
Rheinische

Friedrich-Wilhelms-

Universität Bonn

Institute for Computer Science

Department VI

Autonomous Intelligent Systems

ais

Rheinische

Friedrich-Wilhelms-Universität Bonn

Master thesis

Recurrent Convolutional Neural Networks for

Object-Class Segmentation

Author:

Mircea-Serban Pavel

First Examiner:

Prof. Dr. Sven Behnke

Second Examiner:

Prof. Dr. Simone Frintrop

Advisor:

Hannes Schulz

Submitted: 29th January 2015

Declaration of Authorship

I declare that the work presented here is original and the result of my own

investigations. Formulations and ideas taken from other sources are cited as such.

It has not been submitted, either in part or whole, for a degree at this or any

other university.

Location, Date Signature

Abstract

Object-class segmentation is a computer vision task which requires labeling each

pixel of an image with the class of the object it belongs to. Deep convolutional

neural networks (DNN) are able to learn and exploit local spatial correlations re-

quired for this task. They are, however, limited by their small and fixed-sized

filters, which limits their ability to learn long-range dependencies. Recurrent Neu-

ral Networks (RNN), on the other hand, do not suffer from this restriction. Their

cyclic interpretation allows them to model long-range dependencies. This property

might be especially useful when labeling video sequences, where both spatial and

temporal long-range dependencies occur. In this thesis, we inspect several promis-

ing RNN architectures for this purpose. We investigate how we can consider past

and future context in the prediction process by comparing networks that process

the frames one by one with networks that have access to the whole sequence. For

implementing the proposed models we use the CUV and CUVNET libraries, built

on top of the CUDA architecture, to speed up the training and evaluation process.

We will evaluate our models by comparing to non-recurrent (i.e. single frame)

models on the NYU Depth v2 video sequence database.

Contents

1. Introduction 1

1.1. Approach . 1

1.2. Structure of the thesis . 2

2. Related work 3

2.0.1. Neural Abstraction Pyramid 4

2.0.2. Bidirectional Recurrent Neural Network 5

2.0.3. Scene Inference . 6

3. Foundations 9

3.1. Convolutional Neural Networks . 9

3.2. Recurrent Neural Networks . 12

3.2.1. Training Recurrent Neural Networks 13

3.2.2. Vanishing and Exploding Gradient Problem 13

3.2.3. Exploiting Temporal Dependencies 14

3.3. Preprocessing . 17

3.3.1. Histogram of Oriented Gradients 17

3.3.2. ZCA Whitening . 18

3.3.3. Preprocessing the depth . 19

3.3.4. Geometric Transformations 20

3.3.5. Generating Intermediate Ground Truths 20

3.3.6. Sliding window . 22

3.4. Training . 23

3.4.1. Gradient . 23

3.4.2. Loss Function . 24

3.4.3. Regularization . 25

4. Recurrent Convolutional Networks 27

4.1. Architectures . 27

4.1.1. Simplified RNN . 28

4.1.2. Unidirectional RNN . 29

4.1.3. Bidirectional RNN . 30

vii

Contents

4.1.4. Extra network features . 31

4.2. Implementation of RNN on CUDA 32

4.2.1. CUDA framework . 32

4.2.2. CUV library . 33

4.2.3. CUVNET library . 33

4.2.4. Integration with CUV and CUVNET 37

5. Experiments 39

5.1. Toy Experiments . 39

5.1.1. Denoising a static object . 39

5.1.2. Learning a trajectory . 42

5.1.3. Trajectory Inference . 44

5.2. Experiments on NYUD . 46

5.2.1. Memory limitation . 46

5.2.2. Kernel size limitation . 48

5.2.3. Creating sequences . 49

5.2.4. Dataset Issues . 50

5.2.5. Methodology . 50

5.2.6. Results, first stage of experiments 52

5.2.7. Results, second stage of experiments 55

5.2.8. Overview on the results . 61

5.2.9. Comparison with other results 63

5.3. Time measurements . 66

5.4. Difficulties . 68

6. Conclusion 71

6.1. Future work . 72

A. Appendix 79

viii

List of Figures

2.1. Neural Abstraction Pyramid showing the three types of connections:

forward, backward and lateral (Behnke, 2003) 4

2.2. Scene Inference (Pinheiro and Collobert, 2013) 6

3.1. Structure of neocognitron. Fukushima, 1980 9

3.2. Comparison of the three nonlinear function: tanh, softplus, rectifier 11

3.4. Back Propagation Through Time 13

3.5. Bidirectional Recurrent Neural Network 15

3.6. HOG channels . 17

3.7. Result of ZCA whitening on each of the 3 channels. Orange repre-

sents positive values, blue negative ones 18

3.8. HOD channels . 19

3.9. Generating Intermediate Ground Truths 21

3.10. Sliding Window . 22

3.11. Ignore Mask . 25

4.1. Connecting several layers together 28

4.2. Architecture of the Simplified RNN 29

4.3. Architecture of the Unidirectional RNN 30

4.4. Architecture of the Bidirectional RNN 30

4.5. reorder for conv routine . 34

4.6. reorder from conv routine . 34

4.7. Overview of the whole system . 36

4.8. Gradient Clipping operator . 37

5.1. Outputs for Toy Experiment #1 . 40

5.2. Outputs for first toy experiment, non recurrent model. 40

5.3. Moving average on the inputs . 41

5.4. Outputs for Toy Experiments #2 43

5.5. Outputs for Toy Experiment #3 . 44

5.6. Original image . 46

5.7. Labeled frame of NYUD . 46

ix

List of Figures

5.8. Splitting convolution operation . 48

5.9. Steps done in preprocessing the depth 51

5.10. Effect of a bad initialization . 54

5.11. Activations for different network configurations 56

5.12. Prediction for one sample of NYUD test dataset 60

5.13. Forward connections between Layer 2 and Layer 3 62

5.14. Lateral connections between Layer 2 and Layer 2 62

5.15. Backward connections between Layer 2 and Layer 1 62

5.16. Prediction for one of the NYUD dataset frames 64

A.1. Simplified architecture . 79

A.2. Unidirectional architecture . 80

A.3. Bidirectional architecture . 81

x

List of Algorithms

1. Simple Histogram of Oriented Gradients 18

2. Computation of the decorrelation matrix Q 19

3. Computation of the intermediate ground truths 20

xi

1. Introduction

In the attempt to build autonomous systems capable of interpreting the environ-

ment and of extracting relevant information from it, researchers often resort to

using biologically inspired models. Just as the human vision system is able to

work on different levels of abstraction by building high level features from low

level ones, segmenting an image consists in partitioning the pixels into distinct

groups (segments) which define the new set of features that are to be analyzed

further.

Object-class segmentation is a Computer Vision task, aiming to label each pixel

of an image with the class of the object it belongs to.

Our task is to perform object class segmentation on RGBD video frames. An

RGBD frame consists of color and depth information, captured by Microsoft Kinect

cameras, providing a three dimensional perspective of the environment. In addition

to the color and depth information, we also have access to a temporal context

consisting of frames which are temporally close to the current frame.

1.1. Approach

The idea of a convolutional neural network was introduced first in Fukushima,

1980 but refined especially in the last decade, when the interest in such models

increased, due to the fact that they were suitable for parallelization, in the context

of a rapid development of parallel architectures such as Graphical Processing Units

(GPUs).

Our approach starts with a convolutional model to which we add recurrent con-

nections, transforming it into a Recurrent Neural Network (RNN). Such recurrent

connections empower the model with the capability of processing sequences of

inputs, and thus of accumulating information over time, exploiting temporal de-

pendencies. Such a dynamic model relies on several measurements taken over time,

allowing it to derive a more detailed perspective. Moreover, noisy measurements

have a smaller impact compared to the case when the model only relies on the

current time step. Another advantage is in the ability to better understand the

dynamics of the environment (e.g. motion of the objects).

1

1. Introduction

In this work, three different neural architectures will be implemented and tested.

In the first version, the network processes all inputs together. The second one

processes each input in one time step, in the order given by the sequence. The

third architecture, in addition, processes the inputs in the reverse order as well and

combines the two results. Moreover, we test several extension ideas that can be

applied to one or more of our networks in order to, hopefully, improve the learning

capabilities.

For testing our network we will use the NYUD dataset (Silberman et al., 2012),

consisting of RGBD video sequences. Our results will first be compared to those of

the convolutional model, which we use as baseline, and then to the other model’s

results as well.

1.2. Structure of the thesis

In the next chapter we discuss related work in object-class segmentation and deep

neural networks, summarizing several approaches. Chapter 3 consists of the theo-

retical foundations on which the model was design, followed by a chapter describing

in detail the networks used. The experiments carried and their result are presented

in Chapter 5. Chapter 6 concludes this thesis, also describing further ideas that

could improve the model.

2

2. Related work

In Grangier et al., 2009 a deep convolutional network is trained in a greedy manner,

starting by training the first layer, and adding the rest of the layers, one at the

time, re-training the whole network in every step. This approach was able to

outperform models such as Conditional Random Fields and Random Forests in

the task of object-class segmentation.

Socher et al., 2011 describes the recursive neural network (should not be confused

with recurrent neural network) as a deep network, receiving as input an over-

segmented image and recursively merging the segments. This model minimizes a

loss that encourages semantically similar segments to be aggregated together.

In Farabet et al., 2013, the authors propose a convolutional network able to

learn feature vectors that represent regions of different sizes centered on each

pixel. These features are afterwards post-processed in order to generate the final

labeling of the entire scene.

A convolutional network is also used in Schulz and Behnke, 2012, where the

input consists of ZCA (Zero Component Analysis) and HOG (Histogram of Ori-

ented Gradients) channels. Training is done also layer-wise, one layer at a time,

but the outputs of the already trained part of the network are reused. Another

improvement is the use of pairwise class localization filters, a convolution with a

large filter applied on top of the output layer, which is able to repair the prediction

to some extent from spurious observations.

Recent work of M. Jung, 2014 uses a recurrent neural network for recognizing

human actions. They introduce the multiple timescale recurrent neural network

(MTRNN), as a network able to process images at different scales, but also able to

work at multiple timescales by incorporating a time constant in each layer which

adjusts the timescale. They use a larger value for this constant in the top layers

(slower timescale dynamics) than in bottom layers.

One example of task where deep neural networks currently achieve state of the

art results is the digit recognition task, where the lowest classification error on

MNIST dataset was obtained using a model based on several convolutional neural

network classifiers (Ciresan et al., 2012).

Another notable result, this time in unsupervised learning, is of deriving con-

cepts out of unlabeled data consisting of random video frames from Youtube (Le et

3

2. Related work

Figure 2.1: Neural Abstraction Pyramid showing the three types of connections:
forward, backward and lateral (Behnke, 2003)

al., 2012). The authors state that they obtained neurons that function as detectors

for faces, human bodies and cat faces.

In the ImageNet large-scale visual recognition challenge (ILSVRC) of 2014,

GoogLeNet (Szegedy et al., 2014), a nine-layer deep neural network was able not

only to win the classification and detection competitions, but also to double the

results quality on both tasks, compared to those of the last year.

We further describe some of the related work that significantly influenced and

inspired our approach or parts of our design. For each we will outline the ideas

that we use, and also ways to adapt those ideas to our needs.

2.0.1. Neural Abstraction Pyramid

The Neural Abstraction Pyramid is defined in Behnke, 2003 as “a neurobiologi-

cally inspired hierarchical neural network with local recurrent connectivity”. This

architecture will be the foundation of our design. Figure 2.1 depicts the overview

of the network together with its three different types of connections: forward,

backward and lateral.

The forward and backward connections capture the correlation between high-

level and low-level features, while the lateral ones are responsible for the correla-

tions between a feature and its neighboring features.

The number of maps is doubled with every new level of abstraction. This how-

ever does not double the memory consumption of the new layer since the size of

4

the representation is at the same time halved in both dimensions. In other words,

as the features become more and more abstract, their number grows as well.

The output of the network is obtained on its bottom layer. This gives another

strong advantage to such a recurrent architecture, because compared to a simple

feed forward network which constructs the output in the top layer, the pyramid

generates a full scale representation of the output, without needing to further

upscale it when evaluating it against the ground truth. This is especially useful

for tasks where we have to produce a label for each individual pixel such as our

object-class segmentation task.

The network was tested on the tasks of digit recognition and face localization.

In the task of digit recognition, the MNIST dataset was used and small occlusions

were simulated. The network showed capability of filling the occlusions and thus

of keeping a long range memory.

For the task of face localization, the BioID (Jesorsky et al., 2001) dataset was

used. Primarily the task was to detect, for each face in the dataset, the position of

the eyes. This experiment was repeated afterwards while simulating the movement

of the input, teaching the network to track the eyes of the person.

For training the network, RProp was used, together with back propagation

trough time. RProp has the property of counteracting the effects of vanishing

gradients and exploding gradients. More information about those phenomena are

provided in Section 3.2.2.

As previously stated we use this model as base for our design, and we further

outline the ideas that will also be present in our network. We use all three con-

nections types, but we implement the lateral connections differently, in a way that

allows us to benefit from parallelism. We also construct the output in the bottom

layer. Training is done similar, but using a RProp method suitable for mini-batch

learning, namely RMSProp. One difference is that in our design we keep the num-

ber of filters constant for all abstraction levels. This is a consequence of observing

the fact that doubling the number of filters every new abstraction layer results in

a too complex model for the dataset that we use.

2.0.2. Bidirectional Recurrent Neural Network

Bidirectional Recurrent Neural Network (BRNN) were successfully used for the

tasks of speech recognition in Graves et al., 2013 and for the task of image seg-

mentation in Graves, 2012 The Bidirectional Recurrent Neural Network (BRNN)

processes sequences of inputs in both directions. This way, the network is able to

make use of both the past and the future context. The brief idea behind the BRNN

is of using two different networks, each processing the sequence in one direction.

5

2. Related work

Figure 2.2: Scene Inference (Pinheiro and Collobert, 2013)

The final output of the network is obtained by combining the two outputs.

Since we work with sequences of video frames as input, using such a model might

prove beneficial. We apply the idea differently. In Graves, 2012 the BRNN is ap-

plied to learn long range spatial dependencies. We already have such a mechanism

for long range spatial dependencies through the lateral connections and thus we

are more interested in exploiting the temporal dependency in both directions, the

future and the past context.

2.0.3. Scene Inference

Pinheiro and Collobert, 2013 approach to the object-class segmentation task is

to use a recurrent neural network with a structure similar to Jordan networks,

presenting the same input image to all the temporal copies, but at different scales.

This is motivated by the resolution decrease of the input, due to the pooling layers,

after being forwarded through the network.

In order to obtain the labeling of the full-scale image, the authors use a technique

called “scene inference” which requires an extension of the input set with shifted

versions of the input image and a interleave operation on the outputs.

This network structure is able of learning long range spatial dependencies be-

tween pixels, but at the same time of keeping a small filter size, speeding up the

involved calculations.

This idea inspired us in implementing an operator that upscales the output of

a hidden layer such that we can propagate it backwards. While scene inference

might be more accurate then our simple upscaling operation, it also slows down

both training and prediction, by a constant factor which depends on the depth of

the network and the downscaling factor of the pooling operations.

Also, the purpose for using such an operator is different in our case. While they

build the full scale output by interleaving high level representations obtained in

6

the highest level of the network, we already have a full scale output since we obtain

it on the bottom level of the network. We instead use upscaling as part of the

backward and lateral connection, mapping pixels from a high level representation

into a region of a lower level representation.

7

3. Foundations

3.1. Convolutional Neural Networks

Convolutional Networks are multi-layered learning models inspired from the bio-

logical visual cortex. LeCun et al., 2010 describe each stage in a convolutional

network as being composed of “a filter bank, some non-linearities, and feature

pooling layers”.

The modern architectures of convolutional neuron networks are based on the

architecture of the neocognitron (Fukushima, 1980), that uses S (simple) and C

(complex) layers which have similar functionality to the filter-bank and the pooling

layers respectively, while hyperbolic tangent units are used for providing non-

linearity.

Due to the sparse connectivity between layers, such networks are well suited for

vision tasks, since they exploit the local spatial correlation between pixels. Also,

by having a larger number of layers they allow a better generalization, low level

features derived in the lower layers of the network being reused to create high-level

features.

Filter-bank layer

This layer is a collection of filters, each being responsible for learning one feature.

A filter is a map of neurons that responds to a feature. For this, the neuron is

Figure 3.1: Structure of neocognitron. Fukushima, 1980

9

3. Foundations

connected through plastic connections to all cells located in a rectangular patch

(receptive field) centered at the position of the neuron. During the feed forward

step, a weighted sum is calculated for each neuron, and the bias term is added.

The output of a neuron is:

yj = bj +
∑
i

kij ∗ xi (3.1)

where yj is the output feature map j, xi is the patch of the input feature map i,

kij are the weights connecting the two feature maps (kernels) and bj is the bias.

Since the whole filter responds to the same feature, it is able to detect it in any

position. Another consequence to this fact is that all the neurons of a filter share

the same weight set. Apart from the weight sets and biases, a filter-bank is also

defined by structural parameters such as:

• Number of Filters

The number of features learned by this layer.

• Filter Size

The size of the receptive field.

• Stride

Distance in pixels between successive applications of the filter.

• Padding

When applying a filter to the whole image, the size of the image would

normally decrease with the filter size due to the border effect. To counter this

effect the image can be padded with zeroes (no activation) before applying

the filter

Feature Pooling Layer

Pooling layers are responsible for collecting each feature within a receptive field.

They do not derive new features, keeping the original feature set, and thus the

number of output filters is equal to the number of input filters. The activation

of a neuron in such a filter depends on the presence of the corresponding feature

in the receptive field. However, the way this activation is calculated makes the

difference between different pooling methods. Two such methods are max-pool

and average-pool which calculate the maximum activation within the receptive

field P and average respectively. One effect of this operation is that it allows a

certain shift-invariance, since the features are active even if they are not exactly

in the expected position as long as they are inside of the receptive field. Another

effect is the resolution decrease, a more abstract representation, with higher-level

features, being produced.

10

3.1. Convolutional Neural Networks

y =
1

|P |
∑
x∈P

x (3.2) y = max
x∈P

x (3.3)

Non-liniarity Layer

In their analysis of nonlinearities effect in deep neural networks, acknowledge

that although sigmoid neurons are “more biologically plausible than hyperbolic

tangent neurons”, in training multi-layer neural networks hyperbolic tangent used

as transfer function leads to better result . As a consequence, in the traditional

architectures hyperbolic tangent (tanh) was the default nonlinearity unit used.

However, lately this aspect was investigated, research studies pointing to the

rectifying units as better replacements for the sigmoid and tanh units. Rectifying

units apply an activation function called rectifier (Equation (3.4)) that is an ap-

proximation of the softplus function (Equation (3.5)):

y = max(x, 0) (3.4) y = log(1 + ex) (3.5)

Using such activation units leads to a network producing sparse representations,

which argue to be more biologically plausible and also to have the mathematical

advantage of being “more likely to be linearly separable, or more easily separable

with less non-linear machinery”.

x

f(x)

Figure 3.2: Comparison of the three nonlinear function: tanh, softplus, rectifier

11

3. Foundations

3.2. Recurrent Neural Networks

Recurrent Neural Networks (RNN) were introduced in late ’80, several structures

for such networks being proposed in Jordan, 1986; Elman, 1990; Hopfield, 1982.

They are able to model dynamical systems, with applications in signal, speech

and image processing. Our focus is the area of image processing. The recurrent

connections allow the past inputs to be retained inside the network, thus providing

the capability of learning temporal correlation between inputs and exploit those

correlations during the prediction step.

In addition to the parameters that regular neural networks have, a RNN also

carries its own state derived after processing the previous inputs of the sequence.

This state can be seen as a separate input.

Both Jordan and Elman networks make use of context neurons which propa-

gate the received input only in the next iteration. While Jordan networks ex-

hibit output-to-context and context-to-hidden connections, propagating the out-

put again through the whole network, Elman networks use hidden-to-context and

context-to-hidden connections, propagating the output of one layer as input to the

same layer, in the next iteration.

In the context of video sequences with a sufficiently large frame rate, temporal

dependencies are strong since we expect that one object in a frame to be in the

vicinity of its previous position, making RNN a candidate for learning segmen-

tation tasks on video sequences. However, not only temporal dependencies can

be exploited in RNN. Pinheiro and Collobert, 2013 use a recurrent convolutional

neural network to exploit long range spatial dependencies between pixels, while

keeping the filter size small.

(a) Elman Network (b) Jordan Network

12

3.2. Recurrent Neural Networks

3.2.1. Training Recurrent Neural Networks

The standard method for training Recurrent Neural Networks, and also the method

used in this thesis is the Back Propagation Through Time (BPTT). The idea is to

unfold the network a constant number of times by making copies of the network

(temporal copies) and replace each recurrent connection with a forward connection

to the next temporal copy. Thus, the network’s structure is transformed in a

direct acyclic graph, being trainable with the regular backpropagation method.

One thing to note is that the weight changes are accumulated over all temporal

copies. Since each temporal copy emulates the state of the network at a time-step,

each copy receives the input corresponding to the respective time-step.

3.2.2. Vanishing and Exploding Gradient Problem

One of the reasons why recurrent neural networks are not as popular as other

models is the difficulty of training them. Two phenomena that make training

neural networks a challenging task are the vanishing and the exploding gradient.

Both phenomena were first analyzed formally in Bengio et al., 1994. To summarize

their analysis together with a more recent analysis of Pascanu et al., 2013, we start

from the equation of the gradient (we consider the partial derivative of the weights)

in the context of using BPTT. Et denotes the error at time t, st denotes the hidden

state of the network at time t and W the weight set.

∂Et
∂W

=
t−1∑
i=0

∂Et
∂st

∂st
∂si

∂si
∂W

(3.6)

Further, the term ∂st
∂si

can be rewritten by chain rule as
t−1∑
k=i

∂sk+1
∂sk

. This, along with

the fact that the recurrence weight matrix determines the transition from current

Figure 3.4: Back Propagation Through Time

13

3. Foundations

state to the next state lead to raising the recurrence weight matrix to the power

of t− i.
The conclusion of their analysis is considering the highest eigen-value λ of the

recurrence weight matrix. Having λ less than one is a sufficient condition for

the long term components to vanish. Having a λ higher than one is a necessary

condition for exploding gradients.

During the last two decades, many solutions have been proposed for coping

with those issues. Long short term memory units, introduced in Hochreiter and

Schmidhuber, 1997, keep the weights of recurrent connections fixed to one, and

instead learn how long to remember an input in the network, replacing it with the

new value when the old one is no longer considered significant.

Another approach is the use of Hessian-free Optimization, which is a second-

order optimization method, which was shown in Martens, 2010 to be successful in

training deep auto-encoders. Experimental results have shown that this method

deals well against the vanishing/exploding gradients issue, although a formal anal-

ysis to confirm this does not exist at the moment.

R-Prop is a method in which only the sign of the gradient is considered. The

update value is calculated based on a learning factor that updates itself during

training independently for every parameter. A more detailed description is pre-

sented in Section 3.4.1.

3.2.3. Exploiting Temporal Dependencies

As previously discussed, Recurrent Neural Networks (RNN) provide the capabil-

ity of learning temporal dependencies between inputs, making them suitable for

processing sequences.

We start by analyzing such dependencies in different areas in order to motivate

the benefits of learning them.

Speech Recognition

In the task of speech recognition, the input consists of a set of utterances (units

of speech bounded by silence) that are to be translated to sets of phonemes (basic

units of speech that distinguish words from each other). This is challenging due

to the fact that the speech is produced by different speakers with different accents

and dialects which requires the network to generalize well enough to learn the

structural rules that map the features derived from processing the speech signal

to phonemes.

Another challenge is the fact that the network is responsible for deciding where

14

3.2. Recurrent Neural Networks

along the speech signal a phoneme begins and where a phoneme ends. Learning

the duration of each phoneme is not an opinion due to its high variance, the

network having to decide based on the structure of the signal. While a deep

neural network with sufficiently large number of inputs receiving the sequences as

input could learn temporal dependencies, long-term dependencies would require a

too complex model, unlikely to produce a good generalization.

One natural solution is the use of dynamical systems, keeping an internal state

that tracks the structure of the signal. In a recurrent neural network, the internal

memory is represented by the recurrent connections. The structure of the signal

can be learned by observing and remembering patterns along it, that together

define a phoneme. In Räsn̈en, 2013 a detailed analysis of such patterns that

occur in natural speech is presented. Provided that the learning model is able to

learn long-term dependencies, avoid the phenomena presented in Section 3.2.2, the

sequence of patterns detected along the speech signal will be successfully mapped

to phoneme.

Regarding the network architectures used in speech recognition, Graves et al.,

2013 make use of LSTM units in a Bidirectional Recurrent Neural Network (Fig-

ure 3.5). This structure allows making use of the future, and not only of the past,

context by using two hidden layers which process the data in both directions, each

being considered when computing the output of the network. They showed that

such an approach is able to outperform an architecture that consists of only one

hidden layer.

Figure 3.5: Bidirectional Recurrent Neural Network

15

3. Foundations

Language Understanding

The automatic analysis of text allows the extraction of the relevant information

from it, having numerous applications. One first step into analyzing a text is to

derive a higher and easier to understand representation of it, that can be further

on investigated depending on the application. This can be done by associating a

semantic meaning to each word, determining relationships between related words.

In this scenario, dependencies can extend over a variable and large number of

words which makes recurrent neural networks a suitable learning model candidate.

In Yao et al., 2013, an Elmann network is used, receiving a bag-of-words repre-

sentation of the input, thus each input of the network represents a small context

that will be related to neighboring context. They proved the superiority of their

model by comparing their results obtained on language understanding datasets

with the results of models such as Support Vector Machines and Conditional Ran-

dom Fields.

Image Segmentation

Dependencies in images follow both of the dimensions corresponding to the axes. In

Graves, 2012 an architecture able to exploit such a multi-dimensional dependencies

was presented under the name of Multi-Dimensional Recurrent Neural Network

(MDRNN). Such a network connects each neuron to the neurons that precede it

with respect to every dimension. In the forward step, the neurons are processed

in a topological order, while during backpropagation the reverse order is used.

Another architecture suggested in the same publication is the multi-directional

version of MDRNN, where a generalization of the Bidirectional Neural Network

is used such that all possible 2D directions are covered, where D is number of

dimensions.

For video data we can consider having a 3D sequence and a new temporal

dependency in addition to the two spatial dependencies corresponding to the two

dimensions. This dependency might provide useful information, exploiting the fact

that the same object is in approximately the same place in the subsequent frames.

The network might also benefit from learning the movement of the camera,

enabling the ability of tracking the objects and of learning their features despite

their apparent motion.

16

3.3. Preprocessing

3.3. Preprocessing

Data preprocessing is an important step in the learning process since it can sig-

nificantly improve the quality of the final results, but also the speed of training

by passing only the relevant extracted information to the learning model. Several

methods will be presented here, all being used in the work of Höft, 2014, some of

them have been adapted to our different input specifications. The input consists

of: the result of applying ZCA-Whitening to the image, channels of Histogram of

Oriented Gradients (HOG) and Histogram of Oriented Depth (HOD) when depth

is available. In order to improve generalization, we augment the input by applying

several geometric transformation.

One requirement of our network is that the inputs are square sized. When the

input images do not fulfill this they will be extended by a reflective border.

3.3.1. Histogram of Oriented Gradients

As its name suggests, this method uses the gradients of the input image. The

gradient computed on one image pixel is a 2D vector that points in the direction in

which the intensity increases the most, with the magnitude reflecting the intensity

change. A histogram of oriented gradients collects the gradients from each patch

of the image, in order to produce a direction of the whole patch. A final step is to

quantize the gradients in the bins that cover the whole angular range.

We use a simplified version of HOG, simply calculating the gradients for every

pixel and quantize them in bins. For each bin we build a separate channel repre-

senting the gradients of the corresponding bin by their magnitude. Algorithm 1 is

an implementation from Höft, 2014 presenting all the steps needed for obtaining

our simplified HOG representation.

Figure 3.6: The HOG channels corresponding to four directions. The color in-
tensity represents the magnitude of the gradient, white means zero intensity.

17

3. Foundations

Algorithm 1: Simple Histogram of Oriented Gradients

Input: I Grayscale Image, r Number of HOG channels
Output: hog Histogram of Gradients
fx = [−1, 0, 1], fy = [−1, 0, 1]T ;
gx = convolve(I, fx), gy = convolve(I, fy) ;
m = g2x + g2y ;

a = atan2(gx, gy) ;
foreach Pixel x do

mx and ax → magnitude and angle of the gradient in pixel x;
b = b(ax/π · r)c ;
hogx[b] → position x in the HOG channel corresponing to bin b;
a1 = π/r · b ;
a2 = π/r · (b+ 1) ;
hogx[b]+ = mx · (a2 − ax)/(a2 − a1) ;
hogx[(b+ 1)%r]+ = mx · (ax − a1)/(a2 − a1) ;

hog = Gaussianfilter(hog) ;
hog = normalize(hog);
hog = min(hog, 0.2) ;
hog = normalize(hog);

3.3.2. ZCA Whitening

As suggested in Krizhevsky, 2009, while models are able to learn the local cor-

relations that exist in images, it might be a good idea to focus on higher-order

correlations, which have the potential of making the model “more likely to discover

interesting regularities”.

We do this by an approximative decorrelation of the dataset of images, with the

goal of forcing the mean to zero, and the covariance to the unit matrix. We carry

the whitening process in two steps, first computing the decorrelation matrix and

the mean of the samples, then subtracting the mean and applying the decorrelation

Figure 3.7: Result of ZCA whitening on each of the 3 channels. Orange represents
positive values, blue negative ones

18

3.3. Preprocessing

Algorithm 2: Computation of the decorrelation matrix Q

Input: S Image patches from the image set
Output: Q Decorrelation matrix
S̄ = Mean(S);

C = 1
|S|

((
S − S̄

) (
S − S̄

)T)
;

u, s, v = SVD(C) ;

s−1 =
√
s
−1

;
if s−1i < 0.0000001 then

s−1i = 0

Q = u · diag(s−1) · vT ;

matrix. The decorrelation matrix can be seen as a collection of filters, each row

in this matrix being one of the filters derived in the first step. Applying all those

filters is equivalent to a matrix multiplication of the image to the decorrelation

matrix. Algorithm 3 represents an implementation from Höft, 2014 for generating

the decorrelation matrix.

3.3.3. Preprocessing the depth

We will cover the steps for preprocessing a raw depth image in the Section 5.2.3.

Once we have followed those steps, we have an usable depth consistent to its

corresponding RGB frame. We however do not present the depth map to the

network as it is, because similar to the RGB case, we wish to make it easier for

the network to extract the relevant information from the depth. We thus use

the same HOG approach, but applied only on one channel of depth. Although

the technique is the same, when we visually compare the preprocessed RGB and

Depth (Figure 3.6 and Figure 3.8) we notice that preprocessing the depth produces

a totally different set of features, which is exactly what we need.

Figure 3.8: The HOD channels corresponding to four directions. The color in-
tensity represents the magnitude of the gradient, white means zero intensity.

19

3. Foundations

3.3.4. Geometric Transformations

Early experiments showed that the network tends to overfit quickly when working

with real-life video sequences. One factor responsible for this is the complexity of

the network. One way to counteract this effect to some extent is to build several

variants of the same training set and use them in the training process.

We use the dataset augmentation implemented in Höft, 2014, adapted to our

needs, which consists in a translation, a rotation and a 50% chance to flip hori-

zontally. In our case, we need to make sure that we apply the same augmentation

to the whole sequence, otherwise the apparent movement of the camera will be

perturbed, the model no longer being able to properly exploit the smooth and

continuous movement of the camera.

3.3.5. Generating Intermediate Ground Truths

Due to the large amount of frames present in video sequences, manually labeling

all of them would require too much effort to make it a practical option. NYUD

Dataset V2 for example has a total of 407,024 frames, out of which only 1449

are labeled. We wish to have ground truths for all the frames that we feed to the

network, so that we can encourage the intermediate representations of the network

to be closer to the structure of the expected output.

We adopt a simple solution of propagating the labels based on the optical flow.

For our purpose, we do not require the intermediate ground truth to be exact,

since intermediate evaluations weight less that the evaluation of the final network

output.

Algorithm 3: Computation of the intermediate ground truths

Input: Rprev previous RGB frame ,Rcrt current RGB frame, GTprev
Ground Truth for previous frame

Output: GTcrt Ground Truth for the current frame
FLOW = OpticalFlowFarneback(Rprev);
MINDIST =∞ ;
GTcrt =ignore ;
foreach Pixel P do

∆ = FLOW (P);
if |∆| > 0 then

if MINDIST (Px + ∆x, Py + ∆y) > |∆| then
MINDIST (Px + ∆x, Py + ∆y) = |∆| ;
GTcrt(P) = GTprev(P + ∆) ;

20

3.3. Preprocessing

Figure 3.9: The two top images represent RGB frames taken with a small tempo-
ral interval in between. The two bottom images show the corresponding Ground
Truth of the first frame, and the inferred ground truth of the second one respec-
tively. Notice the right foot of the person causes an error, since it was obstructed
in the first frame.

21

3. Foundations

We also considered taking into account the depth when we compute the inter-

mediate ground truth, but we visually noticed that the results did not improve.

Two of the reasons are the error of depth measurements and the temporal delay

between an RGB and a Depth measurement.

3.3.6. Sliding window

A common technique used in Computer Vision tasks is the use of sliding windows.

This consists of running classifiers on image patches at different sizes. This allows

the classifiers to learn concepts independent of the scale.

Inspired by the results obtained in Schulz et al., 2015 using such a technique,

we integrate it in our learning models hoping this will enhance the class accuracy,

especially on small objects. Another effect that we desire is to lower the overfit

since this technique also augments in some sense our dataset, producing several

samples out of a single one.

Schulz et al., 2015 suggest using the depth information to decide the size of

the window, chosen it from a distribution that encourages a larger window size

for regions closer to the camera and smaller windows for those that are far away.

One reason behind this is the fact that the far away regions of input contain less

detail, especially in the depth channels, thus there is no sense to process such

regions densely. Also, instead of using a binary ignore mask, they use it as a set of

weights that decrease radially (function r) starting from the center of the window

as follows:

Figure 3.10: Original image (Left) and depth with sliding windows (Right).
(Schulz et al., 2015)

22

3.4. Training

w(x) =

0 if x is not annotated

0 if x is outside the original image

r(‖x− xc‖)/p(c(x)) else

(3.7)

where p(c(x)) is the prior probability of the class x is annotated with.

During the training phase we pick a small number of randomly chosen sliding

windows from each image. During the test phase, we have to produce labels for

the entire image, thus we cover the whole image with windows allowing them to

overlap, predict on each window and combine the predictions together in the end.

3.4. Training

In this section, we discuss the factors involved in training and additional tech-

niques that have the potential of improving the quality and speed of training are

presented. In particular we describe different gradients, the loss function and

several regularization methods used.

3.4.1. Gradient

Backpropagation together with the Stochastic Gradient Descent are widely used for

updating the parameters in neural network models with a small number of layers.

Equation (3.8) shows how a parameter θ is updated based on the partial derivative

of the error function E and a fixed learning rate. However, in the context of deep

learning and especially of recurrent neural networks, different other gradient types

are more appropriate in the attempt to tackle the vanishing/exploding gradient

behaviors.

θt+1 = θt + ε · ∂Et
∂θt

(3.8)

Rmsprop

Rmsprop is the mini-batch version of the Resilient Propagation (Rprop) (Ried-

miller and Braun, 1993). In Rprop, the weight updates no longer depend on the

magnitude of the gradient, only on its sign, and the learning rate is adapted for

each parameter individually based on the sign changes of the gradient. If the sign

remains the same after one update, the update value of the parameter is slightly

increased to speed up the convergence. If, on the other hand, the sign differs

23

3. Foundations

from the previous one, this means that the minimum was missed and the previous

update is reverted, decreasing the update value at the same time.

As Rprop was designed to be used with full-batch learning, in order for it to work

with mini-batch learning an adaptation is needed. The reason why regular Rprop

does not work when mini-batches are used, is that there are frequent sign changes

due to the variety of directions the mini-batches might point to. According to

the Rprop algorithm previously described, such a situation causes the update to

progressively shrink, leading to a state in which the network is unable of learning

further.

To cope with this issue, Rmsprop keeps a moving average of squared gradient, as

shown in Equation (3.9), using the value of the gradient divided by the square root

of this average as update-value. This leads to treating the mini-batches differently,

based on the gradient, but at the same time keeping to some extent the proprieties

of Rprop by decreasing the influence the magnitude of the gradient has over the

updates.

MS(θ, t) = 0.9 ·MS(θ, t− 1) + 0.1 · ∂Et
∂θ

(3.9)

Gradient Clipping

Gradient clipping is a technique counteracting the exploding gradient issue, by

clipping the norm of the gradient when it exceeds a certain threshold. While this

would allow us to train large networks using the plain gradient, we can apply

gradient clipping in association with other gradient methods as well.

The effects of this technique on the learning process are analyzed in Pascanu

et al., 2013. They describe the explosion of the gradients as the encounter, on

the error surface, of a steep wall perpendicular to the gradient, forcing a large

step in the opposite direction. This is not desirable especially if we are close to a

minimum. Clipping of a such large step causes a move near the wall, to a smoother

region of the error surface having the chance to explore the other directions, that

were outweighed in the previous step.

3.4.2. Loss Function

In the task of object-class segmentation, our goal is to classify each pixel in one

of the available m classes. This makes an one-out-of-m coding desirable for our

learning model, with the output consisting of a vector v of size m and only the

entry corresponding to the class of the input (in our case of the pixel) is set to 1,

keeping the rest of the entries 0. Given the m outputs (o) returned by the model,

24

3.4. Training

the softmax function can be used to transform these outputs in a likelihood:

P (y = j|o) =
eoj∑m
i=1 e

oi
(3.10)

for which, given m teacher values (ô), we want to reduce the probability of a wrong

assignment to zero and to increase the probability of a correct assignment to one.

This is done using the multinomial logistic loss:

E(o, ô) =

|o|∑
k=1

ok · ôk − ln
|o|∑
k=1

eok (3.11)

which is averaged over all the inputs to produce the global loss function. In our

particular case, the images exhibit regions for which we do not have a labeling and

thus we are interested in ignoring those. We do this by applying an ignore mask

(Figure 3.11) to both the teacher and the output before computing the loss.

3.4.3. Regularization

In the process of model selection, regularization has the role of controlling the

complexity of the model, penalizing too complex models in order to prevent over-

fitting.

Early stopping

Early stopping is such a regularization method, imposing a termination criterion

based on the progression of the error on the validation set. The fact that although

the error on the training set is decreasing, the error on the validation has ended

its decreasing trend, or even worse, starts increasing, is one of the signs that the

Figure 3.11: Original image (Left) and corresponding Ignore mask (Right).
White shows the regions to ignore

25

3. Foundations

model starts over-fitting. The early stopping terminates the training process once

the validation error is no longer decreasing. To make sure that the termination

occurs at the right moment, one can monitor instead a moving average of the

validation error and use it to decide when the decreasing tendency is really over.

Weight decay

Weight decay, also called L2 regularization, is a technique used to penalize large

weights, resulting in a simplification of the model. It consists in adding a fraction

λ of the 2-norm of the weight vector w to the loss function E . The following

equation shows how the new loss function E∗ is computed:

E∗ = E +

√√√√ |w|∑
k=1

|wk|2 (3.12)

Dropout

Another way of counteracting overfitting is to combine together several different

models and average their prediction. While the direct implementation of this

concept for large neural networks is expensive, a simple way to simulate this is the

technique of dropout, introduced in Hinton et al., 2012.

When dropout is used, a certain proportion p of the activations, chosen ran-

domly each time, are set to zero (dropped). This is equivalent to dropping the

corresponding neural units and thus to having a different network in every traver-

sal. Moreover, the total number of possible generated networks is exponential. For

example, when dropout is applied to N neurons, using a ratio p = 0.5, in each

traversal we are equally likely to have one of the 2N possible networks.

As suggested in Pham et al., 2014, one should be careful when using dropout

on RNNs, not to affect the recurrent connections. Doing this might perturb the

ability of the network to learn long-range dependencies.

26

4. Recurrent Convolutional

Networks

In this chapter we describe the main contribution included in this work. Three

different recurrent neural networks are implemented based on an already existent

convolutional model. We further discuss implementation details and show how our

modules interact with other modules from the two libraries that we use: CUV and

CUVNET.

4.1. Architectures

In this section we describe the network architectures used in this work, all inspired

from the Neural Abstraction Pyramid described in the Section 2.0.1. We first

present the common proprieties in the proposed architectures.

Between the layers of consecutive copies, three types of connections exist: for-

ward, backward and lateral.

One layer is connected to the next one of the next temporal copy through a

forward connection. These connections allow the vertical flow of activation from

the bottom of the network to the top of it and thus to the construction of high level

features based on the low level ones. Backward connections on the other hand,

connect a layer to the previous one, allowing the construction of the features by

taking into account the higher level ones. Lateral connections allow the horizontal

flow of activations, connecting layers residing on the same level of abstraction. The

benefit from using such horizontal connections is that the features learn about the

features from their neighborhood, which is especially useful in Computer Vision

tasks due to the local spatial dependencies. In order to implement the horizontal

connections efficiently, we use a neural operator for upscaling the output of the

convolution and we feed the upscaled version as input for the same layer of the

next time step.

The output of the network is always obtained in the lowest layer of the network,

after we make sure that the activations were able to reach the highest layer and

return back. Since the number of filters of the first layer should not be restricted

27

4. Recurrent Convolutional Networks

Figure 4.1: Connecting several layers together

to the number of classes C, we extract the first C channels of the convolution and

we consider each of them responsible for one class.

Connecting together different layers requires aligning their filter sizes and their

number of filters. The upscale operator solves the problem of aligning the filter

sizes, while another convolution operation aligns the number of filters. A final

addition combines the filters together. In case we use multiple scales for the

inputs, we also bundle inside the summation a scaled down version of the input.

An overview is showed in Figure 4.1.

A difference between our design and the Neural Abstraction Pyramid is that

we keep the number of filters constant for all layer of the network, while in the

pyramid the number of filters doubles as the resolution of the representation is

halved. Initial experiments on our dataset have shown that doubling the number

of filters leads to a too complex model, taking longer to be trained and overfitting

early.

4.1.1. Simplified RNN

In the first architecture we concatenate all inputs in one map and feed it to the

network. This is a simplified version of a recurrent network, since the capability

of exploiting the temporal dependencies is limited. On the other hand, spatial

dependencies can still be exploited since we keep the pyramid structure of the

network. Thus, comparing the results obtained by this network against the other

ones can help us understand what is the improvement brought by accumulating

information over several time-steps.

As the first temporal copy we use a simple feed forward one, making sure that we

28

4.1. Architectures

Figure 4.2: Architecture of the Simplified RNN

have at each layer the activations needed for the next step. Thus we can consider

that in the first time step the activations are already propagated up to the highest

level of the network. For a depth of N hidden layers, we need N−1 additional time

steps for the signal to propagate downwards until the lowest level. As Figure 4.2

shows, the last temporal steps do not need all the hidden layers, since their output

would no longer propagate anyway.

4.1.2. Unidirectional RNN

In the second architecture, we feed the images as a sequence, one in each time step.

The state of the network represents the information derived from the past context

that, together with the result of the convolutional model, produces an output and

a new state.

Since the last output benefits from learning from the whole sequence, it is natural

to place the frame that we want to evaluate at the end.

The first temporal copy of the network is a regular feed forward one. We organize

it differently than the others since we want to have activations in each layer such

that all connection types are used in the transition between the first time step and

the second.

As in the previous network architecture, from the moment we feed one input,

it is necessary to wait several time steps to allow its propagation in the entire

network. This means N − 1 time steps for reaching the top level of the network

and N − 1 time steps for propagating back at the bottom layer where the output

is computed.

29

4. Recurrent Convolutional Networks

Figure 4.3: Architecture of the Unidirectional RNN

4.1.3. Bidirectional RNN

The third architecture is inspired by the bidirectional recurrent network. Here,

connections exist in both directions of the temporal dimension. This network is

able to exploit not only the past context, but also the future context. In real-time,

of course, this introduces an amount of overhead due to waiting for all the future

frames to become available in order to produce the result of the current one. Our

implementation consists of two unidirectional networks whose outputs we combine

in order to obtain the final outputs of the Bidirectional RNN. In this architecture,

it is optimal to place the frame which we want to evaluate in the middle, unlike

the unidirectional architecture where we place it at the end.

As an optimization, we do not have to use two full replicas of the unidirectional

Figure 4.4: Architecture of the Bidirectional RNN

30

4.1. Architectures

network, only about half of it, until we have the output of the middle time step.

This significantly reduces the amount of GPU memory involved.

4.1.4. Extra network features

In addition to the presented architectures we also investigate some extensions, that

could improve the performance of our networks.

Unshared biases

While in a RNN we normally share both the biases and the weight set, it might

prove helpful for the network to be able to treat time steps differently. We do

this by not sharing the biases between time steps, allowing the network to store in

them information associated to the time step. This also has the effect of increasing

the number of parameters of the network and thus its complexity.

Encoding the output

As mentioned before and as suggested in the network diagrams, the first layer will

provide the output of the network. Since the number of maps of the first layer

might be different than the number of classes N , one approach is to encode the

output in the first N maps.

Another possibility is to encode the output in the entire first layer and to use

an additional convolution to decode the N classes. This adds complexity to the

network but at the same allows more freedom in representing the output.

Intermediate ground truths

While the network is able to learn temporal and spatial correlations from only one

ground truth corresponding to the last time step, in order to reinforce the signal

we can also evaluate ground truths at intermediate time steps. This approach is

also used in the GoogLeNet (Szegedy et al., 2014), where 9 inception layers are

used and the ground truth is evaluated three times along the network.

We do not wish to force an exact representation of the output at an early stage,

since this would limit the representation power of the network. Thus, in the loss

function, the intermediate evaluations will weight less.

If we choose to have a final convolution that decodes the output from the first

layer, it might be useful to keep the parameters of these convolutions not shared,

such that we encourage different representations at different steps of times.

31

4. Recurrent Convolutional Networks

4.2. Implementation of RNN on CUDA

In this section we describe the implementation of our learning models in the CUDA

framework. We also briefly describe the two library used in this work: CUV and

CUVNET.

4.2.1. CUDA framework

Neural networks, especially deep or recurrent ones, are an expensive model in

terms of computing power and memory consumption. Thus, we are interested in

using scalable algorithms that can be run in parallel on several processing units.

Central Processing Units (CPU) have a limited number of cores, being optimized

for sequential processing. Graphical Processing Units (GPU), on the other hand,

posses thousands of small cores, being optimized for running a large number of

tasks in parallel. We use a mix of both GPU and CPU, running the intensive

computations on images, activations and gradients as matrix operations on the

GPU and the sequential tasks on the CPU.

CUDA is a general purpose parallel computing architecture from NVIDIA aim-

ing to simplify the development of scalable tools that exploit the parallel architec-

ture of NVIDIA graphic cards. In this framework, as a convention, CPU is named

“host” and GPU is named “device”. The main CUDA entities are: blocks, wraps,

thread. The code to be run in parallel is defined in routines named kernels.

Block

A block contains several threads and is executed by one multiprocessing unit.

Blocks can be represented in one, two or three dimensional grids, depending on

the input dimension. For example, in images, a two dimensional grid leads to a

direct mapping between the patch of the image being processed and the position

in the grid of the block responsible for the patch.

Thread

The threads are running the same code, but can follow different branches. The

threads inside a block can coordinate through shared memory.

Warps

One block is splitted into several units called warps. All threads in one warp

execute the same instruction at a given moment. Due to this, branch divergence

of threads in a warp can cause performance degradation.

32

4.2. Implementation of RNN on CUDA

Kernels

A kernel is called by the host and is ran by the threads of the device. Each kernel

instance receives the block and thread ID on which is run. Based on them it

determines what part of the input should it process.

4.2.2. CUV library

CUV is a C++ and Python library which, among other functionalities, handles

operations on tensors and matrices in a distributed way, transparent to the devel-

oper.

In addition, CUV includes functionality for some of the CUVNET operators.

The convolution and pooling are examples of such operators which have a corre-

sponding kernel in CUV, allowing them to achieve parallel efficiency.

4.2.3. CUVNET library

The CUVNET library is built on top of CUV. It defines the neural operators and

learning algorithms. We extend CUVNET by adding two new operators: upscale

and gradient clip operator. Also we adapt the convolutional model to allow weight

sharing between convolutional layers of the same level of abstraction but part of

different temporal copies.

Upscale operator

We extend CUVNET and CUV by adding another operation and respectively a

new kernel needed by the network, the upscaling. We use upscaling to counteract

the resolution decrease of the input representation while it traverses the network,

so that we can reuse it in the lower levels. This operation does simply replicates

an activation on a FACTOR× FACTOR patch of the upscaled representation.

Although, normally, the implementation of such an operation does not represent

a challenge, our task is to implement it efficiently, as a CUDA kernel, exploiting

the fact that it can be split in smaller, independent sub-tasks.

Also, a neural operator, will generally be involved in propagating the gradients

backwards during the back propagation phase as well. Exceptions to this rule are

the operators from which the multinomial logistic loss operator is not reachable,

thus they have noting to propagate (e.g. classification loss). Other exceptions

are the operators that either have no inputs, either none of its inputs requires

a derivative (e.g. input layer). An existent implementation of upscaling from

33

4. Recurrent Convolutional Networks

Figure 4.5: reorder for conv routine Figure 4.6: reorder from conv routine

cuda-convnet uses bilinear filtering to resize the image, but implements no back-

propagation functionality, restricting the user to incorporate such operator in the

data layer.

In our network, the upscaling operation is applied between time-steps and thus

the backward propagation functionality is mandatory. Although we need only the

operation of upscaling by a factor of two, we implement a more general upscaling

operation that can upscale by an integer factor. Moreover, the operator can easily

be adapted to support even different factors for the two dimensions. While we

work with rectangular input, the operator was implemented and tested to work on

non-rectangular input as well.

One technical detail which helps the implementation of such an operator effi-

ciently is the shape of the input tensor. The first dimension stores the channels of

the image, the second is the horizontal axis of the image, the third is the vertical

one and the fourth is storing the image number. This, although not a natural

representation of a batch of images, allows us to have access to the pixel of the

same location, from the same channel, of different images on a contiguous memory

space, and since the control flow does not depend on the value of the pixel but

only on its location, all thread of a warp will execute the same instruction at each

point of time, avoiding branch divergence. Other kernels such as convolution or

pooling exploit this structural property as well, thus it is useful to keep the same

Operation Time (s) Speedup

Forward Pass, CPU 0.0468
Forward Pass, GPU 0.0015 29.7
Backward Pass, CPU 0.0635
Backward Pass, GPU 0.0019 33.4

Table 4.1: Time measurement of the upscale operation: GPU vs. CPU (single
thread). As input we used 16 samples of size 80x80, each having 16 channels. The
measurements are averaged over 100 runs.

34

4.2. Implementation of RNN on CUDA

tensor shape in the whole network. Since the natural shape of the data is: image

number, channel, X coordinate, Y coordinate we use two routines implemented

in CUV for this purpose: reorder for conv and reorder from conv which handle

switching between those two orderings

During the backpropagation step, we do the reverse operation of the upscaling:

all gradients inside the patch are summed and passed back as one gradient.

We test our upscale operator in three ways. We check the correctness of the

CUDA implementation by implementing the forward and backward pass in CPU

as well, testing several situations and corner cases on both architectures. We

expect a small difference between the two outputs caused by the two architectures

performing float operations and rounding differently, but we constrain this error

to be small enough, not to influence the results.

This test, however assumes that the gradient calculation is correct. For this we

need an additional derivative tester that computes the Jacobian using the finite

difference approximation and compares it to the Jacobian we obtained using our

operator. This test along with the first one confirmed that the upscale operator

works correctly.

A final objective is the parallel efficiency. We compute the speedup of the GPU

implementation over the CPU one. Table 4.1 shows the time measurements for

handling input tensors whose shape is one that frequently occurs in our network.

Of course, running GPU code involves an overhead, so processing small tensors,

such as 16x3x8x8 will lead to a slower processing on GPU than on CPU.

Gradient clipping operator

In addition to the theoretical description of this operation, provided in Section 3.4.1,

we will further describe also the challenges faced when implementing it.

Gradient clipping is one of the operations active only in the backward pass,

thus in the forward pass the input is propagated unchanged. In the backward pass

however we require all gradients to be available in order to be able to compute

the norm, which is further required to clip, where needed, the gradients. Thus,

our operator will receive as input all the parameters of the network and have

one output for each. All of the neural operators in CUVNET are executed in

topological order.

Since we share weights between temporal copies, the gradients are accumulated

over all copies. Once all gradients are available, the operator computes the norm

and clips the gradients larger than the threshold.

35

4. Recurrent Convolutional Networks

Figure 4.7: An overview of the whole system, showing the modules involved in
different stages of the process.

36

4.2. Implementation of RNN on CUDA

Figure 4.8: Gradient Clipping operator: Forward pass (Left), Backward pass
(Right)

4.2.4. Integration with CUV and CUVNET

We now discuss the high level design and how the networks and the developed

modules interact with each other and with other modules. Figure 4.7 Depicts this

interaction. The Dataset Loader module reads the sequence dataset from a meta-

data file. Each image of the dataset is processed asynchronously by a worker of

the thread pool and once the image is processed, it is added to a queue as part of

the sequence.

Once a sequence is fully processed, it can be extracted by the Sequence Loader

which further inserts every input in the right place of the chosen network archi-

tecture. A Learner determines the topological order in which the operators should

be executed, and runs gradient descent based on this ordering.

37

5. Experiments

In this chapter we first show that our network architectures work correctly and are

able to learn temporal dependencies. To do this, we run several experiments on

toy tasks that would require the learning model to accumulate information over

time for correctly solving them.

We then train our models on a real life dataset and present the network features

that improved the learning process. We also compare the results with those of a

simple convolutional model, and with other models as well.

5.1. Toy Experiments

In this section we present three toy experiments that prove the capabilities of our

network to learn from sequences, accumulating information over time.

5.1.1. Denoising a static object

In this experiment we simply feed to the network different noised versions of the

same binary image. We use binary noise, namely salt and pepper noise, uniformly

distributed over the whole image. We also draw random black or white stripes, to

make the task more difficult.

To make sure that the network is able to generalize instead of learning an object

by heart, we use different objects for the train, validation and test sets.

The task consists in obtaining the original, denoised image. One way the network

could solve this task would be to learn to average the images over time. Of course

this can be combined with the power of the convolutional model, which might also

learn denoising filters.

Setup

Since the task has a reduced complexity, we opt for a simple convolutional model

of only one hidden layer with 32 maps. Since we do not want the network to rely

entirely on the filters learned by the convolutional model, we keep those at a size

39

5. Experiments

(a)

(b)

(c)

(d)

Figure 5.1: Outputs for Toy Experiment #1. Row (a) shows the input of the
network for each time-step. Row (b) shows the output of the softmax layer. Row
(c) shows the final outputs of the network. Row (d) shows the evaluation (True
Positives True Negatives False Positives False Negatives). The last output
represents the final output of the network and we use it for evaluation.

of 5x5 pixels. Since there is no specific order in such a sequence of noised images,

we only test one of our architectures on this task, the unidirectional.

Two classes will be learned: the object and the environment. This way we

discourage both the false positives and the false negatives.

We use six temporal copies, and thus feed six different noised versions of the

image. We evaluate each step and do a weighted sum of all losses. Since the last

output is the output of the network, we emphasize on it by setting the weight of

(a) (b) (c) (d)

Figure 5.2: Outputs for first toy experiment, non recurrent model. Figure (a)
shows the input of the network. Figure (b) shows the output of the softmax layer.
Figure (c) shows the final output of the network. Figure (d) shows the evaluation
(True Positives True Negatives False Positives False Negatives).

40

5.1. Toy Experiments

Model Pixel-Wise Accuracy (%) Class Accuracy

Simple CNN (1 layer) 84.4 84.7
Recurrent CNN (1 layer, 6 time steps) 93.0 93.2

Table 5.1: Results obtained on Toy Experiment #1

the corresponding loss higher by a factor of ten.

We also test the simple convolutional model, with no recurrent connections

such that we can investigate whether the recurrent structure of the network makes

actually a difference. We train both models for 600 epochs.

Results

Figures 5.1 and 5.2 show the results we obtain using a recurrent network and

a non-recurrent network respectively on the test set. We can see that the best

that the convolutional model can do on its own is to reduce the noise in areas

where despite the noise, the structure of the object is still distinguishable. On

areas such as the center of the image, where the object presents a more complex

structure with more details, the noise has a substantial negative effect, difficult to

be managed by such a simple model.

The recurrent model, on the other hand, is able to improve its prediction step

by step, accumulating over time information even from the areas which are more

sensitive to noise. After only two steps the network is able to solve most of the

false positives and to assemble together almost all features of the object.

Seeing that the convolutional model on its own is unable to reproduce the re-

sults of the recurrent model, a natural question is whether the network can solve

this task without learning any features at all, simply by averaging the inputs as

discussed previously? Figure 5.3 shows that even after averaging together all six

inputs, we still end up with a noisy image. The structure becomes , however, more

clear and the noise is significantly reduced.

We showed how this task can be solved using a simple convolutional model

for extracting features together with recurrent connections that propagate those

Figure 5.3: Moving average on the inputs

41

5. Experiments

features to the next time step. Further we will investigate two tasks of higher

difficulty, where the RNN will be even more useful.

5.1.2. Learning a trajectory

In this experiment we test the capabilities of the network to track an object while

moving. We move the object while the whole image is noised. One could argue in

this case that the object position might be detected by the network, considering

the density of each blob, since we have one object on a large canvas, and the noise

blobs are significantly smaller than the object. Not wanting our network to rely

on such details, we add two additional dummy objects, identical to the one that

we want to track but at random positions in each frame.

To prevent the network from overfitting on only one type of movement and

only one speed, we generate several subsequences, each moving the object from a

random position to another, slightly variating the speed.

Task

The goal is similar to the one of the previous task, the only change is that we

want to denoise a moving object, and only the one having a continuous trajec-

tory, ignoring the other identical objects which move randomly from one frame to

another. The network could also solve this task by learning to average over time

but, in addition to this, the network would also have to learn a transposition.

Setup

In this experiment we test all three network architectures. There is no point to

test the convolutional model alone here, since there is not enough information in

one frame to distinguish between the aliases and the moving object.

Results

Figure 5.4 shows the results obtained on this task using an unidirectional network.

As we expect, in the first time step, the network can not decide which object

is moving continuously. Already in time step two the network detects a slight

positional change from one of the objects, while the others are further away from

their initial position. The softmax layer output shows that the certainty of the

hypothesis increases step by step. Also, one can notice that more features are

added, literally on-the-fly, to the representation. Some false positives still exist

when the new random position of an alias object is close to its former position.

42

5.1. Toy Experiments

(a)

(b)

(c)

(d)

Figure 5.4: Outputs for Toy Experiments #2. Row (a) shows the input of the
network for each time-step. Row (b) shows the output of the softmax layer. Row
(c) shows the final outputs of the network. Row (d) shows the evaluation (True
Positives True Negatives False Positives False Negatives). The last output
represents the final output of the network and we use it for evaluation.

Table 5.2 shows the results we obtained on the test set of the toy example #2.

Since we have a large class, covering more than 90% of the image, we can expect

a large pixel-wise accuracy for any classifier. Thus, we should focus on the class-

accuracy, which weights the two classes the same.

The simplified network obtains the worst results among the three tested models.

As previously stated, since the whole sequence is placed in one map, the network

has limited ability in detecting long range dependencies. In current scenario, this

dependency is very strong and it is important to learn it for the optimally solving

the task. The best thing such a network can do is to compute some statistics based

on several input frames, but it is not able to keep and update a state information.

The other two more complex models obtain significantly better results, im-

proving the class accuracy by about 15%. Although the result obtained using a

Model Pixel-Wise Accuracy (%) Class Accuracy (%)

Simplified RNN 96.3 72.4
Unidirectional RNN 97.7 87.3
Bidirectional RNN 98.1 89.2

Table 5.2: Results obtained on Toy Experiment #2

43

5. Experiments

(a)

(b)

(c)

(d)

Figure 5.5: Outputs for Toy Experiment #3. Row (a) shows the input of the
network for each time-step. Row (b) shows the output of the softmax layer. Row
(c) shows the final outputs of the network. Row (d) shows the evaluation (True
Positives True Negatives False Positives False Negatives). The middle
output represents the final output of the network and we use it for evaluation.

bidirectional network is only 2% better than in case of the unidirectional one, this

shows that keeping the same context, but processing the input in two directions

is, in this scenario, beneficial.

5.1.3. Trajectory Inference

If in the previous experiment we convinced ourselves that our recurrent network

is able to track a moving object. We are now interested if it is actually capable of

inferring such a regular movement based on partial information.

To check this we will no longer provide the last inputs to the network, but we

will expect the network to output the moving object at the right position, in the

evaluated time-step. There is no longer need to apply noise or add any aliases

to the inputs, since the network can not rely only on the information existent in

current frame. If it would do so, it would not be able to generate a prediction for

time steps where input is missing.

Task

In the first time steps the task of the network is simple: It only has to reproduce

the corresponding input. However, since the last few inputs are missing, the

44

5.1. Toy Experiments

network should predict the position of the object based on the information gained

in previous time-steps. Since averaging over time is not an option here, the network

might learn the transposition and simply propagate the first inputs further, since

no noise is present anyway.

Another challenge is for the network to learn to ignore the non-existing input

and thus to not decrease the intensity of the signal. This is problematic since the

network does not know its current position along the temporal axis.

Since the task is no longer to denoise an object, and we are rather interested in

its movement, we use a less complex moving object for this task.

Setup

For solving this toy task, we will use both unidirectional and bidirectional net-

works, which we expect to have predicting capabilities. In our experiments we

investigate what happens when two or three out of our seven inputs are not pre-

sented to the unidirectional network. In case of the bidirectional network, in order

to have equivalence to the unidirectional network experiments, we skip three and

five inputs. The reasoning behind this is that the sub-network that manages one

of the directions receives half of the inputs (plus the middle one which is present

in both directions). For example, skipping three inputs means that both sub-

networks will skip two inputs.

Result

As in the last task, the class accuracy metric gives a better overview since the two

classes are unbalanced.

Table 5.3 presents the results obtained on the test set. We notice that even

in the least performant configuration, where we have a bidirectional architecture

and we only feed the first and the last input, the network is still able to track

the object, without being able to reproduce all its features. Figure 5.5 depicts

this scenario, showing how the network actually learn to infer the position in the

Model Nr. Skipped Frames Pixel-Wise Accuracy (%) Class Accuracy (%)

Unidirectional RNN 2 97.0 80.1
Unidirectional RNN 3 96.6 75.4
Bidirectional RNN 3 97.2 81.4
Bidirectional RNN 5 96.6 74.9

Table 5.3: Results obtained on Toy Experiment #3

45

5. Experiments

middle time step, where we expect the final output of the network.

5.2. Experiments on NYUD

The NYUD dataset is comprised of video sequences taken from 464 indoor scenes,

adnotating a total of 894 classes. We reduce them to four high level abstractions:

Prop Small objects that can be easily carried

Furniture Large objects that cannot be easily carried

Structure Non-floor parts of the room: walls, ceiling, columns.

Ground The floor of the room.

Everything that falls out of these categories will be ignored using the ignore mask.

5.2.1. Memory limitation

One technical issue when working with recurrent or deep neural networks is the

large amount of memory involved in the training phase. The reason is that some

of the neural operators require remembering the old value of the activation in

order to compute the gradient. In our network such operators are: convolution,

max-pooling, hyperbolic tangent (tanh). This implies that we have to keep the

activations in memory for all such operators, at the same time, until the final

result of the network is computed. Once backpropagation reaches an operator, we

Figure 5.6: Original image Figure 5.7: Labeled frame of NYUD

46

5.2. Experiments on NYUD

no longer need the previous activation and we can discard it. Thus, an analysis

of the needed memory will not only tell us which configurations are feasible, but

also give us an insight on how large is the effect of each structural property of the

network on the memory consumption.

We show a formula that estimates the memory consumption in bytes

4b(xys+
∑
i=1,n

mixyf

22i
(s+ 2(n− 1)− i))

, where b represents the batch size, n the number of layers, x and y the dimension

of the input, s the sequence size, m the number of filters for convolution i and f

represents a number of operators per layer for which have to store the activation

during forward propagation. f takes values between 3 and 5 depending on the

position of the layer inside the network (layer number and time step).

To give a brief explanation for the formula, mixy represents the memory we need

to store for one operator. Both x and y are halved after each level of abstraction,

which is reflected by the denominator. Each level of abstraction of the network

has a total of s temporal copies plus an additional 2(n− 1) to allow the signal to

reach the highest level of abstraction and return to the lowest, where the output

is constructed.

We present the estimations for several possible network architectures, such that

the reader can get a sense on the restrictions such architectures face at the moment.

One must however keep in mind that this memory amount is needed only to

store the activations, and additional memory is involved in the computation done

by the operators. A bidirectional network, as well as extensions such as: final

convolution, multiscale inputs require more memory.

We chose our configurations such that the memory requirement is fulfilled. We

Image Size Number of Maps Sequence Size Batch Size GPU Mem.(MB)

160 32-32-32 8 16 3581
160 32-32-32-32 8 16 4242
160 32-64-128 8 16 4875
160 32-32-32 16 16 6106
160 32-32-32 8 32 7162
600 32-32-32 8 16 50361

Table 5.4: GPU Memory Consumption estimation for several potential configu-
rations

47

5. Experiments

use NVIDIA GeForce GTX Titan graphic cards, having an internal memory of 6144

MB. We could relax this limitation by caching the activation, saving them in RAM

after they are computed, and loading them back to GPU when we back-propagate.

However this would result in a large amount of memory being transferred twice

between GPU memory and RAM, during every traversal of the neural network,

slowing down the whole training process.

5.2.2. Kernel size limitation

When first running the experiments for image sizes of 160x160, we noticed that the

simplified architecture was failing, while other were running fine. We localized the

issue in the convolution kernel. Due to the large number of channels, resulted by

concatenating all inputs in one map, the convolution operation was calling kernels

of a size larger than the maximum manageable by our GPUs. This limit is in our

case of 1024 threads per block.

In order to comply to this restriction we could simply run the experiments that

use the first architecture on a down-scaled input of size 80x80. This however would

cause an important disadvantage compared to the other two architectures where

such a situation does not occur.

The solution we implement is first to detect such situations and to split the

convolution in two, each responsible for half of the channels. We then concatenate

the results. The overhead introduced by this solution is significant, consisting of

a convolution and a concatenate operator. On the other hand, we only have to do

Figure 5.8: Splitting convolution operation in order to prevent exceeding the
maximum threads per block limit

48

5.2. Experiments on NYUD

this for the first layer, since due to the resolution decrease, the kernel size will also

decrease under the maximum limit.

5.2.3. Creating sequences

Although NYUD was recorded as a video sequence, the actual dataset consists of

a subset of 1449 frames which were preprocessed and manually labeled. The rest

of 407,024 frames are the raw output of the RGB and Depth cameras from the

Microsoft Kinect.

In order to be able to transform the dataset into a image sequence dataset, but

at the same time use the labeled frames for evaluation, we have to extract the

past and future context of each labeled frame and preprocess it. The network,

depending on the architecture, will receive half of the context or the whole context

and we will compare the output corresponding to the labeled frame with the ground

truth.

We need to keep the temporal distance between frames short enough, to ensure

that the translation stays within the 7x7 filter size, such that each abstraction level

of the network can track the changes between two frames. Although the speed of

the camera movement can vary, a fixed interval of 0.1 seconds between frames

allows us to have a smooth transition, but also to cover a significant time-span.

During extracting the context it is necessary to synchronize the RGB and Depth

frames, not captured at the same by the Microsoft Kinect since the RGB and the

Depth sensors work independently of each other.

The next step is the preprocessing of the RGB and Depth images. Preprocessing

involves: lens correction, projecting the depth onto the RGB sensor perspective

and filling the depth.

Lens correction attempts to fix the barrel distortion typical to wide angle cam-

eras and is done using the ”Camera Calibration and 3D Reconstruction” package

of OpenCV and the camera parameters provided by the creators of the dataset.

Also, the fact that the RGB camera and the Depth camera have slightly different

positions should not be neglected. The depth must be projected from the depth

camera viewport to the RGB camera viewport. This is done by a rotation and a

translation using the matrices provided by the creators of the dataset.

The final step is to fill the depth. The Kinect cameras produce depth images

where often significant parts are missing. The producers suggest that this phe-

nomenon is ”due to certain materials or scene structures which do not reflect

infra-red (IR) light, very thin structures or surfaces at glancing incidence angles”.

(Newcombe et al., 2011).

While we could simply ignore the depth holes, the network would not benefit

49

5. Experiments

from the depth information in those area, or even worse, might misinterpret them.

Thus, we fill the depth using the colorization algorithm(Levin et al., 2004). We use

the already existing port of the algorithm in Python and C++ from waldvogel13

and Schwarz, 2014 respectively.

5.2.4. Dataset Issues

Among the unprocessed frames, both RGB and Depth, of the NYUD, corrupt or

partially corrupt measurements exist. If the number of such problematic samples

in the training set is small, it would not influence learning significantly since the

gradient is computed over the whole mini-batch. However, if such samples occur in

the test set, they will affect the final results, since the accuracy for classifying one

sample has a weight of 0.16% in the average accuracy that we use for comparing

models. While ignoring those frames when building the dataset is an easy task,

detecting them is more involved since we can not inspect manually every frame of

the dataset. Instead, we use an heuristic to detect some of those corrupted frames.

Another problem is caused by one of the sensor being inactive for several seconds.

This is a major issue for us since we expect one frame every 0.1 seconds, due to

the reasons explained in the previous subsection. There are also situations when

the context simply does not exist, for example if one of the labeled frames is at

the beginning or at the end of the video sequence. In such situations we are not

able to produce a prediction. When we use a unidirectional network and only

the past context is partially unavailable we can process the frames in the reverse

order, this workaround allowing us to produce a prediction. On the other hand,

for bidirectional networks this is not an option. In practical situations,when such

cases occur, we should posses and use an additional non-recurrent CNN to provide

predictions until the RNN recovers from the lack of context.

5.2.5. Methodology

Unlike the network structure used in the toy examples, we now use a three layer

neural network based on the implementation from Höft, 2014, unfolded in time.

Due to the large depth of our network, the model requires a large amount of

training time, which prevents us from running many experiments. However, we

have numerous parameters and features to be tested.

We can not afford to test all possible combinations of parameters, nor to use

a hyperopt client which would as well require a large number of experiments to

figure the right combination of parameters. We instead do experiments varying

a set of parameters that, based on the results on smaller experiments seemed to

50

5.2. Experiments on NYUD

(a) RGB frame (b) Raw depth information

(c) Projected Depth (d) Filled Depth

Figure 5.9: Steps done in preprocessing the depth. Notice that the raw RGB
frame and the raw depth frame are not aligned. This is caused by different per-
spectives of the RGB and depth sensors. Projecting the depth aligns the two of
them, but produces new holes in the depth map as well. After filling the depth
missing values, we have a usable RGBD frame.

51

5. Experiments

have a stronger impact:

• Architecture type

• Intermediate Ground Truth

• Weight Decay

• Dropout

The reason why we included two regularizers in this list is the fact that we noticed

a tendency to overfit.

In the second batch of experiments, we chose one of the most promising config-

urations and we add gradually the rest of the extra featured, investigating which

of them actually improve the results. We will, of course, not be able to derive

all correlations between different configuration parameters, but such an extensive

analysis is beyond our scope and our current possibilities.

5.2.6. Results, first stage of experiments

During this stage we obtained numerous results and we will highlight here those

that we consider are enough to provide an insight on the effect of each parameter.

Simplified Network

Table 5.5 presents the results obtained using different configurations involving

a simplified network. We notice that there is a tendency to overfit since the

configurations that include regularizers obtain, in general, better results.

Configuration Class Accuracy (%) Pixel-wise Accuracy (%)

Base 59.2 59.3
Base + WD 58.1 59.9
Base + FC 58.6 59.6
Base + FC + DO 59.2 60.0
Base + IGT 58.2 59.8
Base + FC + WD + DO 59.3 59.9
Base + FC + DO + IGT 59.4 59.9

Table 5.5: Results obtained on the test set of NYUD using the simplified ar-
chitecture. WD = Weight decay, DO = Dropout, IGT = intermediate ground
truths

52

5.2. Experiments on NYUD

Configuration Class Accuracy (%) Pixel-wise Accuracy (%)

Base 61.8 61.8
Base + WD 62.0 61.8
Base + IGT 61.9 61.9
Base + FC + DO 60.7 60.9
Base + FC 62.2 62.3
Base + FC + IGT 61.5 61.3
Base + FC + DO + IGT 62.3 62.7
Base + FC + WD + DO + IGT 61.2 62.0

Table 5.6: Results obtained on the test set of NYUD using the unidirectional
architecture. FC = final convolution, WD = Weight decay, DO = Dropout, IGT
= intermediate ground truths

The best result that we obtain with respect to the pixel-wise accuracy is when

using dropout. The pixel-wise accuracy boost is of about 0.8%. On the other

hand, when using a combination of dropout and intermediate ground truths we

obtain improvements of both the class and pixel-wise accuracy.

Another thing to notice is that using both weight decay and dropout simulta-

neously did not further improve the results significantly.

Unidirectional Network

A similar overview, for the unidirectional architecture, is presented in Table 5.6.

In this case, as well, we notice a significant improvement when using intermediate

ground truths, but only when combined with dropout. The pixel-wise accuracy

boost is also about 0.8%. The same configuration obtains the best class accuracy

as well, clearly outperforming the other configurations.

Weight decay was unable to affect the results in a positive way, neither on

its own nor in combination with dropout or intermediate ground truths. Also an

interesting fact is that dropout on its own is ineffective, unless intermediate ground

truths are used.

Bidirectional Network

Finally, the results for the last tested architecture are presented in Table 5.8. The

accuracy obtained by the network without any add-ons is already more than 62%,

larger than in case of the unidirectional network. We were able to improve the

pixel-wise accuracy by only 0.2% by adding regularizers and intermediate ground

53

5. Experiments

Configuration Class Accuracy (%) Pixel-wise Accuracy (%)

Base 61.9 62.3
Base + WD 61.1 61.8
Base + FC + DO 61.9 61.9
Base + IGT 60.1 61.5
Base + WD + DO 60.6 61.9
Base + FC +DO + IGT 62.6 62.2
Base + FC + WD + DO + IGT 62.2 62.5

Table 5.7: Results obtained on the test set of NYUD using the bidirectional
architecture. WD = Weight decay, DO = Dropout, IGT = intermediate ground
truths

truths, but surprisingly we were able to obtain an improvement of 0.7% in the

class accuracy, surpassing the results of the other architectures with respect to

this metric.

We noticed that sometimes, during the training of the bidirectional network,

an unwanted effect occurs. This effect is pictured in Figure 5.10. Whenever we

encounter an unfortunate initialization that favors one direction in learning faster,

there is a risk the network will learn to ignore the other direction. This means

that the weight set corresponding to one direction becomes zero and will not be

able to recover from this state. Since this situation occurs rarely, one solution to

solve this would be to restart the experiment, re-initializing the network and thus

starting from another position on the error surface.

⇒ ⇒ ⇒ ⇐ ⇐ ⇐

⇒ ⇒ ⇒ ⇐ ⇐ ⇐

Figure 5.10: First row shows the RGB sequence given as input. The second
and third row show the activation corresponding to the class floor, when the de-
scribed effect occurs and respectively when not. The arrows show the propagation
direction, and the middle output is the final output of the network.

54

5.2. Experiments on NYUD

Another solution would be to have an unique parameter set for both directions.

This would however mean that both directions learn the same features, which

would simplify the network but limit its flexibility at the same time.

Analysis

Comparing the results of the three experiments, we notice that the best result with

respect to pixel-wise accuracy was obtained using an unidirectional architecture.

However, on this metric, the difference between the unidirectional and bidirectional

network was of less then 0.2%. On the other hand, if we consider the class-accuracy

we notice that the best result is obtained by a bidirectional architecture. However,

since the networks are optimized for the pixel-wise accuracy, a such large class

accuracy, given the unbalanced classes, might suggest that the network was still

in an early stage of learning.

Although the bidirectional network should make better use of the input data,

in this set of experiments we did not get the improvement we hoped for compared

to the unidirectional. This might also suggest that the context is too small, since

we had to halve it to keep the same number of inputs.

Another observation is that, in all three architectures, the best configurations

used dropout and intermediate ground truths. Indeed, if we have a look at Fig-

ure 5.11b, we notice that when using IGT, a more structured representation takes

shape even for the time-steps where we do not have ground truth. When using

ground truth only for the last frame (Figure 5.11c), only the last two time steps

show structure, while the others develop a chaotic representation that only changes

slightly. At the same time, we do not want to constraint the network to learn the

exact representation in an early time-step, since that would limit the network flex-

ibility by also expecting an early convergence. For this reason, the intermediate

ground truths are weighted less than the final ground truth.

Using the simplified network we obtained significantly worse results. This is

consistent to the results obtained in the toy example and a sign that we should not

hope having a winning configuration among those relying on such an architecture.

On the other hand this proves learning temporal dependencies to be beneficial.

5.2.7. Results, second stage of experiments

In the second set of experiments we attempt to fine-tune the results by applying

several extensions to configurations that obtained promising results in the first set

of experiments. We will present each of these extensions and briefly discuss the

results.

55

5. Experiments

(a) Original RGB frame, NYUD dataset

(b) Ground truth for class “furniture”

(c) Activations: No intermediate ground truth

(d) Activations: IGT in time-steps two and five

(e) Activations: IGT in all time-steps

(f) Activations: Plain Gradient

(g) Activations: Multiscale inputs

Figure 5.11: Activations for different network configurations

56

5.2. Experiments on NYUD

Configuration Class Accuracy (%) Pixel-wise Accuracy (%)

Base 62.3 62.7
Base + SS1 61.9 61.9
Base + PS176 62.2 62.6
Base + FS5 62.0 60.9
Base + IGTALL 61.8 61.8
Base + 16-32-64 61.8 60.4
Base + NSB 62.6 62.0
Base + PLAIN 49.7 53.6
Base + PC 59.9 60.6
Base + MS 62.4 63.1
Base + SW 69.5 66.8

Table 5.8: Results obtained on the test set of NYUD using the unidirectional
architecture + extensions. All extensions together with their abbreviations are
described in this section.

Single time step (SS1)

One might argue that the results that we obtain are due to using a strong convo-

lutional model, on which the network is relying, ignoring the information received

from the other time steps.

This experiment shows this is not the case. Using only the input corresponding

to the current time step leads to a lower performance then when a context of eight

time steps is used.

Pattern size of 176 pixels (PS176)

Up to this point we always scaled the input to 160x160, using reflective border to

switch from a 1,33:1 aspect ratio to 1:1. Our network produces an output of size

160x160 which we upscale to 640x640 and compare to the original, ignoring the

extended border.

We have chosen 160 as pattern size since it is a divisor of 640, the network being

responsible of representing in one pixel a patch of 4x4 pixels. On the other hand,

Höft et al., 2014 used by default 176 as pattern size.

The result of this experiment shows that a pattern size of 160 is more appropri-

ate.

57

5. Experiments

Smaller filters (FS5)

Simplifying the model is another way one could cope with the over-fitting. Re-

ducing the filter size also reduces the amount of weights and thus simplifies the

model. However, as the experiment shows, this did not proved to be beneficial

in our scenario. Moreover, by inspecting the loss on training and validation data,

we noticed that the over-fitting has not decreased. This could suggest that the

over-fitting is mainly caused by the redundancy present in the input data rather

than due a too complex model.

Plain Gradient + Norm Clip (PLAIN)

The worst results were obtained using the plain gradient instead of RmsProp.

Using norm clipping we were able to avoid gradient explosion, an evidence of

this is the fact that the network did not saturate after 600 epoch. The problem

with this approach is that norm clipping only prevents gradient explosion but not

gradient vanishing. Indeed, we notice from Figure 5.11f that some of the features

are forgot after about 4 frames, the network relaying on a very limited context.

We are aware that different gradients may have different ranges for the optimal

learning rates, and thus we have done this experiments with three different values

chosen from the logarithmic scale and kept the best result. The progression of the

loss function on training and test set showed a decreasing tendency and a small

overfit, which suggests that we would have to wait longer for the convergence to

local minima. Due to the large amount of time an epoch lasts, this is not a viable

solution.

Ground Truth in all time steps (IGTALL)

Even though counter-intuitive, telling the network how the output should look like

at every time-step leads to worse performances. This might be explained by the

lack of freedom the network has to develop its own internal representation. One

can notice this aspect in Figure 5.11e. Already after the first two time-steps, the

network is already close to a local minima to which it converges early.

Number of maps doubles every layer (16-32-64)

Doubling the number of maps after each level of abstraction might be a good

solution in some scenarios since this means having more features as the resolution

of the representation decreases. In our case, however, such an architecture did not

improve the results.

58

5.2. Experiments on NYUD

After testing different such configurations, using 16,32,64 maps for our three

layers seemed to be the most promising one. However, the results are significantly

lower then those obtained with 32 maps in all layers. The optimal number of

features for each layer is, however, difficult to be determined analytically as it

depends on the application and on the dataset.

Not sharing biases (NSB)

As previously mentioned, not sharing biases could lead to managing time steps

differently, which is desirable in some situations.

We notice an increase of more than 0.2% in the class accuracy, which is unex-

pectable due to the significantly lower pixel-wise accuracy. The individual accu-

racies per class showed that the accuracy for the least frequent classes: “Ground”

and “Prop” increased by 3%. On the other hand, the accuracies for “Structure”

and “Furniture”, decreased by about 0.2%, which explains the decrease of the

pixel-wise accuracy. This result, along with the fact that the loss function used

minimizes the pixel-wise accuracy suggest that the network was still far from the

local minima at the end of the 600 epochs.

Pairwise class location filter (PC)

We investigated the weights learned by the PC filter, to determine the reason the

network performs poorly when this extension was used. Although the weights

shown structure, it looked like for training the PC, more epochs were necessary.

This is due to the large filter that the PC filter has, and thus larger weight set,

compared to the other convolutions of the network. Since the network itself pro-

duces already strong predictions after 600 epochs, and an epoch is expensive, one

approach would be to train the network in two stages, one for training the network

and one for training the PC filter separately.

Multi-scale input (MS)

A significant improvement was obtained after using inputs at different scales. The

improvement in terms of pixel-wise accuracy is of almost 0.5%. Also the class-

accuracy is slightly improved. As we can notice from Figure 5.11g, the internal

representation of the input has a more defined structure than in the case where

we use only one scale for the input. This leads to a more accurate prediction.

59

5. Experiments

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 5.12: Prediction for one sample of NYUD test dataset. Row (a) is the
RGB input. Rows (b), (e), (h), (k) represent the softmax layer output; rows (c),
(f), (i), (l) represent the output of the network; rows (d), (g), (j), (m) represent the
evaluation (True Positives True Negatives False Positives False Negatives
) for the classes ground, structure, furniture and prop respectively .

60

5.2. Experiments on NYUD

Sliding Window (SW)

The use of sliding windows enhanced both the class and pixel-wise accuracy. An

explanation for this result could be the fact that the network has to focus now on

the dynamics that take place within a smaller spatial context and thus, is able to

track easier smaller objects. This is supported also by the increase in the accuracy

of classifying “Ground” and “Prop” objects, whose classes are less frequent than

the “Furniture” and the “Structure” classes.

Also, the network has a more broader set of inputs since the choice of the

window that determines the input of the network is non-deterministic. This has

the potential of reducing over-fitting.

Finally, since the network processes small patches, we also reduce the size of the

input the network receives from 160 to 80. This leads to a simpler model, faster

to be trained. One drawback is the time required for prediction, since the network

has to process patches that fully cover the input and combine their prediction

afterwards.

5.2.8. Overview on the results

We further discuss our results on the NYUD dataset in overview, comparing them

with other results obtained on this dataset.

Ability to exploit temporal dependencies

It is clear from the experiments that the network is able to learn temporal depen-

dencies, since the results obtained using an architecture that accumulates infor-

mation over several time steps performs better than the equivalent architecture

processing only one time step. However, we wish to provide an additional argument

to this statement, by showing the learned filters of our network. As previously de-

scribed our network uses three types of connections: Forward (Figure 5.13), lateral

(Figure 5.14) and backward (Figure 5.15). All weight sets show structure, which

means that both the horizontal and the vertical flow of activations are active.

Overfitting

Overfitting was one of the effects that limited right from the first versions of our

network the ability to learn and generalize well. Using dataset augmentation was

constantly helpful up in the small experiments we have carried, thus we decided

to use it by default in all of our experiments.

Regularizers helped only partially, dropout being part of the configurations

which obtained the best results but only when we also evaluated the network

61

5. Experiments

Figure 5.13: Forward connections between Layer 2 and Layer 3

Figure 5.14: Lateral connections between Layer 2 and Layer 2

Figure 5.15: Backward connections between Layer 2 and Layer 1

62

5.2. Experiments on NYUD

in intermediate time-steps. In other words, only when we changed the structure of

the network. Generally weight decay did not help, even though we tried different

values, from the logarithmic scale, for the decay factor. This could suggest that

most of the overfitting is due to the redundancy of the data rather than due to the

complexity of the model. The success of dropout and dataset augmentation also

support this claim.

5.2.9. Comparison with other results

We compare the results of our network with the results obtained by the baseline

models. We use two baseline models for two different situations: when sliding

window is used and when not.

Our recurrent neural networks uses the convolutional model from Höft et al.

(2014), with a few changes. We use it as baseline for our implementation without

sliding window. We used a simplified version of their convolutional model, not

training the network stage-wise, since that would emphasize on the convolutional

connections more than on the recurrent ones, which we wish to avoid. Also, during

training we did not notice the need of using such a technique since all three layers

showed similar relative weight updates. Another change is that we do not use the

pair wise localization filter (PC filter). We use a final convolution to extract the

output from the filters of the bottom layer, but with the same filter size as the other

convolutions. While a PC filter might be useful against spurious observations, we

noticed that it would require more training then the rest of the model, and it was

not an option to further slow experiments down.

We chose the model which obtained the best results in our experiments, namely

the unidirectional network using two intermediate ground truths, a final non-

recurrent convolution onto which we apply dropout and finally, we provide the

network with inputs at different scales depending on the level of abstraction. The

Method ground struct furnit prop Class Avg. Pixel Acc.

Baseline 77.9 65.4 55.9 49.9 62.0 61.1
UNI + IGT + DO + MS 73.4 66.8 60.3 49.2 62.4 63.1

Baseline (SW) 87.7 70.8 57.0 53.6 67.3 65.5
UNI + IGT + DO + SW 90.2 74.5 52.2 61.0 69.5 66.8

Table 5.9: Comparison with the baseline. UNI = Unidirectional recurrent neural
network SW = Sliding Window, DO = Dropout, IGT = intermediate ground
truths, MS = multi-scale input

63

5. Experiments

(a) RGB frame (b) Depth

(c) Prediction (d) Ground Truth

Figure 5.16: Prediction for one of the NYUD dataset frames. Images (a) and
(b) represent together the RGBD frame after being preprocessed. Image (c) and
(d) represent the “floor” (), “prop” (), “furniture” (), “structure” () and
“ignore”.() Not only were we able to detect almost all object, but we also de-
tected objects that were not labeled (e.g the third object on the table).

64

5.2. Experiments on NYUD

results show an improvement of 2% in the pixel accuracy and of about 0.4% in the

class accuracy.

The sliding window approach we use is an adapted version of the one imple-

mented in Schulz et al., 2015. Although they used a simple feed-forward network

as a model, due to the sliding window approach with depth-normalized patch sizes

they were able to outperform the state of the art results. Another piece of their

design, having an important impact on the results is the computation and use of

the actual height map. Having access to the height information can help detect

elements that have specific vertical locations in the room (such as the floor) more

accurate and avoid many false positives. Computing the height maps for all images

in our sequence dataset was not an option for us due to the limited time, so we

chose to only use the sliding window and depth-normalized patch sizes approaches.

Thus, we also compare our result with the result they obtained without the height

feature. This time the improvement of the class accuracy is of more than 2% and

of more than 1% in pixel-wise accuracy.

Table 5.10 shows our result together with the results of different models. Here

we also show the result of Schulz et al., 2015 with the previously discussed model,

with the height map included. Müller and Behnke (2014) use Conditional Random

Fields over a Random Forest prediction aggregated in super pixels. They use the

height feature as well.

Our method is still behind the state of the art method, but shows promising

results. We have high accuracy in detecting classes that occur less frequent such

as “Ground” and “Prop”, while the accuracies for the frequent classes “Struc-

ture” and “Furniture” remain competitive. Using the height feature might further

improve our result, especially the accuracy for the “Ground” class.

Method ground struct furnit prop clsav pixav

UNI + IGT + DO + SW 90.2 74.5 52.2 61.0 69.5 66.8

Müller and Behnke (2014) 94.9 78.9 79.7 55.1 71.9 72.3
Schulz et al., 2015 93.7 72.5 61.7 55.5 70.9 70.5
Stückler et al. (2013) 90.8 81.6 67.9 19.9 65.0 68.3
Couprie et al. (2013) 87.3 86.1 45.3 35.5 63.5 64.5
Höft et al. (2014) 77.9 65.4 55.9 49.9 61.1 62.0
Silberman et al. (2012) 68 59 70 42 59.6 58.6

Table 5.10: Comparison with other results from the literature . UNI = Unidi-
rectional recurrent neural network SW = Sliding Window, DO = Dropout, IGT
= intermediate ground truths, MS = Multi-scale input

65

5. Experiments

We must admit, however, that a direct comparison of our result with the result

of others is not fair since we accumulate information over a larger context, while

other works listed here work only with the current frame. Also, due to the problems

described in Section 5.2.4, seven out of 654 images could not be evaluated. Still,

this does not have a significant impact on our results, since even if we would

consider obtaining the chance accuracy for the seven images, which is already

unlikely, we would still have competitive results.

On the other hand, this comparison shows the potential one has when exploiting

such a larger context.

5.3. Time measurements

In this section we initially planned to present the time measurements based on

the experiments that were already carried out. However, due to the long period

an experiment takes, the high variance in the CPU usage over time, the fact that

we used eight GPUs of two different machines, were all factors that influenced the

time measurements and led to confusing results.

We thus perform a separate small set of experiments, training only for a few

epochs during a short period of time. Also, we run these experiments sequentially,

on the same GPU.

Table 5.11 shows that the most expensive architecture in term of time consump-

tion is, surprisingly, the simplified one. Although the depth of such a network is

about quarter the depth of the unidirectional network, the number of channels

increases proportionally to the number of temporal steps covered. Also, several

concatenate and subtensor operators constitute an important overhead. On the

other hand, as expected, the bidirectional network is slower than the unidirec-

tional network that covers the same temporal context. It is however not slower by

a factor of two, even though we include two unidirectional networks, due to the

optimization we used, described in Section 4.1.3 .

The extensions might as well increase the training time. Using intermediate

ground truths involves a small overhead, since the intermediate evaluations are

included in the loss, which involves a traversal of a slightly larger network. This

has a limited effect during prediction since we only need the output of one temporal

step.

A final convolution causes a more substantial overhead since, compared to a

subtensor operator, more calculations are involved. During prediction, we only

do the forward propagation step, which leads to close timings between the two

approaches.

66

5.3. Time measurements

Configuration Training time / epoch (s) Prediction time / image (s)

SIMP 26.8 0.8
SIMP + IGT 26.9 0.8
SIMP + FC 27.4 0.8
SIMP + MS 28,5 0.8
SIMP + SW 8.1 2.3

UNI 15.1 0.5
UNI + IGT 15.2 0.5
UNI + FC 15.6 0.5
UNI + MS 15.8 0.6
UNI + SW 5.9 0.9

BIDI 18.6 0.6
BIDI + IGT 18.8 0.6
BIDI + FC 19.5 0.6
BIDI + MS 19.6 0.6
BIDI + SW 10.8 1.6

Table 5.11: Time measurements. 16 images per batch used, 20 batches per epoch,
input size is 160x160. SIMP = Simplified RNN, UNI = Unidirectional RNN, BIDI
= Bidirectional RNN, IGT = intermediate ground truths, MS = multi-scale input.
These measurements include the loading and the preprocessing of the images.

Using multiscale inputs affects the training time significantly. Inserting new

inputs in the network is not trivial and involves several operators being added to

the network (Figure 4.1).

In the case of sliding window, due to working with patches of the input, and thus

processing them at 80x80 pixels instead of 160x160 pixels, training is significantly

faster. Another positive effect is visible in the simplified architecture, where we

no longer have to split the convolutions, as described in Section 5.2.2.

Among these results, the fastest approach requires about six seconds per epoch

during training. For the prediction step, the best result is of half of second per

image. This is a pessimistic perspective, since models such as the random forest,

implemented in CUDA, and described in Waldvogel, 2013, can compute one pre-

diction in 13 ms, and achieves a class accuracy only 4% smaller than ours. Since

performance is an important factor in today’s applications, the practical appli-

cability of our model is questionable, at least at the moment. Along with the

technological developments in graphic cards, which could make our model usable

in several years, a neural network once trained can be implemented in hardware,

as suggested in Farabet et al., 2010, leading to an important performance boost.

67

5. Experiments

5.4. Difficulties

One of the difficulties of this work was the amount of time spent in transforming

the NYUD dataset in a sequence dataset. We had to work with the raw RGBD

frames and to redo all preprocessing steps done in Silberman et al., 2012 to obtain

the image dataset, but for more frames. Although they provided Matlab scripts

for preprocessing the dataset we had to convert the code into a more accessible

and fast implementation, except for the depth filling which was already ported to

Python (Waldvogel, 2013) and C++ (Schwarz, 2014).

The size of the raw dataset and the way it was organized was another issue that

consumed time. The authors provide the dataset in one huge archive of 428 GB

and alternatively in archives of about 20GB each. The split is done based on the

sequence as well, but since the authors did not provide a meta-data file to specify

in which archive a certain file exists, we found it more fast to actually search in the

large archive, and to cache the search results. While the authors provided MD5

sums for each of the small archives, It was, however, important to be able to obtain

some results on this dataset since we already had results obtained using the simple

convolutional network, hence we could perform a comparison. Unfortunately we

did not have the chance to test the network on another dataset, except for the toy

experiment datasets, although having such results would have been interesting as

well.

In this context, the fact that we had access to workstations with a large process-

ing power, numerous CPUs, and, most important, powerful graphic cards played

an key role in this work. For example, since the dataset preprocessing could be

easily divided in sub-tasks and ran in parallel, we waited for about one week for

its completion, while normally the task would have required months on a regular

PC.

Apart from the handling the dataset, we also faced a set of limitations, some

of them described in Section 5.2.1 and Section 5.2.2. We had to perform estima-

tions in order to find the appropriate ranges for the parameters. Particularly the

slowness of our experiments and the fact that we could run only a small number

of them in parallel led to a late discovery of issues in the design, or problems

in the dataset, since some of the problems required a large number of epochs to

be detected. This was partially solved sometimes by running smaller and faster

experiments, but we were not able to replicate some problems on small datasets.

The size of the networks that we implemented and the complex connectivity

also made finding problems in the design much harder (Figure A.1, Figure A.2,

Figure A.3). We built simplified versions of the function graph to detect high level

issues, but for fine-tuning we had to follow edges in a large graph. Visualizations

68

5.4. Difficulties

of the filters, the outputs of different time steps, helped a lot as well to detect

inconsistencies.

Training such large networks also introduced the challenge of avoiding saturation

of the non-linearity units. Since we use ReLU, we had to avoid situations in which

maps resulted after a convolution are fully negative since those become zero maps

after the non-linearity is applied and leads the network in a state from which

it is unable to recover. Also, since ReLU is one-sided, not saturating for large

activations, we also have to avoid exploding activations.

One way to avoid such situations is to have a careful initialization of the weights.

Ideally, at the beginning, we would want to keep the activations from any point of

our network in the same ranges. Once the training phase starts, provided that the

learning rate is not too large, the network should adjust those ranges optimally.

Keeping the same ranges is however difficult to control, especially in such large

networks, and we found easier to adjust the parameters such that the values of

the activations are on average positive, and they slightly decrease with every time

step, making sure that every set of activations remain positive on average as well.

We found that this simple strategy is enough to provide a good starting point for

training the network.

In addition to the problems presented here that arised during the development

of this work, we also have reasons to be self-critical. We were skeptical from the

start that RMSProp together with ReLU will work well in our recurrent network,

despite the fact that they were successful in training deep convolutional neural

networks. Thus, we invested additional time in implementing and testing the

gradient clipping, which was not trivial due to design constraints, before even

trying to use RMSProp on NYUD dataset.

69

6. Conclusion

In this work we successfully implemented a recurrent neural network, able to learn

not only spatial dependencies as a convolutional network does, but also to learn

temporal ones from a sequence of video frames presented as input. We started

with a series of toy examples that helped us detect initial problems in the design

of our networks and at the same time showed that the recurrent structure allows the

network to learn temporal dependencies needed for solving tasks such as denoising.

Also, our toy examples showed that the networks can track and infer motion,

both features being important pieces later on, when working on the real-life video

sequences.

The next part was a process of adapting the NYUD dataset to our needs, pro-

viding an additional temporal context to each frame. Experiments on this dataset

highlighted new problems and limitations that we had to handle. Large networks

exceeded the amount of memory we had at our disposal, reason why we made an

estimation for the GPU memory consumption based on the network configuration.

This allowed us to know how each structural network influences the memory con-

sumption of the network and which configurations are feasible. Another important

issue was the large duration of our experiments. We have chosen the experiment

set carefully and ran it on eight GPUs for about six weeks.

In addition to testing the three architectures, we also proposed and tested a set

of extensions to the design, most of them inspired from other works on deep neural

networks. Although few of those extensions were successful in improving the results

we already had, we were able, using multiscale inputs and the sliding window

approach, to shorten the gap between our results and the results obtained by the

state-of-the-art method. We showed that our recurrent model is outperforming

the convolutional model in relies on, which suggests that our network is able to

make use of the temporal context.

When comparing the three architectures, we could conclude that the simplified

RNN is weaker then the other two architectures which process one input at a

time. The comparison between the unidirectional network and the bidirectional

one showed that the bidirectional performs worse than the unidirectional most

likely due to having a shorter temporal context to exploit, in the two compound

sub-networks.

71

6. Conclusion

We performed time measurements of our models. As we expected, such a large

neural network requires a long period of time for training and prediction. Even

when powerful graphic cards are used, such a model needs about half of second to

produce a prediction. This means that we are far from being capable of produc-

ing predictions in real-time. However, our work, among many others, reinforces

the idea that such recurrent models, together with convolutional connections, are

promising especially for processing video sequences.

6.1. Future work

Our design can be improved in many ways. Also, the method for generating the

dataset could be optimized. For example, the algorithm for generating the inter-

mediate ground truths is a very basic one, simply propagating the label according

to the optical flow calculated based on the two consecutive frames. The algorithm

could include heuristics for determining regions where we are not certain about

the labeling (e.g where the optical flow is zero), and represent such regions in

the ignore mask. Another improvement would be to decide the ground truth of a

certain time step based on several previous time steps, not only on the last one.

Currently, when building a sequence, we consider the temporal distance between

frames and try to keep this distance constant. However, this does not take into

account the speed of the camera. A better solution would be to keep the spatial

distance between the camera perspectives constant. This would be possible, since

we have access to the accelerometer data.

Also, it would be interesting to see results of such a model when a wider context

is used. This is not applicable on the NYUD dataset due to frequent gaps where

we have no RGB or Depth information.

One important addition to our model would be to consider the height as sug-

gested in the Section 5.2.9. The height feature provides the network with impor-

tant information, especially useful when sliding window approach is used, since

we have no indication at all where are we located inside the image. By observing

the predictions produced by our model we noticed that, many times, the ceiling

for example is confused with the ground. Having the height as input would help

avoiding such situations. Computing the height for a frame, based on its depth, is

not trivial and has to be performed for all frames of the sequence, a slow process

that, together with the limited time we had at our disposal, led us to the decision

of not include this in our work.

Another interesting improvement would be a post-processing of the predictions,

removing spurious observations. This can be implemented as an additional con-

72

6.1. Future work

volution, of a larger filter size, which learns making the predictions more smooth.

Such a convolution, however, would require more epochs for being trained, and

thus, for this situation, training the network in stages could be an idea to inte-

grate such a concept.

Finally, additional effort could be invested in determining the optimal param-

eters of the network. However, exploring a large number of configurations also

requires a large number of experiments, making potential speed optimizations

very important.

73

Bibliography

Behnke, S. (2003). Hierarchical Neural Networks for Image Interpretation. Vol. 2766.
Lecture Notes in Computer Science. Springer-Verlag (cit. on p. 4).

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning Long-Term Dependencies
with Gradient Descent is Difficult”. In: IEEE Transactions on Neural Networks
5.2 (cit. on p. 13).

Ciresan, D., U. Meier, and J. Schmidhuber (2012). “Multi-column deep neural net-
works for image classification”. In: Computer Vision and Pattern Recognition
(cit. on p. 3).

Couprie, C., C. Farabet, L. Najman, and Y. LeCun (2013). “Indoor Semantic Seg-
mentation using depth information”. In: The Computing Resource Repository
(cit. on p. 65).

Elman, J. L. (1990). “Finding structure in time”. In: Cognitive Science 14.2,
pp. 179–211 (cit. on p. 12).

Farabet, C., B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello (2010).
“Hardware Accelerated Convolutional Neural Networks for Synthetic Vision
Systems”. In: International Symposium on Circuits and Systems (cit. on p. 67).

Farabet, C., C. Couprie, L. Najman, and Y. LeCun (2013). “Learning Hierarchical
Features for Scene Labeling”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (cit. on p. 3).

Fukushima, K. (1980). “Neocognitron: A self-organizing neural network model
for a mechanish of pattern recognition unaffected by shifts in position”. In:
Biological Cybernetics 36 (cit. on pp. 1, 9).

Glorot, X., A. Bordes, and Y. Bengio. In: Journal of Machine Learning Research
(cit. on p. 11).

Grangier, D., L. Bottou, and R. Collobert (2009). Deep Convolutional Networks
for Scene Parsing (cit. on p. 3).

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.
Vol. 385. Studies in Computational Intelligence. Springer, pp. 1–131. isbn:
978-3-642-24796-5 (cit. on pp. 5, 6, 16).

Graves, A., A. rahman Mohamed, and G. E. Hinton (2013). “Speech Recogni-
tion with Deep Recurrent Neural Networks”. In: International Conference on
Acoustics, Speech and Signal Processing (cit. on pp. 5, 15).

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
(2012). “Improving neural networks by preventing co-adaptation of feature
detectors”. In: Computing Research Repository (cit. on p. 26).

75

Bibliography

Hochreiter, S. and J. Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Computation 9.8 (cit. on p. 14).

Höft, N. (2014). “Bildsegmentation in Objekt-Klassen mit Konvolutionalen Neu-
ronalen Netzen” (cit. on pp. 17, 19, 20, 50).

Höft, N., H. Schulz, and S. Behnke (2014). “Fast Semantic Segmentation of RGB-D
Scenes with GPU-Accelerated Deep Neural Networks”. In: German Conference
on Artificial Intelligence (cit. on pp. 57, 63, 65).

Hopfield, J. J. (1982). “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities”. In: Proceedings of the National Academy
of Sciences 79 (cit. on p. 12).

Jesorsky, O., K. J. Kirchberg, and R. W. Frischholz (2001). “Robust Face De-
tection Using the Hausdorff Distance”. In: Audio and Video-Based Person
Authentication. Lecture Notes in Computer Science. Springer (cit. on p. 5).

Jordan, M. I. (1986). Serial Order: A Parallel Distributed Processing Approach.
Tech. rep. Institute for Cognitive Science, University of California, San Diego
(cit. on p. 12).

Krizhevsky, A. (2009). “Learning multiple layers of features from tiny images”
(cit. on p. 18).

Le, Q., M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Ng
(2012). “Building high-level features using large scale unsupervised learning”.
In: International Conference in Machine Learning (cit. on p. 3).

LeCun, Y., K. Kavukvuoglu, and C. Farabet (2010). “Convolutional Networks
and Applications in Vision”. In: Proc. International Symposium on Circuits
and Systems (cit. on p. 9).

Levin, A., D. Lischinski, and Y. Weiss (2004). “Colorization Using Optimization”.
In: Special Interest Group on Graphics and Interactive Techniques (cit. on
p. 50).

M. Jung J. Hwang, J. T. (2014). “Multiple Spatio-Temporal Scales Neural Net-
work for Contextual Visual Recognition of Human Actions”. In: International
Conference on Development and Learning and on Epigenetic Robotics (cit. on
p. 3).

Martens, J. (2010). “Deep learning via Hessian-free optimization.” In: Interna-
tional Conference on Machine Learning (cit. on p. 14).

Müller, A. C. and S. Behnke (2014). “Learning Depth-Sensitive Conditional Ran-
dom Fields for Semantic Segmentation of RGB-D Images”. In: International
Conference on Robotics and Automation. Hong Kong (cit. on p. 65).

Newcombe, R. A., S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P.
Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon (2011). “KinectFusion: Real-
time Dense Surface Mapping and Tracking”. In: International Symposium on
Mixed and Augmented Reality (cit. on p. 49).

Pascanu, R., T. Mikolov, and Y. Bengio (2013). “On the difficulty of training
recurrent neural networks.” In: Journal of Machine Learning Research. Vol. 28
(cit. on pp. 13, 24).

76

Bibliography

Pham, V., T. Bluche, C. Kermorvant, and J. Louradour (2014). “Dropout improves
recurrent neural networks for handwriting recognition”. In: International Con-
ference on Frontiers in Handwriting Recognition (cit. on p. 26).

Pinheiro, P. H. O. and R. Collobert (2013). Recurrent Convolutional Neural Net-
works for Scene Parsing. Tech. rep. Idiap Research Institute (cit. on pp. 6,
12).

Räsn̈en, O. (2013). “Studies on unsupervised and weakly supervised methods in
computational modeling of early language acquisition” (cit. on p. 15).

Riedmiller, M. and H. Braun (1993). “A Direct Adaptive Method for Faster Back-
propagation Learning: The RPROP Algorithm”. In: International Conference
on Neural Networks (cit. on p. 23).

Schulz, H. and S. Behnke (2012). “Learning object-class segmentation with convo-
lutional neural networks”. In: European Symposium on Artificial Neural Net-
works (cit. on p. 3).

Schulz, H., N. Höft, and S. Behnke (2015). “Depth and Height Aware Semantic
RGB-D Perception with Convolutional Neural Networks”. In: European Sym-
posium on Artificial Neural Networks (submitted) (cit. on pp. 22, 65).

Schwarz, M. (2014). “Objektklassifikation, Identifizierung und Posenschätzung mit
Hilfe von vortrainierten Konvolutionsnetzen” (cit. on pp. 50, 68).

Silberman, N., D. Hoiem, P. Kohli, and R. Fergus (2012). “Indoor segmentation
and support inference from RGBD images”. In: European Conference on Com-
puter Vision (cit. on pp. 2, 65, 68).

Socher, R., C. C. Lin, A. Y. Ng, and C. D. Manning (2011). “Parsing Natural
Scenes and Natural Language with Recursive Neural Networks”. In: Interna-
tional Conference on Machine Learning (cit. on p. 3).

Stückler, J., B. Waldvogel, H. Schulz, and S. Behnke (2013). “Dense real-time
mapping of object-class semantics from RGB-D video”. In: Journal of Real-
Time Image Processing (cit. on p. 65).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich (2014). “Going Deeper with Convolutions”. In:
Large Scale Visual Recognition Challenge Workshop (cit. on pp. 4, 31).

Waldvogel, B. (2013). “Accelerating Random Forests on CPUs and GPUs for
Object-Class Image Segmentation”. MA thesis. Rheinische Friedrich-Wilhelms-
Universität Bonn (cit. on pp. 67, 68).

Yao, K., G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu (2013). “Recurrent neural
networks for language understanding.” In: Interspeech (cit. on p. 16).

77

A. Appendix

lo
ss

N
er

ro
r_

7

ou
tp

ut
s_

0

te
m

po
ra

l_
4_

0_
0

po
stp

ro
ce

ss
_2

2

te
m

po
ra

l_
3_

0_
0

po
stp

ro
ce

ss
_1

7

te
m

po
ra

l_
2_

0_
0

po
stp

ro
ce

ss
_1

0

te
m

po
ra

l_
1_

0_
0

po
stp

ro
ce

ss
_3

te
m

po
ra

l_
0_

0_
0

in
pu

t_
0

in
pu

t_
1

in
pu

t_
2

in
pu

t_
3

in
pu

t_
4

in
pu

t_
5

in
pu

t_
6

in
pu

t_
7

Pa
ra

m
s_

0

in
di

vi
du

al
_b

ia
s_

0

te
m

po
ra

l_
0_

1_
0

Pa
ra

m
s_

1

te
m

po
ra

l_
1_

1_
0

po
stp

ro
ce

ss
_7

te
m

po
ra

l_
0_

2_
0

in
di

vi
du

al
_b

ia
s_

1

te
m

po
ra

l_
2_

2_
0

po
stp

ro
ce

ss
_1

6

te
m

po
ra

l_
1_

2_
0

po
stp

ro
ce

ss
_9

Co
nn

ec
to

r_
Pa

ra
m

_5

in
di

vi
du

al
_b

ia
s_

8

Pa
ra

m
s_

2

in
di

vi
du

al
_b

ia
s_

2

po
stp

ro
ce

ss
_2

1

Co
nn

ec
to

r_
Pa

ra
m

_4

po
stp

ro
ce

ss
_1

4

in
di

vi
du

al
_b

ia
s_

7

te
m

po
ra

l_
3_

1_
0

po
stp

ro
ce

ss
_2

0

te
m

po
ra

l_
2_

1_
0

po
stp

ro
ce

ss
_1

3

Co
nn

ec
to

r_
Pa

ra
m

_3

po
stp

ro
ce

ss
_6

in
di

vi
du

al
_b

ia
s_

6

po
stp

ro
ce

ss
_1

8

Co
nn

ec
to

r_
Pa

ra
m

_2

po
stp

ro
ce

ss
_4

in
di

vi
du

al
_b

ia
s_

5

po
stp

ro
ce

ss
_1

1

po
stp

ro
ce

ss
_2

3

Co
nn

ec
to

r_
Pa

ra
m

_0

in
di

vi
du

al
_b

ia
s_

3

Co
nn

ec
to

r_
Pa

ra
m

_1

in
di

vi
du

al
_b

ia
s_

4

lo
ss

N
er

ro
r_

0

te
ac

he
r_

0

lo
ss

N
er

ro
r_

1

te
ac

he
r_

1

lo
ss

N
er

ro
r_

2

te
ac

he
r_

2

lo
ss

N
er

ro
r_

3

te
ac

he
r_

3

lo
ss

N
er

ro
r_

4

te
ac

he
r_

4

lo
ss

N
er

ro
r_

5

te
ac

he
r_

5

lo
ss

N
er

ro
r_

6

te
ac

he
r_

6

te
ac

he
r_

7

0
1.

00
0

x*

0
M

ea
nE

*

0
1

x
*

y*

0
1

3M
ul

tin
om

ia
lL

og
ist

ic
Lo

ss
E*

0
(1

60
, 1

60
, 1

6
)*

1
(4

, 1
60

, 1
60

, 1
6

)

0
1

x
+

y*0
1.

00
0

x*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
Re

sh
ap

eE
*

0
Su

bt
en

so
rE

*

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (1
28

/1
:3

2
fs

7)
*

0
0.

50
0

x*

0
1

x
+

y*

0
1

1C
on

ca
te

na
te

E*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(6

4,
 1

60
, 1

60
, 1

6
)*

1
(6

4,
 1

60
, 1

60
, 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
64

 fs
7)

*

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
64

 fs
7)

*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(6

4,
 1

60
, 1

60
, 1

6
)*

1
(6

4,
 1

60
, 1

60
, 1

6
)

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 1

60
, 1

60
, 1

6
)*

1
(3

2,
 1

60
, 1

60
, 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (1
28

/1
:3

2
fs

7)
*

0
0.

50
0

x*

0
1

x
+

y*
0

1
1C

on
ca

te
na

te
E*0

5R
ec

tif
ie

dL
in

ea
rE

*
0

(6
4,

 1
60

, 1
60

, 1
6

)*
1

(6
4,

 1
60

, 1
60

, 1
6

)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
64

 fs
7)

*

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
64

 fs
7)

*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(6

4,
 1

60
, 1

60
, 1

6
)*

1
(6

4,
 1

60
, 1

60
, 1

6
)

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 1

60
, 1

60
, 1

6
)*

1
(3

2,
 1

60
, 1

60
, 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (1
28

/1
:3

2
fs

7)
*

0
0.

50
0

x*

0
1

x
+

y*

0
M

ax
Po

ol
 (s

iz
e2

, s
tri

de
2,

 st
ar

t0
)*

0
1

1C
on

ca
te

na
te

E*0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(6

4,
 1

60
, 1

60
, 1

6
)*

1
(6

4,
 1

60
, 1

60
, 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
64

 fs
7)

*
0

1
Co

nv
 (3

2/
1:

64
 fs

7)
*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(6

4,
 1

60
, 1

60
, 1

6
)*

1
(6

4,
 1

60
, 1

60
, 1

6
)

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 1

60
, 1

60
, 1

6
)*

1
(3

2,
 1

60
, 1

60
, 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (1
28

/1
:3

2
fs

7)
*

0
0.

50
0

x*

0
1

x
+

y*

0
M

ax
Po

ol
 (s

iz
e2

, s
tri

de
2,

 st
ar

t0
)*

0
1

1C
on

ca
te

na
te

E*0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(6

4,
 1

60
, 1

60
, 1

6
)*

1
(6

4,
 1

60
, 1

60
, 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
64

 fs
7)

*
0

1
Co

nv
 (3

2/
1:

64
 fs

7)
*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(6

4,
 1

60
, 1

60
, 1

6
)*

1
(6

4,
 1

60
, 1

60
, 1

6
)

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 1

60
, 1

60
, 1

6
)*

1
(3

2,
 1

60
, 1

60
, 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (1
28

/1
:3

2
fs

7)
*

0
M

ax
Po

ol
 (s

iz
e2

, s
tri

de
2,

 st
ar

t0
)*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t0
*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t1
*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t2
*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t3
*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t4
*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t5
*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t6
*

0
4R

eo
rd

er
Fo

rC
on

vE
*

in
pu

t7
*

W
0*

b0
*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
M

ax
Po

ol
 (s

iz
e2

, s
tri

de
2,

 st
ar

t0
)*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 8

0,
 8

0,
 1

6
)*

1
(3

2,
 8

0,
 8

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

W
1*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
0.

33
3

x*

0
1

x
+

y*

0
1

x
+

y*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 8

0,
 8

0,
 1

6
)*

1
(3

2,
 8

0,
 8

0,
 1

6
)

0
M

ax
Po

ol
 (s

iz
e2

, s
tri

de
2,

 st
ar

t0
)*

0
U

ps
ca

le
E*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

b1
*

0
1

x
+

y* 0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
0.

50
0

x*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
0.

50
0

x*

0
1

x
+

y*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

W
LI

N
K

_3
_3

*

bL
IN

K
_3

_3
*

W
2*

b2
*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

0
U

ps
ca

le
E*

W
LI

N
K

_3
_2

*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
1

M
 +

 v
, a

x=
0*

0
U

ps
ca

le
E*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 4

0,
 4

0,
 1

6
)*

1
(3

2,
 4

0,
 4

0,
 1

6
)

bL
IN

K
_3

_2
*

0
1

x
+

y* 0
1

x
+

y*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 8

0,
 8

0,
 1

6
)*

1
(3

2,
 8

0,
 8

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
0.

33
3

x*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 8

0,
 8

0,
 1

6
)*

1
(3

2,
 8

0,
 8

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 8

0,
 8

0,
 1

6
)*

1
(3

2,
 8

0,
 8

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
0.

33
3

x*

0
1

x
+

y*

0
1

x
+

y*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 8

0,
 8

0,
 1

6
)*

1
(3

2,
 8

0,
 8

0,
 1

6
)

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

W
LI

N
K

_2
_2

*

0
1

Co
nv

 (3
2/

1:
32

 fs
7)

*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(3

2,
 8

0,
 8

0,
 1

6
)*

1
(3

2,
 8

0,
 8

0,
 1

6
)bL

IN
K

_2
_2

*

0
1

Co
nv

 (3
2/

1:
12

8
fs

7)
*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(1

28
, 8

0,
 8

0,
 1

6
)*

1
(1

28
, 8

0,
 8

0,
 1

6
)

0
U

ps
ca

le
E*

W
LI

N
K

_2
_1

*

0
1

Co
nv

 (3
2/

1:
12

8
fs

7)
*

0
1

M
 +

 v
, a

x=
0*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(1

28
, 8

0,
 8

0,
 1

6
)*

1
(1

28
, 8

0,
 8

0,
 1

6
)

0
U

ps
ca

le
E*

bL
IN

K
_2

_1
*

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
12

8
fs

7)
*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(1

28
, 8

0,
 8

0,
 1

6
)*

1
(1

28
, 8

0,
 8

0,
 1

6
)

0
U

ps
ca

le
E*

0
1

M
 +

 v
, a

x=
0*

0
1

Co
nv

 (3
2/

1:
12

8
fs

7)
*

0
5R

ec
tif

ie
dL

in
ea

rE
*

0
(1

28
, 8

0,
 8

0,
 1

6
)*

1
(1

28
, 8

0,
 8

0,
 1

6
)

0
U

ps
ca

le
E*

W
LI

N
K

_1
_1

*

bL
IN

K
_1

_1
*

W
LI

N
K

_1
_1

*

bL
IN

K
_1

_1
*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
0.

00
0

x*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r0

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k0

*

0
1

x
+

y*0
0.

00
0

x*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r1

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k1

*

0
1

x
+

y*0
0.

00
0

x*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r2

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k2

*

0
1

x
+

y*0
0.

00
0

x*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r3

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k3

*

0
1

x
+

y*0
0.

00
0

x*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r4

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k4

*

0
1

x
+

y*0
0.

00
0

x*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r5

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k5

*

0
1

x
+

y*0
0.

00
0

x*

0
1

2
Cl

as
sif

ic
at

io
nL

os
s*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r6

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k6

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

te
ac

he
r7

*

0
4R

eo
rd

er
Fo

rC
on

vE
*

ig
no

re
_m

as
k7

*

0
Su

bt
en

so
rE

*

0
1

2
3

4
5

6
7

1C
on

ca
te

na
te

E* 0
Su

bt
en

so
rE

*
0

Su
bt

en
so

rE
*

0
Su

bt
en

so
rE

*
0

Su
bt

en
so

rE
*

0
Su

bt
en

so
rE

*
0

Su
bt

en
so

rE
*

0
Su

bt
en

so
rE

*

Figure A.1: Simplified architecture. Components: Inputs , Pooling , Con-
volution , Upscale , Subtensor , ReLU , Arithmetic Unit , Evaluation ,
Connector Layer , Hidden Layer

79

A. Appendix

los
sN

err
or_

3

out
put

s_3

tem
por

al_
7_0

_0

pos
tpr

oce
ss_

46

tem
por

al_
6_0

_0

pos
tpr

oce
ss_

41

tem
por

al_
5_0

_0

pos
tpr

oce
ss_

34

tem
por

al_
4_0

_0

pos
tpr

oce
ss_

27

tem
por

al_
3_0

_0

inp
ut_

3

pos
tpr

oce
ss_

21

tem
por

al_
2_1

_0

tem
por

al_
1_0

_0

inp
ut_

1

pos
tpr

oce
ss_

5

tem
por

al_
0_1

_0

tem
por

al_
0_0

_0

inp
ut_

0

Par
am

s_0

tem
por

al_
2_0

_0

inp
ut_

2

pos
tpr

oce
ss_

13

tem
por

al_
1_1

_0

pos
tpr

oce
ss_

8

tem
por

al_
0_2

_0

tem
por

al_
1_2

_0

pos
tpr

oce
ss_

10

Co
nne

cto
r_P

ara
m_

4

pos
tpr

oce
ss_

18

Par
am

s_2

tem
por

al_
2_2

_0

ind
ivi

dua
l_b

ias
_7

pos
tpr

oce
ss_

26

ind
ivi

dua
l_b

ias
_2

tem
por

al_
3_2

_0

pos
tpr

oce
ss_

31

Co
nne

cto
r_P

ara
m_

3

pos
tpr

oce
ss_

16

ind
ivi

dua
l_b

ias
_6

pos
tpr

oce
ss_

24

tem
por

al_
3_1

_0

ind
ivi

dua
l_b

ias
_0

pos
tpr

oce
ss_

20

Co
nne

cto
r_P

ara
m_

0

pos
tpr

oce
ss_

4

ind
ivi

dua
l_b

ias
_3

pos
tpr

oce
ss_

12

pos
tpr

oce
ss_

23

Co
nne

cto
r_P

ara
m_

2

pos
tpr

oce
ss_

7

ind
ivi

dua
l_b

ias
_5

pos
tpr

oce
ss_

15

pos
tpr

oce
ss_

30

Par
am

s_1

tem
por

al_
4_1

_0

ind
ivi

dua
l_b

ias
_1

tem
por

al_
5_1

_0

pos
tpr

oce
ss_

38

tem
por

al_
4_2

_0

pos
tpr

oce
ss_

33

pos
tpr

oce
ss_

40

tem
por

al_
5_2

_0

pos
tpr

oce
ss_

35

Co
nne

cto
r_P

ara
m_

1

pos
tpr

oce
ss_

28

ind
ivi

dua
l_b

ias
_4

pos
tpr

oce
ss_

42
pos

tpr
oce

ss_
44

tem
por

al_
6_1

_0

pos
tpr

oce
ss_

45

pos
tpr

oce
ss_

47

pos
tpr

oce
ss_

37

out
put

s_0

los
sN

err
or_

0

tea
che

r_0

los
sN

err
or_

1

out
put

s_1

tea
che

r_1

los
sN

err
or_

2

out
put

s_2

tea
che

r_2

tea
che

r_3

0
1.0

00
 x*0

Me
anE

*

0
1

x *
 y*

0
1

Mu
ltin

om
ial

Lo
gis

ticL
oss

*
0 (

16
0, 1

60
, 16

)*
1 (

4, 1
60

, 16
0, 1

6)

0
1

x +
 y*0

1.0
00

 x*

0
1

2
Cla

ssi
fic

atio
nL

oss
*

0
Re

sha
peE

*

0
Su

bte
nso

rE*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

x +
 y*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 16

0, 1
60

, 16
)*

1 (
16

, 16
0, 1

60
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

ctif
ied

Lin
ear

*
0 (

32
, 16

0,
16

0, 1
6)

*1
 (3

2, 1
60

, 1
60

, 16
)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

x +
 y*

0
Re

ctif
ied

Lin
ear

*
0 (

16
, 16

0, 1
60

, 16
)*

1 (
16

, 16
0, 1

60
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

ctif
ied

Lin
ear

*
0 (

32
, 16

0,
16

0, 1
6)

*1
 (3

2,
16

0,
160

, 16
)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

x +
 y* 0

Ma
xP

oo
l (s

ize
2, s

trid
e2,

 sta
rt0

)*

0
Re

ctif
ied

Lin
ear

*
0 (

16
, 16

0,
16

0,
16

)*
1 (

16
, 16

0,
16

0,
16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 16

0, 1
60

, 16
)*

1 (
32

, 16
0,

16
0,

16
)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

x +
 y* 0

Ma
xP

oo
l (s

ize
2, s

trid
e2,

 sta
rt0

)*

0
Re

ctif
ied

Lin
ear

*
0 (

16
, 16

0,
16

0,
16

)*
1 (

16
, 16

0,
16

0,
16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 16

0,
160

, 16
)*

1 (
32

, 16
0, 1

60
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
0.3

33
 x*

0
1

x +
 y*

0
1

x +
 y* 0

Ma
xP

oo
l (s

ize
2, s

trid
e2,

 sta
rt0

)*

0
Re

ord
erF

orC
on

v*

inp
ut3

*

0
Up

sca
leE

*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 80

, 80
, 16

)*
1 (

16
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.3

33
 x*

0
1

x +
 y*

0
1

x +
 y* 0

Ma
xP

oo
l (s

ize
2, s

trid
e2,

 sta
rt0

)*

0
Ma

xP
oo

l (s
ize

2, s
trid

e2,
 sta

rt0
)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 16

0, 1
60

, 16
)*

1 (
32

, 16
0,

160
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
0.3

33
 x*

0
1

x +
 y*

0
1

x +
 y*0

Re
ord

erF
orC

on
v*

inp
ut1

*

0
Up

sca
leE

*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 80

, 80
, 16

)*
1 (

16
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Ma

xP
oo

l (s
ize

2, s
trid

e2,
 sta

rt0
)*

0
Ma

xP
oo

l (s
ize

2, s
trid

e2,
 sta

rt0
)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 16

0, 1
60

, 16
)*

1 (
32

, 16
0, 1

60
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
Re

ord
erF

orC
onv

*

inp
ut0

*

W0
*

0
1

Co
nv

 (1
6/1

:32
 fs7

)*

0
0.3

33
 x*

0
1

x +
 y*

0
1

x +
 y* 0

Ma
xP

oo
l (s

ize
2,

stri
de2

, st
art

0)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 16

0, 1
60

, 16
)*

1 (
32

, 16
0,

16
0,

16
)

0
1

M
+ v

, ax
=0

*

0
Re

ord
erF

orC
on

v*

inp
ut2

*

0
Up

sca
leE

*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 80

, 80
, 16

)*
1 (

16
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.3

33
 x*

0
1

x +
 y*

0
1

x +
 y* 0

Ma
xP

oo
l (s

ize
2, s

trid
e2,

 sta
rt0

)*

0
Up

sca
leE

*

0
Re

ctif
ied

Lin
ear

*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

x +
 y*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.5

00
 x*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

WL
IN

K_
3_

3*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

W2
*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

x +
 y*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

bL
IN

K_
3_

3*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Re

ctif
ied

Lin
ear

*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

b2
*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

x +
 y*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Up

sca
leE

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

WL
IN

K_
3_

2*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
Up

sca
leE

*

bL
IN

K_
3_

2*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
Up

sca
leE

*

0
1

x +
 y* 0

1
x +

 y*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.3

33
 x* 0

Ma
xP

oo
l (s

ize
2, s

trid
e2,

 sta
rt0

)*

b0
*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

ctif
ied

Lin
ear

*
0 (

16
, 16

0,
160

, 16
)*

1 (
16

, 16
0, 1

60
, 16

)

WL
IN

K_
1_

1*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 16

0, 1
60

, 16
)*

1 (
16

, 16
0,

160
, 16

)

bL
IN

K_
1_

1*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 16

0, 1
60

, 16
)*

1 (
16

, 16
0, 1

60
, 16

)

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

WL
IN

K_
2_

2*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

bL
IN

K_
2_

2*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

W1
*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.3

33
 x*

0
1

x +
 y*

0
1

x +
 y*

0
1

M
+ v

, ax
=0

*

0
Ma

xP
oo

l (s
ize

2, s
trid

e2,
 sta

rt0
)*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

b1
*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.3

33
 x*

0
1

x +
 y*

0
1

x +
 y*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
Up

sca
leE

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
Re

ctif
ied

Lin
ear

*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

x +
 y*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

x +
 y*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
0.5

00
 x*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 80

, 80
, 16

)*
1 (

16
, 80

, 80
, 16

)

0
Up

sca
leE

*

WL
IN

K_
2_

1*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 80

, 80
, 16

)*
1 (

16
, 80

, 80
, 16

)

0
Up

sca
leE

*

bL
IN

K_
2_

1*

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
Re

ctif
ied

Lin
ear

*
0 (

16
, 80

, 80
, 16

)*
1 (

16
, 80

, 80
, 16

)

0
Up

sca
leE

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
1

x +
 y*

0
1

x +
 y* 0

0.3
33

 x* 0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
Up

sca
leE

*

0
Re

ctif
ied

Lin
ear

*
0 (

32
, 40

, 40
, 16

)*
1 (

32
, 40

, 40
, 16

)

0
1

M
+ v

, ax
=0

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

Co
nv

 (3
2/1

:16
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

16
, 80

, 80
, 16

)*
1 (

16
, 80

, 80
, 16

)

0
Up

sca
leE

*

0
1

Co
nv

 (3
2/1

:32
 fs7

)*

0
1

M
+ v

, ax
=0

*

0
Re

cti
fie

dL
ine

ar*
0 (

32
, 80

, 80
, 16

)*
1 (

32
, 80

, 80
, 16

)

0
Su

bte
nso

rE* 0
1

2
Cla

ssi
fic

atio
nL

oss
*

0
0.0

00
 x*

0
Re

ord
erF

orC
onv

*

tea
che

r0*

0
Re

ord
erF

orC
onv

*

ign
ore

_m
ask

0*

0
1

x +
 y*0

0.0
00

 x*

0
1

2
Cla

ssi
fic

atio
nL

oss
*

0
Su

bte
nso

rE*
0

Re
ord

erF
orC

onv
*

tea
che

r1*

0
Re

ord
erF

orC
onv

*

ign
ore

_m
ask

1*

0
1

x +
 y*0

0.0
00

 x*

0
1

2
Cla

ssi
fic

atio
nL

oss
*

0
Su

bte
nso

rE*
0

Re
ord

erF
orC

onv
*

tea
che

r2*

0
Re

ord
erF

orC
onv

*

ign
ore

_m
ask

2*

0
Re

ord
erF

orC
onv

*

tea
che

r3*

0
Re

ord
erF

orC
onv

*

ign
ore

_m
ask

3*

Figure A.2: Unidirectional architecture. Components: Inputs , Pooling ,
Convolution , Upscale , ReLU , Arithmetic Unit , Evaluation , Connector
Layer , Hidden Layer

80

lossN
error

_2

outpu
ts_2

temp
oral_

6_0_
0

postp
roces

s_42

temp
oral_

5_0_
0

postp
roces

s_35

temp
oral_

4_0_
0

input
_4

postp
roces

s_29

temp
oral_

3_1_
0

temp
oral_

2_0_
0

input
_2

postp
roces

s_13

temp
oral_

1_1_
0

temp
oral_

0_0_
0

input
_0

Param
s_0

temp
oral_

1_0_
0

input
_1

postp
roces

s_5

temp
oral_

0_1_
0

Param
s_1

temp
oral_

2_1_
0

indiv
idual

_bias
_0

temp
oral_

3_0_
0

input
_3

postp
roces

s_21

indiv
idual

_bias
_1

temp
oral_

4_1_
0

postp
roces

s_28

Conn
ector

_Para
m_0

postp
roces

s_4

indiv
idual

_bias
_3

postp
roces

s_12
postp

roces
s_20

postp
roces

s_49

temp
oral_

7_1_
0

postp
roces

s_53

temp
oral_

6_2_
0

temp
oral_

5_1_
0

postp
roces

s_39

temp
oral_

4_2_
0

postp
roces

s_34

temp
oral_

3_2_
0

postp
roces

s_26

temp
oral_

2_2_
0

postp
roces

s_18

temp
oral_

1_2_
0

temp
oral_

0_2_
0

Param
s_2

temp
oral_

5_2_
0

postp
roces

s_36

Conn
ector

_Para
m_1

postp
roces

s_43

indiv
idual

_bias
_4

postp
roces

s_50

temp
oral_

6_1_
0

postp
roces

s_46

indiv
idual

_bias
_2

postp
roces

s_8

Conn
ector

_Para
m_3

postp
roces

s_16

indiv
idual

_bias
_6

postp
roces

s_24
postp

roces
s_32

postp
roces

s_10

Conn
ector

_Para
m_4

postp
roces

s_41

indiv
idual

_bias
_7

postp
roces

s_48

postp
roces

s_45

Conn
ector

_Para
m_2

postp
roces

s_7

indiv
idual

_bias
_5

postp
roces

s_15
postp

roces
s_23

postp
roces

s_31

postp
roces

s_38

postp
roces

s_52

postp
roces

s_55

temp
oral_

8_0_
0

postp
roces

s_54

temp
oral_

7_0_
0

outpu
ts_3

outpu
ts_8

temp
oral_

7_0_
1

postp
roces

s_10
5

temp
oral_

6_0_
1

postp
roces

s_98

temp
oral_

5_0_
1

postp
roces

s_91

temp
oral_

4_0_
1

input
_19

postp
roces

s_85

temp
oral_

3_1_
1

temp
oral_

2_0_
1

input
_17

postp
roces

s_69

temp
oral_

1_1_
1

temp
oral_

0_0_
1

input
_15

Param
s_3

temp
oral_

1_0_
1

input
_16

postp
roces

s_61

temp
oral_

0_1_
1

Param
s_4

temp
oral_

2_1_
1

indiv
idual

_bias
_8

temp
oral_

3_0_
1

input
_18

postp
roces

s_77

indiv
idual

_bias
_9

temp
oral_

4_1_
1

postp
roces

s_84

Conn
ector

_Para
m_5

postp
roces

s_60

indiv
idual

_bias
_11

postp
roces

s_68
postp

roces
s_76

postp
roces

s_11
0

temp
oral_

8_0_
1

postp
roces

s_11
1

temp
oral_

7_1_
1

postp
roces

s_10
9

temp
oral_

6_2_
1

temp
oral_

5_1_
1

postp
roces

s_95

temp
oral_

4_2_
1

postp
roces

s_90

temp
oral_

3_2_
1

postp
roces

s_82

temp
oral_

2_2_
1

postp
roces

s_74

temp
oral_

1_2_
1

temp
oral_

0_2_
1

Param
s_5

temp
oral_

5_2_
1

postp
roces

s_92

Conn
ector

_Para
m_6

postp
roces

s_99

indiv
idual

_bias
_12

postp
roces

s_10
6

temp
oral_

6_1_
1

postp
roces

s_10
2

indiv
idual

_bias
_10

postp
roces

s_64

Conn
ector

_Para
m_8

postp
roces

s_72

indiv
idual

_bias
_14

postp
roces

s_80
postp

roces
s_88

postp
roces

s_66

Conn
ector

_Para
m_9

postp
roces

s_97

indiv
idual

_bias
_15

postp
roces

s_10
4

postp
roces

s_10
1

Conn
ector

_Para
m_7

postp
roces

s_63

indiv
idual

_bias
_13

postp
roces

s_71
postp

roces
s_79

postp
roces

s_87

postp
roces

s_94

postp
roces

s_10
8

outpu
ts_9

outpu
ts_4

lossN
error

_4

teach
er_4

lossN
error

_3

lossN
error

_1

lossN
error

_0

outpu
ts_0

outpu
ts_5

teach
er_0

outpu
ts_1

outpu
ts_6

teach
er_1

teach
er_2

teach
er_3

outpu
ts_7

0 1.000
 x*0 Mean
E*01 x * y
*

0
1

3Mu
ltino

mialL
ogist

icLo
ssE*

0 (16
0, 16

0, 16
)*1

(4, 1
60, 1

60, 1
6)

01 x + y
*0 1.000
 x*

0
1

2
Class

ificat
ionL

oss*
0

Resh
apeE

*

0
Subt

enso
rE*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.500
 x*01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*

0
4Reo

rderF
orCo

nvolu
tionE

*

input
4*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*0

5Rec
tified

Line
arE*

0 (32
, 160

, 160
, 16)

*1 (3
2, 16

0, 16
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*0

4Reo
rderF

orCo
nvolu

tionE
*

input
2*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*0

5Rec
tified

Line
arE*

0 (32
, 160

, 160
, 16)

*1 (3
2, 16

0, 16
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0
4Reo

rderF
orCo

nvolu
tionE

*

input
0*

W0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
4Reo

rderF
orCo

nvolu
tionE

*

input
1*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

W1*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

b0*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
4Reo

rderF
orCo

nvolu
tionE

*

input
3*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

b1*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

WLI
NK_

1_1*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

bLIN
K_1_

1*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

01 x + y
* 01 x + y

* 0 0.333
 x* 0

1
Conv

oluti
on (3

2/1:3
2 fs7

)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*0

5Rec
tified

Line
arE*

0 (32
, 80,

80, 1
6)*1

 (32,
 80, 8

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

W2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
Upsc

aleE*

WLI
NK_

2_1*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
Upsc

aleE*

bLIN
K_2_

1*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*0

Upsc
aleE*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

b2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

WLI
NK_

3_2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

bLIN
K_3_

2*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

WLI
NK_

3_3*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

bLIN
K_3_

3*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

WLI
NK_

2_2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

bLIN
K_2_

2*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
Upsc

aleE*

01 x + y
* 0

1
M +

v, ax
=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.500
 x*0

5Rec
tified

Line
arE*

0 (16
, 160

, 160
, 16)

*1 (1
6, 16

0, 16
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
Subt

enso
rE*

0
Subt

enso
rE*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.500
 x*01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.500
 x*01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*

0
4Reo

rderF
orCo

nvolu
tionE

*

input
1*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*0

5Rec
tified

Line
arE*

0 (32
, 160

, 160
, 16)

*1 (3
2, 16

0, 16
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*0

4Reo
rderF

orCo
nvolu

tionE
*

input
3*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*0

5Rec
tified

Line
arE*

0 (32
, 160

, 160
, 16)

*1 (3
2, 16

0, 16
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0
4Reo

rderF
orCo

nvolu
tionE

*

input
5*

W0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
4Reo

rderF
orCo

nvolu
tionE

*

input
4*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

W1*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

b0*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*

0
5Rec

tified
Line

arE*
0 (32

, 160
, 160

, 16)
*1 (3

2, 16
0, 16

0, 16
)

0
4Reo

rderF
orCo

nvolu
tionE

*

input
2*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

b1*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
* 0

Max
Pool

 (size
2, str

ide2,
 start

0)*0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

WLI
NK_

1_1*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

bLIN
K_1_

1*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (16

, 160
, 160

, 16)
*1 (1

6, 16
0, 16

0, 16
)

01 x + y
* 0 0.500

 x* 0
1

Conv
oluti

on (1
6/1:3

2 fs7
)*

0
1

M +
v, ax

=0*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
Max

Pool
 (size

2, str
ide2,

 start
0)*0

5Rec
tified

Line
arE*

0 (32
, 80,

80, 1
6)*1

 (32,
 80, 8

0, 16
)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

W2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.500
 x*01 x + y
*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
Upsc

aleE*

WLI
NK_

2_1*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
Upsc

aleE*

bLIN
K_2_

1*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:1

6 fs7
)*

0
5Rec

tified
Line

arE*
0 (16

, 80,
80, 1

6)*1
 (16,

 80, 8
0, 16

)

0
Upsc

aleE*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0 0.333
 x*01 x + y
*

01 x + y
*0

Upsc
aleE*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

b2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

WLI
NK_

3_2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

bLIN
K_3_

2*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
Upsc

aleE*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

WLI
NK_

3_3*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

bLIN
K_3_

3*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 40,
40, 1

6)*1
 (32,

 40, 4
0, 16

)

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

WLI
NK_

2_2*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
1

M +
v, ax

=0* 0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

bLIN
K_2_

2*

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
1

M +
v, ax

=0*

0
1

Conv
oluti

on (3
2/1:3

2 fs7
)*

0
5Rec

tified
Line

arE*
0 (32

, 80,
80, 1

6)*1
 (32,

 80, 8
0, 16

)

0
Subt

enso
rE*

0
Subt

enso
rE*

0
1

2
Class

ificat
ionL

oss*

0 0.000
 x*

01 x + y
*

0
4Reo

rderF
orCo

nvolu
tionE

*

teach
er4*

0
4Reo

rderF
orCo

nvolu
tionE

*

ignor
e_ma

sk4*

01 x + y
*0 0.000
 x*

0
1

2
Class

ificat
ionL

oss*

01 x + y
*0 0.000
 x*

0
1

2
Class

ificat
ionL

oss*

0 0.000
 x*

0
1

2
Class

ificat
ionL

oss*

0
Subt

enso
rE*

0
Subt

enso
rE*

0
4Reo

rderF
orCo

nvolu
tionE

*

teach
er0*

0
4Reo

rderF
orCo

nvolu
tionE

*

ignor
e_ma

sk0*

0
Subt

enso
rE*

0
Subt

enso
rE*

0
4Reo

rderF
orCo

nvolu
tionE

*

teach
er1*

0
4Reo

rderF
orCo

nvolu
tionE

*

ignor
e_ma

sk1*

0
4Reo

rderF
orCo

nvolu
tionE

*

teach
er2*

0
4Reo

rderF
orCo

nvolu
tionE

*

ignor
e_ma

sk2*

0
4Reo

rderF
orCo

nvolu
tionE

*

teach
er3*

0
4Reo

rderF
orCo

nvolu
tionE

*

ignor
e_ma

sk3*

0
Subt

enso
rE*

0 0.500
 x*01 x + y
*

01 x + y
*

01 x + y
* 0 0.500
 x*

0 0.500
 x*

01 x + y
*

0 0.500
 x*

01 x + y
*

0 0.500
 x*

Figure A.3: Bidirectional architecture. Components: Inputs , Pooling , Con-
volution , Upscale , ReLU , Arithmetic Unit , Evaluation , Connector
Layer , Hidden Layer

81

	Introduction
	Approach
	Structure of the thesis

	Related work
	Neural Abstraction Pyramid
	Bidirectional Recurrent Neural Network
	Scene Inference

	Foundations
	Convolutional Neural Networks
	Recurrent Neural Networks
	Training Recurrent Neural Networks
	Vanishing and Exploding Gradient Problem
	Exploiting Temporal Dependencies

	Preprocessing
	Histogram of Oriented Gradients
	ZCA Whitening
	Preprocessing the depth
	Geometric Transformations
	Generating Intermediate Ground Truths
	Sliding window

	Training
	Gradient
	Loss Function
	Regularization

	Recurrent Convolutional Networks
	Architectures
	Simplified RNN
	Unidirectional RNN
	Bidirectional RNN
	Extra network features

	Implementation of RNN on CUDA
	CUDA framework
	CUV library
	CUVNET library
	Integration with CUV and CUVNET

	Experiments
	Toy Experiments
	Denoising a static object
	Learning a trajectory
	Trajectory Inference

	Experiments on NYUD
	Memory limitation
	Kernel size limitation
	Creating sequences
	Dataset Issues
	Methodology
	Results, first stage of experiments
	Results, second stage of experiments
	Overview on the results
	Comparison with other results

	Time measurements
	Difficulties

	Conclusion
	Future work

	Appendix

