)|l, q ∈ D) =
p(c(q)|l, q ∈ Q) p(q ∈ Q|q ∈ D)

p(q ∈ Q|c(q), q ∈ D)
(4.17)

We can further reformulate the probability of a pixel of class c to be included in

the class-equalized training data Q to

p(q ∈ Q|c(q), q ∈ D) =
p(c(q)|q ∈ Q) p(q ∈ Q|q ∈ D)

p(c(q)|q ∈ D)
, (4.18)

and obtain

p(c(q)|l, q ∈ D) =
p(c(q)|l, q ∈ Q) p(c(q)|q ∈ D)

p(c(q)|q ∈ Q)
. (4.19)

By design, p(c(q)|q ∈ Q) is uniform among class labels and, hence, we incorporate

the distribution of classes in the complete training set into the leaf distributions

through

p(c|l,D) = η p(c|l, Q) p(c|D), (4.20)

where η := p(c|Q) = 1/|C|.

4.2.1 Depth Feature

For a pixel q, the depth image feature compares the depth at normalized query

positions in the image:

fθ(q) = d

(
q +

u

d(q)

)
− d

(
q +

v

d(q)

)
(4.21)

Here, d(q) stands for a depth at the pixel q in an image. Parameters θ = (u, v)

stand for pixel offsets. The normalization of the offsets by 1
d(q) makes the features

scale invariant (modulo perspective effects). If an offset pixel has no valid depth

reading or lies beyond the image, the depth d(q) is set to a large positive value.

Individually each feature is weak and it gives only a small information about

which class the pixel belongs to, but combining all features at all nodes, in a

decision forest they are sufficient to accurately classify the pixel. The feature

is computationally efficient, because it only reads at most 3 image pixels and

performs at most 5 arithmetic operations.
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4.2.2 Color Feature

For a query pixel q, the color image feature compares random two of three chan-

nels of the color image represented in the CIE Lab color space at scale-normalized

query positions:

fθ(q) = c1

(
q +

u

d(q)

)
− c2

(
q +

v

d(q)

)
(4.22)

Figure 4.13: In this Figure, the two offsets u and v are both on the object, and
the depth difference or color difference between them is not big.

In the last equation c1 and c2 stand for a randomly chosen color channels,

d(q) stands for a depth at the pixel q in an image. Parameters θ = (u, v) stand

for pixel offsets. A Lab color space (CIE Lab) is a color-opponent space with

dimension L for lightness and a and b for the color-opponent dimensions. The

reason why the rgb image is converted to the CIE Lab color space is because for

the color features, it gives better performance. In Figure 4.15 the example of

region feature is illustrated.

4.2.3 Region Depth Feature

For a query pixel q, a region depth feature compares the average depth regions

at normalized query positions in the image:

fθ(q) = avgd
(
q +

u

d(q)

)
− avgd

(
q +

v

d(q)

)
(4.23)
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Figure 4.14: In this Figure, the offsets u is on the object and v is on the floor
(background), and the depth difference or color difference between them is big.

This feature is similar as the depthfeature, with the difference that depth func-

tion d(q) is replaced with average depth region avgd. The region is defined by

its width and height, which are randomly chosen at each node. Parameters

θ = (u, v, w1, h1, w2, h2) stand for pixel offsets u and v, and for a width w1 and

height h1 of the region of the first offset pixel, and width w2 and height h2 of the

region of the second offset pixel. The purpose of comparing the average depth

regions instead of comparing the individual pixels is to neutralize the Kinect

camera sensor noise.

4.2.4 Region Color Feature

For a query pixel q, a region color feature compares the average channels value

regions at normalized query positions in the image:

fθ(q) = avgc1
(
q +

u

d(q)

)
− avgc2

(
q +

v

d(q)

)
(4.24)

In the last equation avgc1 and avgc2 stand for a randomly chosen lab channels,

d(q)is giving the average depth region for a pixel q in an image. Parameters

θ = (u, v, w1, h1, w2, h2) stand for pixel offsets u and v, and for a width w1 and

height h1 of the region of the first offset pixel, and width w2 and height h2 of

the region of the second offset pixel. The purpose of comparing the CIE Lab

channel value regions instead of comparing the individual pixels is to neutralize

the Kinect camera sensor noise of the color images.
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Figure 4.15: Region color and depth features in the random decision classifier
compare the average values in two regions relative to the query pixel q. I nor-
malize for perspective scale changes in the image by exploiting the dense depth
available in RGB-D images. I scale relative offset locations ui and region ex-
tents wi, hi by the inverse of the depth d(q) measured at the query pixel.

4.2.5 Average Region Calculation Using Integral Images

Average depth and color regions are calculated using the integral images to speed

up the calculation, since the calculation of the features during the training con-

sumes the most of the time. For each pair of color and depth image, one integral

image is constructed consisting of five channels. Three channels are the rgb chan-

nels of the color image, one channel is for the depth image, and one is used for

counting how many elements in the region have non nan depth value. The value

of each channel for the pixel (x,y) of the integral image is the sum of the elements

of sub-matrix for the corresponding channel from the element (0,0) to the element

(x,y). In Figure 4.16 the integral image is visualized.

The average color region from the integral image for the pixel (x,y) is calcu-

lated in the following way:

sumch(q) = P ch4 − P ch2 − P ch3 + P ch1 (4.25)

avgch(q) =
sumch(q)

N
(4.26)

Here, sumch(q) is the sum of the elements in the region for the pixel q of the

channel ch of the integral image, and N is the number of the elements in the
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Figure 4.16: Randomized Decision Forests: The value of each channel for the
pixel (x,y) of the integral image is the sum of the sub-matrix for the corresponding
channel from the element (0,0) to the element (x,y).

region. P ch1 is the upper left element of the region, P ch2 is the down left element

of the region, P ch3 is the upper right element of the region and P ch4 is the down

right. The elementP ch1 is added in the end, because by subtracting the elements

P ch2 and P ch3 from the element P ch4 the region defined by the element P ch1 is twice

subtracted and it has to be added once in the end. avgch(q) is the average color

value of the region for the channel ch of the pixel q. The region calculation is

illustrated in Figure 4.18.

Depth channel of the integral image has the problem because some pixels in

the depth image have nan values (the values which are not valid). To overcome

this problem for the calculation of depth channel elements of the integral image,

each pixel in the depth image which has the nan value is considered to be zero.

Because of this, additional channel needs to be added to the integral image, which

counts how many pixels of the depth image in the region have non-nan values.

The average depth region from the integral image for the pixel (x,y) is calculated

in the following way:

sumd(q) = P d4 − P d2 − P d3 + P d1 (4.27)

nonnan(q) = P4 − P2 − P3 + P1 (4.28)
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avgd(q) =
avg∗d(q)

nonnan(q)
(4.29)

Here, sumd(q) is the sum of the elements of the depth region for the pixel q,

nonnan(q) is the number of pixels in the region which have non nan values, and

avgd(q) is the average depth region for the pixel q.

Figure 4.17: Calculation of the average region of the pixel (X,Y) of the integral
image. R1, R2, R3, R4 are the regions defined from the points P1, P2, P3, P4 to
the element (0,0).
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4.3 Object-Class Segmentation

After the training of the decision forest is done, all the decision trees are saved

to the binary file, so they can be reused in the recall phase. This means that

the training is done only once, and can be reused any time in the future for the

recall.

The image is softly labelled using the randomized decision forest which means

that all the pixels in the image are assigned a class label. For each query pixel

of the image, this is done by traversing the query pixel from the top of the tree

(root) to the leaf node. At each node in the tree, the pixel is forwarded to the

left branch node if the feature function of the node applied on the query pixel is

less than a threshold, otherwise the pixel is forwarded to the right branch node.

At each branch node, the feature function and a threshold is the one chosen

during the training according to the information gain (the feature function and a

threshold which separates the pixels at the best way). The traversing of the tree

ends when the qeury pixel reaches the leaf node. The distribution associated to

the query pixel is the average distribution over all distributions taken from each

decision trees:

p(c|q) =
1

K

K∑
k=1

p(c|lk, q) (4.30)

Here, p(c|q) is the averaged probability over all decision tree that a query pixel q

has a class c, K is the total number of decision trees in the randomized decision

forest, and p(c|lk, q) is the distribution for the class c taken from the decision tree

k, at the node lk.

The query pixel is assigned a class label, by choosing the maximum likelihood

class label from the class distribution of the leaf node, where the pixel ended by

traversing the tree. For example, if the system is trained on two object classes

(e.g. coffee mug, tee box), and the query pixel ends at the leaf node with class

distribution p(background | q) = 0.1, p(coffee mug | q) = 0.7, p(tee box | q) =

0.2, then the maximum likelihood class is coffee mug, because it has the highest

probability among all in the distribution, and label coffee mug is assigned to the

query pixel. If the query pixel has no valid depth measure, than it is not evaluated

because all the features are normalized with the depth value of the query pixel.

l = arg max
c

p(c|q) (4.31)

In the previous equation l is the maximum likelihood class label which is assigned

to the pixel q, and p(c|q) is the averaged probability over all decision trees that

a query pixel has the class c.

Precision, recall, and accuracy are the measures used for evaluating the perfor-

mance of the softly image labelling. Precision of class c is defined as the number
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of correctly classified pixels in the image as the class c over the total number of

pixels classified in the image for the class c:

precisionc =
tp

tp + fp
(4.32)

Here, tp is referred to the true positive, which is the number of correctly classified

pixels in the image, and fp is the false positive, which is the number of pixels in

the image, which are wrongly assigned the class c but the teacher class is different

than c. Precision has the value 1 if all the pixels which are assigned class c are

correctly classified. It can happen that all the pixels which are assigned class c

are correctly classified. but not all the pixels from the object class c are labelled

as c.

Recall is defined for the class c as the number of correctly classified pixels

(as the class c)) over the total number of pixels in the teacher image which are

assigned class c:

recallc =
tp

tp + fn
(4.33)

Here, tp is referred to the true positive, which is the number of correctly classified

pixels in the image, and fn is referred to false negative, which is the number of

pixels in the image having the teacher class c, but they are wrongly assigned

other class than c. tp + fn is the number of teacher pixels in the image for the

class c. Recall is showing how good is the object of class c labelled. It will be 1

(the best performance) if all the pixels of the object class c are labelled as class c,

no matter if other pixels not belonging to the object class c are assigned wrongly

the class c. Recall and precision are only describing the performance if they are

shown together.

Accuracy is a measure defined as:

accuracyc =
tp

tp + fp + fn
(4.34)

where, tp is referred to the true positive, which is the number of correctly classified

pixels in the image, fn is referred to false negative, which is the number of pixels

in the image having the teacher class c, but they are wrongly assigned other class

than c, and fp is the false positive, which is the number of pixels in the image,

which are wrongly assigned the class c but the teacher class is different than c.

Accuracy is 1 (the best performance) if the fp and fn are zero. This happens if

all the pixels which have the teacher class c are correctly assigned class c, and

no other pixels in the image are assigned class c. Accuracy is a good measure,

because it can be compared easily with performance of other algorithms, since it

is a single value, and it incorporates both errors from precision and recall.

The precision, recall and accuracy are computed for each class over the whole

test dataset, meaning that the number of correctly classified pixels tp, number of
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teacher pixels tp + fn, and number of incorrectly classified pixels fp are summed

over all images in the test set, and finally the precision, recall and accuracy are

computed using these values.
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Figure 4.18: Object class segmentation of the images consisting of big objects
using randomized decision forests. Left column shows a good classification ex-
ample. Right column shows bad classification example. Images in the top row
are original images, under them are teacher images, followed by classified image,
then the image showing the distribution probabilities for objects human, barrel,
canister and palette. In the left column all objects are succesfully labelled, and
in the right column the canister is poorly labelled.
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Figure 4.19: Object class segmentation of the images consisting of small objects
using randomized decision forests. Left column shows a good classification ex-
ample. Right column shows bad classification example. Images in the top row
are original images, under them are teacher images, followed by classified im-
age, then the image showing the distribution probabilities for objects coffee cup,
mouse, and teebox. In the left column all objects are succesfully labelled, and in
the right column the objects of interests are generally found in the image, but
also the parts of the desk are wrongly labelled
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Figure 4.20: Semantic mapping. Upper left: RGB image of a scene. Upper right:
Ground truth object-class segmentation. Down left: Back-projected 3D object-
class segmentation overlayed on RGB image. Down right: 3D object-class map
obtained by fusing multiple views from a SLAM trajectory.

4.4 Semantic Mapping

I integrate my object-class segmentation method with SLAM to fuse the segmen-

tations of individual images in a dense 3D map.

4.4.1 Probabilistic 3D Mapping of Object-Class Image Segmentations

Given the trajectory estimate from the SLAM approach and the depth informa-

tion in the images, the probabilistic object-class segmentations of the individual

views are projected into 3D space and filter this information in a probabilistic

octree map. Each voxel v of the octree stores a belief Bel(c(v)) that the object

class c(v) is present in its volume

Bel(c(v)) = p(c(v)|Z,S), (4.35)

where Z is the set of RGB-D images with probabilistic labelling and S is the

trajectory estimate. My goal is to integrate segmentation evidence from multiple

views in a 3D map and to improve segmentation quality.
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I successively project the image pixels into 3D and determine corresponding

octree voxels. The belief in the voxel is then updated in a Bayesian framework

with the pixel observations q1:N := {q1, q2, ..., qN} that fall into the voxel:

p(c(v)|q1:N ,S) =
∑

c(q1),··· ,c(qN )

p(c(v), c(q1), · · · , c(qN )|q1:N ,S) (4.36)

Neglecting the known trajectory and applying Bayes rule yields:

p(c(v)|q1:N ) =
∑
···
p(c(v), c(q1), · · · , c(qN )|q1:N )·p(c(q1), · · · , c(qN )|q1:N ) (4.37)

The left term can be further factored using Bayes rule, while for the right

term we impose independence between pixel observation. We arrive at

p(c(v)|q1:N ) = p(c(v))
∑
···

∏
i

ηip(c(qi)|c(v))p(c(qi)|qi), (4.38)

where

ηi =
1

p(c(qi)|c(qi+1, · · · , c(qN ))
(4.39)

I approximate p(c(qi)|qi) with the output of the RF classifier p(c(qi)|qi,F)

The probability:

p(c(v)) = Bel0(c(v)) (4.40)

incocrporates prior knowledge on the belief. For the distribution:

p(c(qi)|c(v)) = 1{c(v)}(c(qi)) (4.41)

I assume a deterministic one-to-one mapping. It follows that

p(c(v)|q1:N ,S) = Bel0(c(v))
∏
i

ηip(c(qi) = c(v)|qi,F) (4.42)

which can also be applied recursively.

To back-project the pixel of the image to the octree cell, the corresponding 3D

point is taken from the point cloud, and the 3D point is then transformed to the

initial coordinate frame (the first image in the scene) and the 3D point is added

to the corresponding octree cell. All 3D points are transformed to the initial

coordinate frame in order to have all 3D points defined in the same coordinate

frames (different images have different coordinate frames). The transformation

of the 3D point to the initial coordinate frame is done by multiplying the 3D

point in the homogeneous coordinates by the inverse transformation matrix:
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Xinit

Yinit
Zinit

1

 = Tn,0


X

Y

Z

1

 (4.43)

Here, Xinit, Yinit, Zinit, 1) is the 3D point in the initial coordinate frame, (X,Y, Z, 1)

is the 3D point which is transformed to the initial coordinate frame, and Tn,0 is

the transformation matrix from the coordinate frame n to the initial frame. The

transformation matrices are constructed using quaternion (q1, q2, q3, q4) which

stands for a orientation from the initial camera view and a position vector (x, y, z)

which stands for a distance from the initial camera view. The quaternion and

a position vector are taken from the RGB-D SLAM method. The quaternion

is transformed to the rotational 3x3 matrix R and the transformation matrix is

constructed in the following way:

T =

[
R t

0 1

]
(4.44)

The projection of the octree cell to all images belonging to the same scene

is done by using the standard pinhole camera model. The cells of the octree

are represented in the initial camera position coordinate frame. The 3D position

of the cell is first transformed to the coordinate frame of the image where it is

projecting, and then the pinhole camera model is used to project a 3D point onto

an image plane. Transformation of the 3D point in the homogeneous coordinates

Xinit, Yinit, Zinit, 1) to the image coordinate frame is done by:
X

Y

Z

1

 = T−1n,0


Xinit

Yinit
Zinit

1

 (4.45)

Here the inverse matrix is used because Tn,0 is the transformation matrix, which

is transforming the point from the nth frame to the initial frame and we here is

opposite direction needed.
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Experiments

I evaluate my approach on a datasets containing RGB-D videos of four larger

object classes and 3 smaller object classes. The datasets contain 500 training

images and 500 test images from 47 and 40 scenes, respectively, with several

instances of the object classes in varying configuration. I use precision, recall,

and accuracy [8] measures to quantify segmentation quality. I assess the overall

accuracy on a testset by summing over the pixel decisions of all classes. Since the

background class is semantically different to the object classes, I also measure

the segmentation quality of the object classes without background class. In order

to assess the quality of the fused semantic maps, I back-project the octree belief

over object-classes into the test images.

Table 5.1 shows the average precision, recall and accuracy for the small objects

classes in varying configuration. Using only color features gives poor classifica-

tion performance (accuracy 0.07), since the most small object classes are colorfull

(e.g. teabox, cups) and the color feature in this case is not able to recognize the

objects. On the other hand, using only depth feature the classification perfor-

mance is significantly higher than using only color feature. The depth feature is

stronger feature than a color feature for the small objects, because the different

instances of object classes (e.g. cups, mice) have similar shape and dimensions,

but quite different colors. The depth feature is able to recognize all the object

classes. The combination of depth and color feature gives slightly worse classi-

fication performance comparing to performance using only depth feature. This

happens because the color feature for the small object classes is not helping at all

in recognizing the objects, in fact it is decreasing the classification performance

in most cases by making false decisions in the random decision trees. The com-

bination of color and depth feature has higher performance on the object class

mice comparing to using only depth feature, because the mouse is very small

object, and there are no big depth jumps between the mouse and the background
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Table 5.1: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for small objects without background class.

method precision recall accuracy

unnorm. color 0.13 0.14 0.07
norm. color 0.14 0.15 0.07
norm. depth 0.40 0.61 0.32

norm. color + depth 0.35 0.65 0.29
norm. color + depth + 3D 0.64 0.97 0.42

Table 5.2: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for small objects with background class.

method precision recall accuracy

unnorm. color 0.95 0.95 0.90
norm. color 0.95 0.95 0.90
norm. depth 0.96 0.96 0.92

norm. color + depth 0.95 0.95 0.91
norm. color + depth + 3D 0.97 0.98 0.95

(mostly due to the noise in the Kinect sensor) so the depth feature alone can’t

recognize mouse at all, and the combination of color and depth feature is able to

recognize mouse. The 3D fusion is significantly outperforming the combination

of color and depth features, for the accuracy around 13%. It is interesting that

the average recall is improved from 0.65 to 0.97, which means that almost all the

pixels belonging to the objects are classified correctly, while the average precision

0.64 is indicating that a part of a background is misclassified as one of the object

classes.

Table 5.3 shows average results for different kinds of RF classifiers for the

large objects without background class. It can be seen that for the big object

classes using only color feature is gives relativly good classification performance.

I also conclude that, on this dataset, depth-normalized color is a prominent fea-

ture and yields higher accuracy than normalized depth queries alone. The scale

normalization of the features using depth enhances the quality of the color fea-

tures significantly. The color feature is able to recognize the big object classes

(unlike small object classes) because the most instances of the big object classes

have similar color (e.g. barrels have mostly blue color, pallet have always brown,

humans have specific color of the face). I noticed that the humans are overfitted

to specific colors. For example, the white color was dominant in most instances

of humans (cloth which persons were wearing), and in some cases, the classifier

is assigning the human label to the objects in the image which have white color.
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Table 5.3: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for large objects without background class.

method precision recall accuracy

unnorm. color 0.61 0.48 0.37
norm. color 0.74 0.61 0.51
norm. depth 0.71 0.38 0.33

norm. color + depth 0.78 0.69 0.58
norm. color + depth + 3D 0.87 0.76 0.68

Table 5.4: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for large objects with background class.

method precision recall accuracy

unnorm. color 0.80 0.80 0.67
norm. color 0.85 0.85 0.74
norm. depth 0.80 0.80 0.67

norm. color + depth 0.87 0.87 0.78
norm. color + depth + 3D 0.91 0.91 0.83

The classifier is able to recognize humans, as long as the color of the cloth which is

human wearing is similar to the cloth of the human instances which were present

during the training of the random decision forest. The depth feature obviously

doesnt’t have problems with colors, but it is not performing better than normal-

ized color feature because the size and shape of the object instances is varying

a lot. The combination of color and depth feature is performing better than us-

ing only color or depth feature, which indicates that the random decision forest

during the training is able to choose the better feature (if color feature is better

indicator for barrel which is in most cases blue, than it will choose color feature).

The 3D fusion of color and depth image segmentations clearly outperforms the

other approaches. It improves on purely image-based segmentations by about

10% for the object classes without background.

Table 5.5 shows the performance of color + depth feature of the small objects,

and the performance of the 3D fusion of color and depth image segmentations.

It can be seen that the cups are classified significantly better than teaboxes and

mice, because the shape of the cups is mostly the same, and cups are in some way

rotationally invariant because of the cylindrical shape. The tea boxes are harder

to classify because there are very colorful which unables color feature to recognize

it, and it is not rotationaly invariant (like cups). The performance of the mouse

is the worst, because it is very small so the depth feature can’t recognize them,

but because of the specific color (black and gray), color feature is able to poorly
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Table 5.5: Per-class precision, recall, and accuracy of max-likelihood object-class
segmentation for small objects.

norm. color + depth norm. color + depth + 3D
class prec. recall acc. prec. recall acc.

cup 0.42 0.81 0.38 0.76 0.94 0.73
teabox 0.28 0.63 0.24 0.41 0.72 0.35
mouse 0.43 0.47 0.29 0.98 0.20 0.20

background 0.99 0.96 0.95 0.99 0.98 0.97

Table 5.6: Per-class precision, recall, and accuracy of max-likelihood object-class
segmentation for large objects.

norm. color + depth norm. color + depth + 3D
class prec. recall acc. prec. recall acc.

palette 0.93 0.84 0.78 0.98 0.90 0.88
barrel 0.92 0.73 0.68 0.95 0.85 0.81

canister 0.74 0.13 0.12 0.95 0.22 0.22
human 0.56 0.59 0.40 0.69 0.64 0.49

background 0.91 0.94 0.86 0.92 0.97 0.89

recognize them.

Table 5.6 is comparing the performance of combination of color and depth

feature of the large object classes, and the performance of the 3D fusion of color

and depth image segmentations. Overall, the barrels and palletes are recognized

in almost all images with a very high accuracy, because they have very specific

colors and the color featue is able to recognize them successfully. The canister

is classified the worst, becuase there are instaces of canister which have around

50 cm height, and instances which are double smaller which makes the classifi-

cation harder. Another reason why the canister object class is poorly classified

is that there are instances of canister which have white color, and the classifier

is overfitted for the humans object class on white color (because most of the

humans instances were wearing white cloth), thus the classifier is assigning in

most cases the human label on the pixels which actually belong the the canister

label. Overall the The 3D fusion of color and depth image segmentations clearly

outperforms the performance of using combination of color and depth.

Table 5.7 is comparing the performance of the classifier using different param-

eters of the minimum support of the leaf node (the leaf node is not split during

training if the number of pixels at the node is lower than a minimum support

of the leaf node). The best performance is achieved using the minimum support

of the leaf node 1000. I conclude that the minimum support of the node 100

is performing worse than 1000 because it is too small number comparing to the
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Table 5.7: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for small objects without background class for the parameter min-
imum support of the leaf node.

min support of leaf node precision recall accuracy

100 0.35 0.65 0.29
1000 0.44 0.62 0.35
5000 0.52 0.2 0.18

Table 5.8: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for small objects without background class for the parameter max-
imum depth of the tree.

max depth of the tree precision recall accuracy

10 0.11 0.80 0.10
15 0.35 0.65 0.29
20 0.51 0.45 0.31

total number of input pixels at the root node, so it is overfitting the training data.

The minimum support 5000 has the worst performance, because the number of

pixels at the leaf node is too large to make a correct decision, and it is indicator

that the leaf nodes should be further split in order to recognize the object

Table 5.8 shows the average precision, recall, and accuracy of max-likelihood

object-class segmentation for small objects without background class for the pa-

rameter maximum depth of the tree (if the node reaches the maximum depth

of the tree, it is not split). The maximum depth of the tree 20, shows the best

performance among all, but since it just slightly outperforms the performance

of maximum depth 15, I would say that maximum depth 15 is better because

it generalize better and it classifies the image faster. The more deeper is the

tree, it overfitts more the training data. It is interesting that the recall of the

maximum depth 10 of the tree is showing very high recall but low precision. It

means that the most of the pixels of the objects are classified correctly, but the

background is misclassified. This could be possible improved if the prior for the

background would be increased (increasing the probability that the pixel belongs

to the background class).

Table 5.9 shows the average precision, recall, and accuracy of max-likelihood

object-class segmentation for small objects without background class for the pa-

rameter maximum feature offset (see Equation 4.21). It shows similar perfor-

mance for the maximum offsets 30 and 70, but the maximum offset 120 is too

large for the small object classes.

Table 5.10 shows the average precision, recall, and accuracy of max-likelihood
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Table 5.9: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for small objects without background class for the parameter max-
imum feature offset.

max depth of the tree precision recall accuracy

30 0.35 0.65 0.29
70 0.38 0.61 0.3
120 0.23 0.53 0.19

Table 5.10: Average precision, recall, and accuracy of max-likelihood object-class
segmentation for small objects without background class for the different kind of
choosing input pixel from training images at the start of the training.

distribution precision recall accuracy

even 0.35 0.65 0.29
not even 0.37 0.54 0.27

120 0.23 0.53 0.19

object-class segmentation for small objects without background class for the dif-

ferent kind of choosing input pixel from training images at the start of the train-

ing. Choosing the input pixels evenly (for each class the same number of pixels

is chosen) shows better performance than choosing the pixels not evenly. This

happens because only small number of pixels are chosen from the small objects

like mouse, if the pixels are not chosen evenly.
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Conclusions

In this master thesis, I proposed a novel approach to semantic mapping. I apply

object-class image segmentation to recognize objects pixel-wise in RGB-D im-

ages. I incorporate depth and color cues into a random decision forest classifier

and normalize the features for scale using depth measurements. Based on trajec-

tory estimates obtained with a SLAM method, I fuse the image segmentations

into a probabilistic 3D object-class map in order to improve the classification per-

formance of the object-class segmentation. In experiments on two datasets, one

for small objects classes and one for large object classes, I demonstrate that my

approach provides a 3D segmentation of the object classes, and also significantly

improves 2D object-class segmentation performance.

I conclude that the segmentation quality of my approach highly depends on

the properties of the underlying object-class image segmentation method. While

many other methods exist that demonstrate good segmentation results, the re-

call efficiency of the segmentation approach is of equal importance for online

processing and application in a robotics setting.

The classification performance of the object-class image segmentation method

depends on the choice of the training and test images. In order to avoid over-

fitting (to have good generalization), the large training dataset is needed. It is

important that the training dataset consists of many different scenes with dif-

ferent configuration, and that many different instances of objects are present

(different colors, shape, size of objects, different background).

The quality of the 3D fusion depends mainly on the quality of the object-

class image segmentation method. If the performance of the object-class image

segmentation method is poor, then the 3D fusion would make results even worse.

On the other hand, if the object-class image segmentation method give good

classification performance, then the 3D fusion greatly improves the classification

performance. The quality of the 3D fusion also depends on the quality of the
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trajectory obtained by the SLAM method. If the trajectory is bad than the

3D fusion makes the classification performance in most cases worse, since the

alignment between the frames are bad.

6.1 Future Work

In future work, it would be nice to integrate further descriptive image features like

Histograms of Oriented Gradients (HOG)or Fast Point Feature Histograms. In

order to scale my approach to larger sets of objects, the combination of multiple

random decision forests could be considered. The hierarchical approach would

probably help to improve the classification performance, where the category (e.g.

canister) would be subdivided into subcategories (e.g. small size canister, large

size, green canister, blue canister ...). For some object class (e.g. humans) it

would help to subdivide the category into subcategories of different parts of body

because they are all specific for each human. The 3D fusion could be improve

if the air class would be included in the 3D octree map. All individual images

would project the object class pixels to the octree, and beside that, the air would

be projected to the octree. The pixels which belong to the air class, are the

pixels with around 5cm smaller depth than the object pixels. Beside updating of

the cell of the octree using Bayesian approach, the counting procedure could be

used.
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