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Abstract
Object detection is an important capability for manipulation robots, enabling
search and retrieval of known objects. Particularly in warehouse automation con-
texts, object detection is the basis of picking automation.

This thesis aims to provide an end-to-end bin-picking pipeline including object
detection, grasp selection, and motion execution, focusing on the object detection
part. As a basis, a state-of-the-art neural network for dense captioning is adapted
to the object detection task. Due to the recent good availability of RGB-D sen-
sors, part of the thesis focuses on RGB-D stream fusion from two cameras and
incorporation of depth measurements into the object detection pipeline.

The design choices made for the object detector are evaluated and conirmed on
a custom warehouse dataset. Additionally, the method is evaluated on a disaster
response dataset to show general applicability. Using a simple pixel-wise product,
object detection output can improve results from external semantic segmentation.

The object detector is integrated into a complete system for the Amazon Pick-
ing Challenge 2016. To facilitate picking, a custom inverse kinematics solver is
developed for the special constrained situation of reaching into a warehouse shelf.
Grasps are selected heuristically using the perception results. Motions are gener-
ated using parametrized motion primitives. Finally, the entire robotic system was
evaluated at the Amazon Picking Challenge 2016, where it reached a second and
third place.
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1. Introduction
With robots employed in more and more tasks, it becomes clear that perception
is one of the main challenges faced by robotic systems. While there are robots
that can move with extreme precision and speed, human perceptive capabilities
are still unmatched.

A key problem in robotic perception is object detection, which attempts to solve
both classiication (which object are we seeing?) and localization (where is the ob-
ject?) simultaneously. This capability is needed in many applications, mostly
whenever items need to be found or retrieved. Examples include warehouse ap-
plications, home assistance robotics, rescue robotics, and many others. Of course,
there are also non-robotic applications of object detection, such as image mining
and automatic image annotation.

This thesis strives to approach object detection from a strongly application-
oriented perspective. While the developed method is generally applicable, many
design choices were motivated by the Amazon Picking Challenge 2016 (APC 2016),
a robotics challenge organized by Amazon focusing on warehouse automation.
Speciically, contestants were required to build robotic systems capable of retriev-
ing items from unordered shelf storage, and storing items into the shelves.

In recent years, depth sensors have become standard in robotics applications.
Since common object detection methods target the color modality only, this the-
sis also investigates methods to incorporate depth measurements into the object
detection pipeline.

After deining the object detection problem and corresponding metrics in Chap-
ter 2, discussing related work in Chapter 3, and describing the robotic system in
Chapter 4, the thesis will contain the following contributions:

1. Adaption of a state-of-the-art object detection architecture to a warehouse
automation situation, including the incorporation of depth measurements
(Chapter 5),

2. a component-level evaluation of said method and the involved design deci-
sions on two datasets (Chapter 6),

3. integration of the method into the robotic system, including heuristic grasp
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1. Introduction

selection, intelligent inverse kinematics, and motion generation using motion
primitives (Chapter 7), and

4. a system-level evaluation at the APC 2016 (Chapter 7).

Finally, Chapter 8 ofers a conclusion and points out possible extension points
for future work.
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2. The Object Detection Problem

2.1. Deinition

The object detection problem is posed as follows: For an input image I, the
detector should output n detections Di, where n is the number of relevant items
present in the image. Each detection record should contain a precise localization
of the corresponding item. Usually, the object detection problem is formulated for
2D color images, and the detections are output as 2D axis-aligned bounding boxes
(see Figure 2.1).

Detectors usually output a conidence score ci for each detection Di. This allows
to rank all detections for one class predicted in one image, or even over multiple
images. In the context of bin picking, this score can be used to determine the most
reliable detection to use for retrieval.

In contrast to image classiication, where each image has one ground truth label,
measuring detector performance is more involved. On the one hand, one wants a
reliable conidence score, so that the detector output is trustworthy, on the other
hand, one desires a precise localization of the items.

.... bottle brush.

sippy cup

.

scissors

. Detector

Figure 2.1: Typical 2D object detection. An input RGB image is processed and three
detections with 2D axis-aligned bounding boxes are predicted.
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2. The Object Detection Problem

....c1 = 1.5 ..c2 = 1.3 ..c3 = 0.8 ..c4 = 0.5 ..c5 = 0.0 ..c6 = −0.1.
d = 0.2

.

Positive detections

.

Negatives

Figure 2.2: Output of a ranking detector. The detections are ordered with descending
conidence ci from left to right. The border color denotes the ground truth
label (green: positive example, red: negative). The threshold d = 0.2 allows
to obtain binary classiication output.

2.2. Evaluation Metrics

2.2.1. mAP Metric

The most popular metric for evaluating object detection approaches is the mean
Average Precision (mAP) metric. This metric is based on the notions of precision
and recall from binary classiication:

precision =
tp

tp+ fp
, and (2.1)

recall =
tp

tp+ fn
, (2.2)

where tp denotes the number of true positives (i.e. correctly classiied positive
examples), fp the number of false positives (i.e. wrongly classiied negative ex-
amples), and fn the number of false negatives (i.e. wrongly classiied positive
examples). In other words, precision represents the fraction of relevant detections
in the algorithm output, while recall measures how many of the underlying relevant
items are detected.

If a conidence score ci is available for each detection Di, we can turn such
a detector into a binary detector using a threshold d: A detection i is declared
positive if and only if ci ≥ d (see Figure 2.2). Note that d is a parameter of this
detector. If we want to evaluate the performance, we can plot precision and recall
for each value of d, a so-called precision-recall curve (see Figure 2.3a). Figure 2.3b)
and c) show real results from our APC dataset described in Chapter 7. Average
Precision (AP) is then simply the average precision value in this plot. Since object
detectors output detection conidences for each object class, the AP values are
calculated independently for each class and then averaged to obtain the mean AP
(mAP).

In the general situation, the shape of a precision-recall curve is entirely un-
constrained. For the aforementioned thresholding construction, recall increases
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Figure 2.3: Example precision-recall curves. (a) Usual example of a precision-recall
curve. (b) and (c) show real precision-recall points (blue) on one split of
the APC dataset, see Chapter 7. Note that in (a) and (c) the detector
never inds all positive examples, so that recall never reaches one. (b) and
(c) exhibit one and two false positive(s) ranked before the last true positive
detection, respectively. The efect of maximum interpolation is shown in red.

(weakly) with decreasing d. Precision, however, may decrease when there is a new
false positive “uncovered” by the threshold, but it may also increase again if there
are new true positives which counter already present false positives. Near-optimal
algorithms will always result in near-monotonic curves, however, as they rank the
positive examples higher than the negatives.

Many researchers, whole datasets, and competitions (e.g. PASCAL VOC since
2007, Everingham et al. 2010) use a max-interpolated AP, i.e. force the curve
to be monotonically decreasing by means of a right-looking maximum operation.
Formally,

APmax(p) = max
p≤p′≤1

AP (p′). (2.3)

The motivation seems to be that one could have chosen the looser d threshold
obtaining the maximum instead of using the current sub-optimal d value (see red
mark in Figure 2.3b-c). However, this motivation seems weak, since the AP metric
strives to give the average algorithm precision over all choices of d. Nevertheless,
since interpolated average precision is so widely used, it is also adopted in this
thesis to allow for easy comparison.

In the context of object detection, the notion of a true positive has to be deined.
Usually a detection D is counted as a true positive whenever its Intersection over
Union

IoU(D,G) =
|D ∩G|

|D ∪G|
(2.4)
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2. The Object Detection Problem

with the closest ground truth rectangle G is greater than 0.5 (Everingham et al.
2010). Note that detections are associated to ground truth rectangles greedily
with decreasing conidence, i.e. a well localized detection will be hidden by a
badly localized detection with higher conidence. This means that object detectors
have to suppress multiple positives somehow, e.g. using greedy non-maximum
suppression.

In this thesis, two mAP values will be reported: Uninformed mAP and Informed
mAP. In the informed case, detections are masked by the information which items
are present in each frame, discarding detections of objects not present. This is
particularly useful in a warehouse automation scenario, since there usually is a
warehouse database which can supply this information.

2.2.2. F1 Metric
Generally, the mAP metric as deined above places greater weight on correct detec-
tion than on precise localization. Indeed, it is possible to achieve perfect average
precision scores (and we will see such results in Chapter 7), while achieving perfect
localization precision is much harder.

To also provide sensitivity in this direction, one can deine a metric for object
detection based on pixel-level precision and recall. In this case, we consider the
particular use case for an object detector in the context of warehouse automation:
It is known that a particular object resides in a particular shelf bin, and we need
to retrieve it. Here, we are only interested in the detection i with maximum
conidence ci for this object class. We measure its precision and recall:

precision =
|D ∩G|

|D ∪G|
= IoU(D,G) (2.5)

recall =
|D ∩G|

|G|
, (2.6)

where D is the detected bounding box and G denotes the closest ground truth
bounding box. Note that a complete mislocalization results in zero precision and
recall.

For evaluation on a test set, the F1 scores are computed for each ground truth
label, and then averaged for each class. It should be noted that this metric does
not punish false positives for classes not present in the ground truth for a particular
image. Such behavior is better quantiied by the mAP metric.
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3. Related Work

3.1. Robotic Bin Picking
The bin picking problem, i.e. retrieving items from a more or less unordered
storage system, is hard. It combines perceptual problems (where are the objects?)
with planning problems (how to get them out?) and mechanical problems (how
can we pick the objects?). On the other hand, there is a high demand for solutions
in the industry. Therefore it is not surprising that there is a long line of research
works in this area.

Usually, the works focus on the perception side. Drost et al. (2010) propose a
method for creating a global model based on point pair features and register it
eiciently with 3D point cloud scenes. The sparse model and scene point clouds
result in very high performance. However, the method is limited to geometry and
is targeted towards single-class situations. Nieuwenhuisen et al. (2013) detect ob-
jects using shape primitives. Primitives are automatically detected in both the
object and scene point cloud. Using a graph matching method, correspondences
in the neighboring graph of primitives are found. The authors also provide solu-
tions for global navigation to the bin picking area, active perception for avoiding
occlusions, and inally grasp planning using a multiresolution height map. The
approach is again limited to geometry and rigid objects which can be modeled
using the available shape primitives. Berner et al. (2013) enhance the method
using 2D primitives such as circular contours. Pretto, Tonello, and Menegatti
(2013) describe an object perception system for planar objects from monocular
color images. Domae et al. (2014) focus on grasp planning in depth images for
random objects. The method does not use object models, instead it tries to ind
graspable spots in the observed geometry. Buchholz et al. (2014) also ind grasp
poses on unknown objects, but can perform pose estimation for precise placement
using an inertial model during the grasp movement. The needed measurement
and computation time is thus hidden in the robot motion. Kaipa et al. (2016)
address the diferent failure modes that can happen during bin-picking, such as
misrecognitions, failed grasps, placement inaccuracies, and others. If possible, the
failure is automatically detected and corrected, or a human supervisor is alerted
and can solve the problem using a remote interface.
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3. Related Work

The Amazon Picking Challenge 2015 resulted in various approaches for a very
general shelf-picking problem. Correll et al. (2016) aggregate lessons learned during
the APC 2015 and present a general overview and statistics of the approaches.

Eppner et al. (2016) describe their winning entry for the APC 2015. A combi-
nation of a mobile base with a 7-DOF arm can reach all shelf bins comfortably.
In contrast, the robotic system used in this thesis employs a large enough arm
that the robot base can be ixed in position (see Section 4.1). Eppner et al. (2016)
use a ixed suction gripper, which can execute top and side picks. Suctioning
an object from the front is not possible. Object perception is performed using a
wrist-mounted RGB-D sensor. Six hand-crafted pixel-wise features are computed,
including color and geometry-based features. Histogram backprojection is used to
estimate posterior probabilities for each object class. The target object is found by
searching for the pixel with maximum probability. Top or side grasps are selected
heuristically using the extracted 3D bounding box. Similar to the approach de-
scribed in Section 7.1, motions are generated from parametrized motion primitives
and possible collisions are detected using feedback from the robot arm. The team
scored 148 out of 190 possible points, resulting in the irst place.

The second place went to Yu et al. (2016) with Team MIT. In contrast to
Eppner et al. (2016) and the approach in Section 4.1, their design includes a hybrid
endefector which can grip objects as well as apply suction. An industrial arm
provides high accuracy and speed. Here, object perception is also based on RGB-D
measurements from a wrist-mounted sensor. A depth-only GPU-based instance
recognition approach is used to determine object poses. Again, motion primitives
are executed to pick the items. As a specialty, there are motion primitives which
only intend to change the coniguration inside the shelf bin—such as tipping an
object over on its side, so that it is more accessible.

The 2016 Amazon Picking Challenge included more diicult objects: Heavy ob-
jects such as the 3 lb dumbbell, transparent or relective objects (water bottle), and
highly non-rigid objects (shirt). Also, the general diiculty in the arrangements
and the number of items increased. Finally, the new stowing task was introduced.

Hernandez et al. (2016) reached irst place in both the picking and the stowing
task in the APC 2016. Their system consists of a large industrial 7-DOF arm
mounted on a horizontal rail, resulting in eight degrees of freedom in the arm and
base. The gripper is a complex custom design, allowing both suction and pinch
grasps. Like the design described in Section 4.1, the suction cup can be bent
to facilitate top, side, and frontal grasps. Object perception is based on RGB-D
measurements from an Ensenso 3D camera. The authors report problems with re-
lections and noise, and therefore built in heuristics to reject false registrations. In
contrast, we added a second RGB-D camera to be able to ilter out false measure-
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3.2. Object Detection

ments (see Section 4.2). Similarly to our architecture, object detection is carried
out using an approach based on Faster R-CNN (Ren et al. 2015). After detection,
object poses are estimated using a point cloud registration method. For grasp
planning, primitive shapes are itted to ind grasp candidate spots. Candidates
are then iltered using reachability measures. For deformable objects, a simple
measurement-based heuristic is used like in Section 7.1.1. It seems that planned
motion trajectories were executed mostly without feedback, so motion planning
had to be employed to be sure that the trajectories are collision-free. In contrast,
the inverse kinematics presented in Section 7.1.2 prevents collisions with the static
environment directly in the IK solver, and motion execution stops as soon as un-
expected contact forces occur, allowing the system to continue with another item,
retrying the failed item at the end.

3.2. Object Detection
The irst object detection framework to ofer robust detection rates in real-time was
proposed by Viola and Jones (2001), who train Haar cascades for this task. While
mainly targeted and used for face detection, the method is actually applicable for
general objects.

Recently, deep learning techniques have become state-of-the-art in many com-
puter science disciplines, including machine translation (Sutskever, Vinyals, and
Le 2014), speech recognition (Graves, Mohamed, and Hinton 2013), and computer
vision (Krizhevsky, Sutskever, and Hinton 2012). This trend is powered by the
availability of massively parallel computing architectures (e.g. GPUs) and the
large amounts of available labeled datasets (Krishna et al. 2016; Russakovsky et
al. 2015; Song, Lichtenberg, and Xiao 2015). In the context of computer vision,
deep learning approaches excel in image classiication (Krizhevsky, Sutskever, and
Hinton 2012), object detection (Johnson, Karpathy, and Fei-Fei 2016; Liu et al.
2016), and semantic segmentation (Chen et al. 2015; Long, Shelhamer, and Darrell
2015).

For object detection, one line of work considers the task as region proposal
followed by classiication and scoring. Girshick et al. (2014) process external region
proposals using Region of Interest (RoI) pooling to reshape intermediate CNN
feature maps to a ixed size. To increase performance, all regions may be processed
in a single forward pass (Girshick 2015). Finally, region proposal networks that
regress from anchors to regions of interest are integrated (Ren et al. 2015). Note
that the RoI pooling layer is not easily diferentiable, so the methods usually use
an alternating training scheme for the parts before (RPN) and after the layer

9



3. Related Work

(classiication). The object detection approach described in Chapter 5 is based
on the DenseCap region detection and captioning approach of Johnson, Karpathy,
and Fei-Fei (2016), which builds upon the ideas of this line of research.

Another line of work performs bounding box regression and classiication jointly
for a ixed set of anchor locations in the image. Redmon et al. (2015, “YOLO”)
introduce this idea and obtain very good generalization capabilities of their models.
Liu et al. (2016, “SSD”) obtain slightly better detector performance on the Pascal
VOC dataset. The advantage of these methods is their very fast computation—
since the models are fully convolutional and avoid costly recomputations for each
bounding box, prediction times are in the order of 20 ms. The lower computation
load also means that these networks can more easily be evaluated on low-power
embedded hardware—which is of particular interest for mobile robots. On the
other hand, proposal and classiication are more tightly coupled, which can limit
extensibility (see Chapter 5).

In the context of RGB-D object detection, the main problem discussed in the
community is the lack of labeled depth (or even RGB-D) training data suicient
for supervised training. Hofman et al. (2016) propose a mid-level fusion method
that is able to learn on RGB-D data with partially available depth. The method
can transfer learned knowledge from a category with depth available to a category
where depth data is only available at test time. Gupta, Hofman, and Malik (2015)
introduce a distillation scheme, where a reference RGB CNN is used to generate
supervision data in order to train a depth CNN on unannotated RGB-D frames.
This method is also evaluated in this thesis as one of the methods for incorporating
depth (see Sections 5.4.4 and 6.1.1).

10



4. Robotic System for the APC
2016

Figure 4.1: Team NimbRo’s robot at the APC 2016, showing the entire work cell layout
with shelf, tote, and robot.

The main application of the methods described in this thesis was the Amazon
Picking Challenge 20161, which took place June 30th to July 3rd, 2016 in Leipzig,
parallel to RoboCup 2016. In addition to picking objects from Amazon shelves,
which had been required in the Picking Challenge 2015, a second competition
focused on stowing objects from totes back into the shelves. Figure 4.1 shows such
a shelf and tote, with our robot in front of it.

The 39 available items (see Figure 4.2) varied strongly in shape, weight, tex-
ture, and other properties. In particular, there were very heavy objects (e.g. a 3 lb
dumbbell), highly non-rigid objects (a T-shirt), very small objects (scissors), re-
lective objects (metal dog bowl), large objects (paper towels), transparent objects

1http://web.archive.org/web/20160903010523/http://amazonpickingchallenge.org/,
original unavailable.
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Figure 4.2: The 39 diferent APC objects. Bonus points for hard objects are shown in
red. Individual images provided by Amazon.
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4.1. Mechanical Design

(water bottle), and objects which were hard to pick using suction (meshed pencil
cup). Some of these “hard” objects were attributed with bonus points for success-
ful picking (see Figure 4.2). To facilitate training, the objects were distributed to
the participants prior to the competition.

For each task, 12 items had to be moved into or out of the shelf in 15 minutes,
as dictated by a job ile, which was handed out just before the competition run.
The system was required to output the location of all objects after the run (e.g.
for updating a warehouse management system database).

The ixed structure of the shelves imposed hard constraints on the robotic sys-
tems, in particular the shelf bins themselves were very narrow and deep. Addition-
ally, the bin loors were made from highly relective metal, which caused mirroring
efects for the perception system. Note that both color and depth modalities were
afected by the mirror images, since the metal was also relective in the infrared
spectrum.

Please note that many contributions by other team members in the areas of high-
level control, low-level actuator and sensor interfacing, semantic segmentation,
object registration, and mechanical design were necessary to allow the system to
succeed. The entire system is described in (Schwarz, Milan, et al. 2017).

4.1. Mechanical Design
While mechanical design is not the focus of this thesis, a short description of the
robot is nevertheless necessary for understanding later contributions. To avoid
designing the entire system from scratch, an of-the-shelf robotic arm was cho-
sen, the Universal Robots UR10. The UR10 workspace is large enough to cover
movement in front of all bins of the shelf. Additionally, the UR10 is cost-efective,
lightweight, and ofers safety features such as an automatic (and reversible) stop
upon contact with the environment.

To reach into the shelf, we added an extension with a prismatic joint, capable of
extending 37 cm (see Figure 4.3). On the tip of the extension, a rotary joint enables
the robot to approach objects from the front, top, or from the sides. Finally, the
gripper is realized as a vacuum gripper - optimized for high vacuum and high air
low. The vacuum is generated by a 3100 W vacuum cleaner mounted in the base
of the robot. Vacuum strength can be regulated by a motorized bleed valve.

The system uses two dedicated computers. The irst one contains an Intel Core
i7-4790K (4 GHz) processor and controls the hardware and high-level operations,
while the second one contains two Intel Xeon E5-2670 v2 (2.5 GHz) and four
NVIDIA Titan X GPUs and is used for vision processing. For training, all four

13
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...

Linear Joint

.

Rotary Joint

.

Dual RGB-D
Camera

Figure 4.3: Endefector with suction inger and dual camera setup.

GPUs can be used to accelerate training. At test time, two GPUs are used in
parallel for the object detection method described in Chapter 5 and the semantic
segmentation method (see Section 5.6).

4.2. RGB-D Capture
Due to its high resolution, low weight, and short minimum sensing range, the
Intel RealSense SR300 RGB-D sensor was chosen after experiments with multiple

(a) RGB frame (b) Upper depth (c) Lower depth (d) Stereo depth

Figure 4.4: RGB-D capture from two sensors. Note the corruption in the left wall in the
lower depth frame.
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4.2. RGB-D Capture

sensors. However, the sensor sometimes produces systematic artifacts on the walls
of the shelf (see Figure 4.4(c)). Because the artifacts seem to depend on the viewing
angle, they appear only on one side of the image, i.e. the left wall from the sensor
perspective. To be able to ilter out these artifacts, we added a second SR300
sensor rotated by 180° (see Figure 4.3). Image acquisition is done in sequence, so
that only one infrared projector is active at a time to prevent interference. Since
the scene is static, this poses no problem. To reduce the efect of unknown external
illumination, the endefector also carries LED strips for local independent lighting.

The RGB stream from the secondary sensor can also be exploited for calculating
depth from stereo information. This gives a third depth source which can be used
for tie-breaking between the two SR300 depth streams. Dense stereo disparity
between the two RGB cameras is calculated using LIBELAS (Geiger, Roser, and
Urtasun 2010), which was selected for its real-time capability and dense output.
Since the implementation and a ROS wrapper is freely available, it was straight-
forward to integrate into the system.

15





5. Object Detection Method

5.1. Starting Point: DenseCap

Figure 5.1: Relationship of Object Detection and Dense Captioning. Taken from John-
son, Karpathy, and Fei-Fei (2016).

The object detection method discussed in this thesis is based on the DenseCap
network of Johnson, Karpathy, and Fei-Fei (2016). This is somewhat curious, since
DenseCap solves another Problem: The Dense Captioning task (see Figure 5.1),
whose objective is to ind interesting regions (bounding boxes) in an input image
and create detailed textual descriptions for each of the regions. However, this goal
is closely related to object detection and DenseCap ofers unique advantages, as we
will see below. Briely speaking, DenseCap receives an RGB image as input and
outputs numerous rectangles in the image, ranked by conidence, each accompanied
by a textual description of the rectangle contents.
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CNN

Image: 
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Recognition 
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Figure 5.2: Original DenseCap architecture. Taken from Johnson, Karpathy, and Fei-Fei
(2016).

Figure 5.2 shows an overview of the DenseCap network. In more detail, the net-
work irst extracts features using the convolutional part of the VGG-16 CNN (Si-
monyan and Zisserman 2014), which was pretrained on ImageNet (Russakovsky
et al. 2015) for image classiication. A convolutional region proposal network then
creates a large number of region proposals from a list of ixed anchor boxes. The
proposals are NMS-sampled1 to a ixed number (1000 proposals) using a coni-
dence score. The intermediate CNN features are then interpolated bilinearly from
each proposal region to a ixed size. The fully-connected part of VGG-16 (up until
the second-last layer) is then used to compute a high-level feature vector for each
proposal region. Finally, an LSTM network generates textual descriptions for the
regions. In addition to the pretrained CNN part, the entire pipeline is trained on
the Visual Genome dataset (Krishna et al. 2016).

While DenseCap is targeted for the somewhat more complex dense captioning
problem, it nevertheless has several advantages over related object detection works,
some of which have been stated in Chapter 3, but will be repeated here:

End-to-end training. In contrast to similar architectures for object detection (e.g.
Faster R-CNN, Ren et al. 2015), the DenseCap architecture can be trained
end-to-end without the need for approximations, since its bilinear interpola-
tion layer is fully diferentiable.

External proposals. Since DenseCap includes a general-purpose classiication net-
1NMS: Non-maximum suppression, usually implemented as sorting by conidence and greedily

taking proposals while observing a maximum intersection threshold.
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5.2. Object Classiication

work, it is straightforward to consider external object proposals. This will
be exploited later in Chapter 7 to add object proposals from RGB-D cues.
Other architectures have classiiers which are strictly tied to ixed anchors
in the image and thus cannot easily be used on external proposals (YOLO,
Redmon et al. 2015).

Popular framework. DenseCap is based on Torch2, a popular deep learning frame-
work for the LUA scripting language. Other object detection works are often
based on entirely custom frameworks (YOLO, Redmon et al. 2015) or use
heavily modiied forks of the Cafe framework (Faster R-CNN, Ren et al.
2015). Both make further modiications and combinations with other tech-
niques rather diicult.

5.2. Object Classiication
The generated textual descriptions are not needed for object detection. However,
the captions are generated from the intermediate high-level VGG-16 feature vec-
tors, which must therefore be highly descriptive. To exploit the power of this
feature representation, the network is used up until the LSTM, which is replaced
with a classiication layer. Two methods for classiication are investigated and will
be described in the following.

5.2.1. SVM Classiication
Linear SVMs excel in learning from few examples. There are many examples
for combinations of pretrained CNN feature extractors with a linear SVM for
classiication, including the author’s prior work on object classiication and pose
estimation (Schwarz, Schulz, and Behnke 2015). In this case it seems natural
to combine the pretrained DenseCap architecture with a trained SVM for region
classiication. The SVM score (the signed distance from the hyperplane) is used
as the detector score.

Notably, linear SVM training is very eicient and can be completed in few
seconds for cases with ten object classes and even a large number of training
examples (around 400,000 including all negative examples). Particularly, the SVM
training can be constrained to the classes actually present in the image. In many
cases, this information is available (e.g. from a warehouse management system). In
this case, SVM training can even be performed on-the-ly just before perception.

2http://torch.ch/
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5. Object Detection Method

(a) RGB frame (b) Upper depth (c) Lower depth (d) Stereo depth (e) Fused result

Figure 5.3: RGB-D fusion from two sensors. Note the corruption in the left wall in the
lower depth frame, which is corrected in the fused result.

Especially in warehouse automation contexts, training time is usually bounded,
since the number of items in a particular bin is bounded.

5.2.2. Softmax Classiication

While the SVM approach is promising, it does not change the region proposals
generated by the network. In order to to reine the proposals, the DenseCap
pipeline needs to be ine-tuned end-to-end (optionally excluding the initial VGG-
CNN parts). This is investigated using a softmax classiication layer, which is fully
diferentiable and thus straightforward to train using backpropagation of error.

5.3. RGB-D Preprocessing
While depth is especially valuable for understanding the geometry of the scene,
e.g. for planning an object grasp, it is also desirable to make use of the additional
modality for the object detection pipeline. Since color and depth, while closely re-
lated, ofer complementary information, one can hope that detection performance
increases with the added information.

As described in Section 4.2, the two sensors capture two RGB streams, and
three depth streams: Two directly measured by the sensors, and stereo disparity
computed from the two RGB streams. The three depth streams are projected into
one common frame (the upper camera in our case) and are then fused using a
linear combination with predeined weights αi

3. In particular, the stereo stream is
fused using a low weight, since the depth measurements of the SR300 cameras are
usually more precise (but not always available). Finally, we distrust measurements
where the diferent depth sources disagree by introducing an additional “spread”
weight w. In summary, we obtain the following equations for combining depth

3The experiments use αstereo = 0.1 and αRGB-D = 40.0.
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5.4. Exploiting Depth Measurements

measurements Di of a single pixel to a depth measurement D and weight w:

D =

∑

αiDi
∑

αi

, (5.1)

w = exp(−(max
i
Di − min

i
Di))

∑

αi. (5.2)

Pixels where maxiDi − miniDi > 5 cm are disregarded entirely. Figure 5.3 shows
an exemplary scene with individual raw sensor measurements as well as the fused
depth map.

Since the resulting fused depth map is usually sparse, and nearly all perception
modules (object detection, semantic segmentation, grasp selection) require dense
depth measurements, a illing operation is needed. We follow the work of Ferstl
et al. (2013), who upsample depth images guided by a high-resolution grayscale
image. In contrast to many other guided upsampling approaches, this one does
not assume a regular upsampling grid. Instead, any binary (or even real-valued)
weight matrix can be used to specify the location of source pixels in the output
domain. This makes the approach applicable to the present scenario, where the
mask of valid pixels has no inherent structure. Invalid pixels are illed using a Total
Generalized Variation (TGV) prior, guided by the RGB image. In the experiments,
the HSV saturation channel proved better than grayscale intensity for guiding the
illing operation.

The upsampling is formulated as an optimization problem, minimizing the en-
ergy term

min
u,v

[

α1

∫

ΩH

|T
1

2 (∆u− v)| dx+ α0

∫

ΩH

|∆v| dx+
∫

ΩH

w|(u−Ds)|
2 dx

]

, (5.3)

where the irst two summands regularize the solution using Total Generalized Vari-
ation, and the last summand is the data term, weighted by the weights w calculated
above. For details about the problem formulation and the solver algorithm, we
refer the reader to Ferstl et al. (2013). The guided upsampling was implemented
in CUDA to achieve near real-time performance (<100 ms per image).

Note that this guided upsampling was implemented after the APC competition.
During the competition, we employed a recursive smoothing ilter guided by the
RGB image. It was implemented using the Domain Transform technique described
by Gastal and Oliveira (2011).
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Figure 5.4: Simpliied overview of RGB-only feature extraction, region proposal, and
classiication. C denotes the number of CNN feature maps after the last
convolutional layer (512 for VGG-16). The internal proposal generator pro-
duces B proposals (1000).
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Figure 5.5: Detection pipeline with external proposals. C denotes the number of CNN
feature maps after the last convolutional layer (512 for VGG-16). The inter-
nal proposal generator produces B proposals (1000). Additional D proposals
are added from the external proposal generator based on RGB and depth
data.

5.4. Exploiting Depth Measurements
Having a fused depth map available, the question is now how to integrate the
depth measurements into the object detection pipeline. Figure 5.4 shows the un-
modiied object detection pipeline which will be extended with several methods
for incorporating depth in the following.

5.4.1. External RGB-D Proposals
Since external proposals can be injected easily into the DenseCap pipeline after
the region proposal network, one way to use depth information is to simply feed in
RGB-D-based proposals (see Figure 5.5). As one particularly straightforward and
fast implementation, a connected component algorithm can be used to generate
additional proposals. Two pixels are deemed connected if they do not difer more
than a threshold in terms of 3D position (5 mm), normal angle (50◦), saturation,
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5.4. Exploiting Depth Measurements

Figure 5.6: RGB-D based additional region proposals. Left: RGB frame. Center: Re-
gions labeled using the connected components algorithm. Right: Extracted
bounding box proposals.
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Figure 5.7: Detection pipeline with CNN features from RGB and downsampled HHA-
encoded depth. C denotes the number of CNN feature maps after the last
convolutional layer (512 for VGG-16). The internal proposal generator pro-
duces B proposals (1000).

and color (10). The extracted components are iltered by size (10,000 pixels mini-
mum size for 1920×1080 input), converted to their bounding boxes, and appended
to the region proposal network results. Figure 5.6 shows example frames with the
generated proposals. Note that more sophisticated state-of-the-art region proposal
methods can easily be connected to the pipeline.

5.4.2. Additional Feature Maps
As a minimally invasive modiication to the network, depth can be provided to
the region proposal network and the classiier stage as an additional feature map.
To this end, the depth information is converted into a 3-channel representation
called HHA (Gupta, Girshick, et al. 2014), which includes disparity, height above
ground, and normal angle to gravity. It has been shown that such more geo-
metrically meaningful depth encodings are better accepted by CNNs than raw
depth (Gupta, Girshick, et al. 2014; Gupta, Hofman, and Malik 2015). To it
the network architecture, the HHA-encoded depth is then bilinearly downsampled
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Figure 5.8: Detection pipeline with concatenated CNN features from RGB and HHA-
encoded depth. C denotes the number of CNN feature maps after the last
convolutional layer (512 for VGG-16). The internal proposal generator pro-
duces B proposals (1000).

to the correct feature map size and concatenated to the RGB feature maps (see
Figure 5.7).

The irst convolutional layer of the region proposal network and the irst fully-
connected layer of the classiication network need to be modiied to accept the
additional feature maps. Any new weights are initialized from a normal distribu-
tion, while preserving the other pretrained weights. Training afects new and old
weights as usual.

5.4.3. CNN Features from HHA
Increasing the complexity, one can compute the VGG-16 features not only on the
RGB image, but also on the 3-channel HHA image. The resulting feature maps
(512 for each modality) can then be concatenated to 1024 feature maps before
proceeding with the rest of the DenseCap pipeline (see Figure 5.8).

This approach has the advantage that there should be less information loss than
with bilinear downsampling, since the CNN hopefully aggregates information into
higher-level features. Indeed, this method has proven useful in multiple contexts
(Gupta, Girshick, et al. 2014; Schwarz, Schulz, and Behnke 2015).

5.4.4. Cross Modal Distillation
Using the pretrained VGG-16 network on HHA data is not ideal, since it was
not trained for this modality. Training VGG-16 from scratch on depth data is
infeasible, since there is no annotated depth dataset which could match ImageNet
in the number of classes and annotated frames.

24



5.5. Training Details

Instead, Gupta, Hofman, and Malik (2015) propose to use an RGB reference
network to generate the supervision data needed for the other modality, a technique
they call Cross Modal Distillation. In essence, the RGB network ϕ is computed
feed-forward on the RGB frame Is, generating the target feature maps ϕ(Is). A
back-propagation step then trains the depth network ψ on the matching depth
frame Id, minimizing the objective

min
Wd

∑

(Is,Id)∈Us,d

||ψ(Id)− ϕ(Is)||
2, (5.4)

where Wd are the weights of the depth network, and Us,d is the training set of
matched RGB and depth frames. Note that no annotation is necessary on Us,d,
so any RGB-D video (ideally of the target domain) can be used to perform the
supervision transfer. In this thesis, the (annotated) training dataset is used for
distillation, since more unannotated RGB-D sequences of the target domain are
not available.

After the initial cross modal distillation training, the trained network can be
used in place of the original depth network in Figure 5.8.

5.5. Training Details
As in the original DenseCap work, the ADAM optimizer (Kingma and Ba 2014) is
used for training the network with parameters β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
However, we adapt a custom learning rate schedule to dampen training oscillations
at the end of training (annealing): The learning rate starts at 1 · 10−5 and is kept
constant for 15 epochs, then linearly lowered to 1 ·10−6 during the next 85 epochs.
At 200 epochs, the rate is lowered to 5 · 10−7, and inally to 1 · 10−7 at 250 epochs.
To prevent overitting, 50% dropout is used in the entire network.

5.6. Connection with Semantic Segmentation
Semantic segmentation approaches scene perception from another angle - instead
of predicting object hypotheses, it strives to classify each pixel of the input image.
Our team also developed a semantic segmentation approach for the Amazon Pick-
ing Challenge, in order to have a more ine-grained perception suitable for grasp
planning. One interesting idea was to improve the semantic segmentation result
using the object detection pipeline. This should help to reduce false positives in
clutter and help the semantic segmentation settle on the most probable hypothesis.
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5. Object Detection Method

(b) Water bottle (c) Glue

(a) RGB frame (d) Bubble mailer (e) Gloves

Figure 5.9: Probability estimates generated from object detections for an example frame.
The object posterior in each pixel is approximated by rendering a Gaussian
that corresponds to the bounding box center and extent.

In order to provide guidance to the semantic segmentation, the generated object
proposals need to be backprojected to the image to obtain a pixel-wise posterior
which can be multiplied with the semantic segmentation posterior before deciding
on the most likely class for each pixel.

To this end, Gaussians are rendered for each region proposal, with mean and
covariance derived from the box geometry. See Figure 5.9 for an illustration. The
Gaussians are summed using the detection scores as weights and the resulting
map Pdet is normalized, i.e. scaled so that the maximum equals one. To allow for
detection mistakes, a weak prior is introduced that accounts for false negatives.
The inal combined posterior is computed as

Pcombined = Pseg(0.1 + 0.9Pdet), (5.5)

where Pseg is the posterior resulting from semantic segmentation and Pdet is the
estimated posterior from object detection.

While this combination is relatively straightforward (note that the product
assumes conditional independence) and the shape approximations by Gaussian
masks are rather coarse, this strategy yields a consistent increase in performance
nonetheless (see Section 6.1).
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6. Evaluation

6.1. APC Dataset

Figure 6.1: Example frames with ground truth annotations from the APC dataset, shown
inside the custom annotation tool.

While the APC provided an opportunity to test the entire system under real-
world conditions, the object detector can also be evaluated quantitatively on the
APC dataset captured by our team. This dataset was also used to train the
inal models used in the competition. The dataset contains 190 shelf frames, and
117 tote frames, manually annotated using a custom-built annotation tool (see
Figure 6.1). The annotations were made on a contour level, since the same dataset
is also used for training semantic segmentation, where pixel-wise annotation is
required. Other APC teams typically used much larger datasets: Team RBO
used 346 annotated frames for their 2015 entry (Jonschkowski et al. 2016), while
team Delft annotated 500 frames, and synthesized 20,000 frames of the objects in
diferent orientations for the APC 2016 (Hernandez et al. 2016). The low number of
frames highlights the eiciency of the transfer-learning approach, which makes use
of the pretraining on ImageNet (VGG-16 CNN) and the Visual Genome Dataset
(entire DenseCap pipeline).
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Figure 6.2: Cross validation splits for the APC shelf dataset. The plots show the distri-
bution of labels across the ive splits (as ive diferent colors) for each of the
39 objects. The top row shows a naive random split, while the bottom row
shows the result of using the Iterative Stratiied Sampling algorithm.

For evaluation, we deine ive-fold cross validation splits on the shelf and tote
datasets. Contrary to image classiication, splitting the dataset is not straightfor-
ward, since each frame can have multiple object labels, but the examples should be
distributed as evenly as possible. Following the work of Sechidis, Tsoumakas, and
Vlahavas (2011), the Iterative Stratiied Sampling algorithm is used to calculate
the splits. Figure 6.2 shows a visual comparison of a naive random split and the
Iterative Stratiied Sampling results. While one can qualitatively observe that the
distribution is more even, the algorithm also lowers the LD measure1 from 9 · 10−3

to 5 · 10−3 on the shelf dataset. Note also that a random split may contain splits
with no examples for a particular object, which would complicate the evaluation.

To synthetically increase the number of training examples, the images are ran-
domly lipped around the vertical axis during training. Other operations such
as scaling, random cropping, and HSV color scaling did not yield a signiicant
improvement.

1The LD measure is deined as the mean deviation of the ratio of positive to negative examples
for each label over the dataset splits. For details refer to Sechidis, Tsoumakas, and Vlahavas
(2011).
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6.1. APC Dataset

Table 6.1: Evaluation of object detection architectures on the shelf dataset.
The mAP score is reported for the uninformed and informed case.

mAP
Input Variant Uninf. Inf. F1
RGB SVM (plain) – 28.83 68.50
RGB SVM (tailor) – 28.87 68.35

RGB Softmax (no augmentation) 86.04 88.97 76.88
RGB Softmax (with augmentation) 86.49 89.56 77.10

RGB-D (TGV) HHA Features (Sec. 5.4.2) 86.53 89.81 77.58
RGB-D (TGV) Ext. Proposals (Sec. 5.4.1) 87.01 89.84 77.46
RGB-D (TGV) HHA CNN (Sec. 5.4.3) 86.47 90.12 78.98
RGB-D (TGV) Distillation (Sec. 5.4.4) 87.87 91.19 79.84
RGB-D (single)1 Distillation (Sec. 5.4.4) 86.50 90.13 78.71
RGB-D (DT)2 Distillation (Sec. 5.4.4) 87.48 90.32 78.85

1 Without depth fusion, only from upper camera. Filled using TGV method.
2 Old illing method used during APC 2016 based on Domain Transform.

6.1.1. Design Choices: Classiier and Depth Inclusion

In order to evaluate the design choices ofered in Chapter 5, in particular the
classiier and the method of incorporating depth, full cross-validated training and
evaluation runs were completed for each choice. Table 6.1 shows the results of this
efort. We show the general uninformed mAP score, the informed mAP score (i.e.
object classes not present in the scene masked out), and the F1 localization score.

At the irst glance, we can tell that the softmax variant with its ability to ine-
tune the entire network including the region proposal is far superior to using the
ixed network with a trained SVM classiier. In particular, the SVM classiier is
bad at ranking the detections across images, which is evident in the mAP metric.
A calibration step (e.g. Platt scaling) could improve this behavior. Note that
the F1 score, which is more relevant in the APC scenario, is closer to the rest of
the methods, but still suboptimal. Training the SVM on-the-ly for just the items
in the current shelf (“tailor” variant) makes little diference in both metrics. All
remaining tests were performed with the superior softmax classiier. Data aug-
mentation (random image mirroring) slightly improves performance, so all other
tests were performed with augmentation.

As expected, incorporating depth results in better performance. The external
RGB-D proposal generator (Section 5.4.1) is better than naive HHA concatena-
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tion (Section 5.4.2). However, using the CNN for depth feature computation
(Section 5.4.3) outperforms the proposal generator. Finally, training the depth
CNN using Cross Modal Distillation (Section 5.4.4) gives the best results.

Also, the TGV-regularized method for fusing the two RGB-D streams described
in Section 5.3 is superior to the smoothing implementation using Domain Trans-
form, which is again superior to using just one of the two cameras. While capturing
correct geometry for grasp and motion planning was certainly a large motivation
for using the two-camera setup, it is nonetheless good to see an improvement for
object detection as well.

Note that the inal improvement using depth relative to the RGB baseline is
small (around two percent for all metrics). One explanation for this might be
that in this constrained situation, the scene can be very well understood from
RGB alone, so that depth adds little additional information. In particular, there
are no objects in the object set that difer only by geometry and not by texture.
Also, object boundaries can usually be determined using color boundaries, since
the brown shelf background is distinctive for most objects.

6.1.2. Final Results

Table 6.2: Final results on the APC dataset.
mAP F1

Dataset Uninformed Informed
Shelf 87.87 91.19 79.84
Tote 87.00 88.65 77.90

Final mAP scores can be seen in Table 6.2. As expected, the information which
objects are present in the scene greatly improves the mAP results. Table 6.3 illus-
trates that mostly items which are easily confused (colored toothbrushes, diferent
books from the side) or largely featureless items (glue sticks) beneit from this
masking operation.

As detailed in Section 2.2.2, the mAP score itself does not focus on precise
localization, so we also give mean F1 score results in Table 6.2. Note that the F1
metric as introduced in Section 2.2.2 is only deined for the informed case. The
distribution of the mAP and F1 scores across the objects is shown in Figure 6.3.
The detector performance is good for most objects, with a few particularly bad
objects. It struggles with very small objects, or objects for which the axis-aligned
bounding box is not a good approximation of the shape (e.g. a toothbrush in
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Figure 6.3: Score distribution over the objects. Results are averaged over the cross val-
idation splits. Note that the results for each metric have been sorted inde-
pendently to show the shape of each distribution (see Appendix A for the
source data).

Table 6.3: Efect of the item information on the AP scores. Shown are the top ive
items which beneit most from masking using the information which
items are present in the frame.

Average Precision
Object Uninf. Inf. Gain F1-Score
i_am_a_bunny_book 0.84 0.97 +0.13 0.84
oral_b_toothbrush_green 0.66 0.78 +0.12 0.68
cool_shot_glue_sticks 0.82 0.93 +0.12 0.75
elmers_washable_no_run_school_glue 0.57 0.67 +0.10 0.59
oral_b_toothbrush_red 0.70 0.77 +0.08 0.58
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Table 6.4: Perception runtimes.
Detector network

Phase RGB-D proposal SVM RGB RGB-D
Train - 3.3 s 45 min 4.5 h1

Test 1006 ms 342 ms 340 ms 400 ms
1 Excluding Cross Modal Distillation (10 min).

some orientations, or the glue bottle). On the other hand, large and cubic-shaped
objects (e.g. the tissue box) give the best F1 score.

Runtimes of the various methods are shown in Table 6.4. While training of the
RGB-only detector is comparably fast, the RGB-D network is much slower to train
due to the larger model size (235,236,725 parameters vs. 131,296,629 parameters).
The non-linear increase in computation time is probably stemming from the GPU
memory usage, which is very near the limit of 12 GiB for the large model. The
training time could be reduced further using precomputation of the VGG CNN
features on the training samples, which would also preserve GPU memory. All
methods can predict reasonably fast and are suitable for live usage in a robotic
system.

Figure 6.4 shows exemplary scenes from the dataset with object detection re-
sults.

6.1.3. Combination with Semantic Segmentation

Table 6.5: F1 scores for semantic segmentation.
Shelf Tote

Method Uninf. Inf. Uninf. Inf.
Segmentation 0.757 0.787 0.789 0.816
Combination1 0.782 0.813 0.823 0.833
1 Finetuned CNN + Segmentation.

The combination described in Section 5.6 leads to a small but consistent increase
in performance (see Table 6.5). The object detection results mainly help the
segmentation to settle on the correct candidate, thus suppressing false positives.
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6.1. APC Dataset

Figure 6.4: Object detection examples. Left column: Dataset frames with annotated
object contours (red). Right column: Output boxes. All shown detections
were correctly classiied.
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Figure 6.5: Two exemplar frames from the disaster response dataset.

6.2. Disaster Response
In disaster response scenarios, robots can execute missions which would otherwise
endanger human response teams. Such dangerous situations could include search-
ing for victims in unstable areas after earthquakes, explosions, loods, or nuclear
disasters. The CENTAURO project2, inanced by the European Union, aims to
develop a robotic system for disaster response, teleoperated by a human operator
using an exoskeleton interface. One idea for easing the load on the operator is that
known objects for which interaction plans exist (e.g. a door handle that needs to
be turned or a power drill for drilling a hole into a wall) are automatically rec-
ognized by the system and presented to the operator as triggerable actions. By
automatically performing these otherwise rather tedious tasks, more operator and
robot time can be spent on more diicult tasks.

In this context, a dataset has been recorded at University of Bonn for evaluating
such ideas. It contains 127 manually annotated RGB-D frames captured using
a Kinect version 2 camera inside a cluttered mechanics workshop. Six object
classes are annotated using the same methodology introduced in Section 6.1: Five
mechanical tools (clamp, driller, extension box, stapler, wrench) and door handles.
Figure 6.5 shows exemplary frames from the dataset.

Table 6.6 details the detection results on the dataset. Again, Iterative Stratiied
Sampling has been used to create ive splits. The baseline RGB performance is
worse than on the APC dataset. While the dataset may be harder since objects
are often very small (4% of the image width for certain door knobs) and the scenes
are heavily cluttered, investigation revealed that the ixed anchor box shapes in
the DenseCap region proposal network do not represent the distribution of shapes
present in the dataset. To rectify this, we follow an idea of Redmon et al. (2015)
and use K-Means clustering on the ground truth box shapes (width and height)
to obtain better anchor box shapes. This gives a roughly 6% increase in mAP
(see Table 6.6). As in the APC case, incorporating depth increases performance.

2http://www.centauro-project.eu
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6.2. Disaster Response

Table 6.6: Object detection results on the disaster response
dataset.

Input Variant mAP F1
RGB - 68.79 63.34
RGB Box shape clustering1 74.82 68.31

RGB-D (TGV) Distillation (Section 5.4.4) 72.28 65.90
RGB-D (TGV) Dist. + clustering 78.88 69.34
1 Replace ixed anchor box shapes with shapes extracted from

dataset (see text).
2 Depth measurements illed using the guided upsampling method

described in Section 5.3.

Table 6.7: AP and F1 scores per object on the disaster response dataset.
Measure Clamp Door handle Driller Extension box Stapler Wrench
AP 0.823 0.541 0.873 1.000 0.848 0.649
F1 0.712 0.399 0.763 0.923 0.736 0.627

Combining both improvements yields the inal mAP of 78.88. Figure 6.6 shows
exemplary detector output.

Table 6.7 shows the score distribution across the object classes. It can be seen
that while all other classes obtain good results, the wrench and in particular the
door handle classes perform worse. This may be due to the number of examples:
Two diferent door handle types were trained (knob and handle) with only twelve
examples in total. In comparison, the stapler class has 66 examples. For future
work with this dataset, more training examples should be recorded, especially for
such classes with diverse instances.
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6. Evaluation

Figure 6.6: Object detection examples on disaster response dataset
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7. System Integration for the APC
2016

7.1. Motion Generation
As already mentioned, the kinematic constraints imposed by the APC shelf are
severe. The available space is very narrow, and objects can be partially occluded,
meaning that the robot has to reach around other objects. We will now show
how feasible grasps can be heuristically selected, how collision-free robot conigu-
rations can be found, and how motions can be generated without complex motion
planning.

7.1.1. Heuristic Grasp Selection
Some objects (in particular big objects) require grasping at speciic points to ensure
that the grasp is successful and the object can be lifted in a controlled manner. For
such objects, an ICP-based registration with a prerecorded model of the object is
performed, which is not the subject of this thesis. For details, see Schwarz, Milan,
et al. (2017). Note that only three objects required this special procedure: The
duct tape, the pack of tube socks, and the paper towel roll.

For all other objects, grasp poses are selected heuristically. The system can
generate two basic grasps: A top grasp and a center grasp.

The top grasp tries to grasp the 3D bounding box of the object from above.
Using the semantic segmentation result, the object point, whose ground projection
is closest to the projection of the 3D bounding box center is selected. The grasp
height is chosen as the maximum height of object points in a cylinder around the
chosen position. The grasp position is then reined to the next object point. The
grasp is always performed from above the object, pointing straight down.

Center grasps are found using the 2D image-space bounding box. Again, the
object point closest to the box center is chosen, this time in image space. The grasp
direction is determined by the surface normal estimated in the local neighborhood.

Figure 7.1 shows top and center grasps on exemplary scenes.
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7. System Integration for the APC 2016

Figure 7.1: Heuristic grasp selection. Left: Top grasp on an extension cord. Right:
Front grasp on the tissue box.

7.1.2. Inverse Kinematics

Instead of using a generic kinematics solver for motion planning, we can use the
geometric constraints given by the arrangement to simplify the planning problem.
This idea results in an intelligent kinematics solver driven by two ideas: First, the
suction pose itself is invariant to rotations around the suction axis, and second,
the solver should resolve the inherent redundancy in the kinematic chain so as to
minimize the chance of collisions with the environment.

As a basis, we use a selectively damped least squares (SDLS) solver (Buss and
Kim 2005), since it performs well near singularities and inds approximative so-
lutions for non-reachable goals, where other algorithms quickly begin to diverge.
We augment it with a null-space optimization step, which projects the gradient of
a secondary objective f to the null space of the SDLS Jacobian matrix J . This
allows to optimize secondary objectives using the kinematic chain redundancies
while still reaching the target pose with the endefector.

We irst deine a joint-level null space objective g:

gi(q) = wl max{0, q − (q+i − qδ)}
2

+ wl min{0, q − (q−i + qδ)}
2

+ wc(q − q
(c)
i )2,

(7.1)

where i is the joint index, q is the joint position, q+i and q−i are the upper and lower
joint limits, qδ is a joint limit threshold, q(c)i is the “convenient” coniguration for
this joint, and w is used to form a linear combination of the costs. As can be seen,
this objective prefers a convenient coniguration and avoids joint limits.
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7.1. Motion Generation

Figure 7.2: Penalizing planes in IK solver. The red/blue planes penalize violation by the
red/blue spheres, respectively.

More interestingly in this application, we also specify Cartesian-space costs using
a plane-violation model:

hn⃗,d(x⃗) = (max{0, (−n⃗x⃗T + d)})2, (7.2)

where n⃗ and d specify an oriented plane n⃗x⃗T − d = 0, and x⃗ is some Cartesian
point. This model is used to avoid speciied half-spaces with parts of the robot
(e.g. do not enter the shelf with the cameras).

Finally, we obtain the combined costs f :

f(q⃗, x⃗l, x⃗w) =
∑

i∈Q

gi(q⃗i) + hn⃗s,ds(x⃗l) + hn⃗t,dt(x⃗l) + hn⃗b,db(x⃗w), (7.3)

where q⃗ is the vector of joint positions, x⃗l and x⃗w are Cartesian positions of the
linear extension and the camera module, and n⃗i, di describe three half spaces which
are avoided (see Figure 7.2). This half space penalization ensures that we do not
enter the shelf with the cameras, that the linear extension is horizontal during
manipulation in the shelf1, and that collisions with the robot base are avoided.

1This also uses the penalization of linear extension in Equation (7.1).
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7. System Integration for the APC 2016

Figure 7.3: Nullspace-optimizing IK. Left: Front grasp. Right: Side grasp.

One iteration of the solver calculates the update δq as follows:

J̄ , J̄+ = SDLS(RPRTJ) (7.4)
N = I − J̄+J̄ (7.5)
δq = J̄+∆x − αN∇f(q⃗, x⃗l, x⃗w), (7.6)

where R is the target orientation of the endefector, P is a projector zeroing the roll
component (allowing rotation around the suction axis), J is the 6 × n kinematic
Jacobian matrix, N is the null space projector of J̄ , ∆x is the remaining 6D pose
diference, and α is the step size for null space optimization.

Using this custom IK solver, it is possible to reach diicult target poses in the
shelf and tote without collisions (see Figure 7.3).

7.1.3. Parametrized Motion Primitives
In earlier works (Schwarz, Rodehutskors, et al. 2016), we developed a keyframe-
based interpolation system. Keyframes specify joint- or Cartesian space conigura-
tions of the robot (or sub-groups like the endefector). Each keyframe also contains
joint and Cartesian velocity and acceleration limits, which constrain the motion
to the keyframe pose. Motions can be edited in a dedicated 3D GUI, which is
particularly useful for ixed motions, such as approaching shelf bins for perception
or dropping items into the tote. Other more dynamic motions, like object pick-
ing motions, are created on the ly. Based on the selected grasp pose, Cartesian
keyframes are placed in pregrasp, grasp and retract poses. Finally, the system
smoothly interpolates between the keyframe conigurations in joint or Cartesian
space to generate trajectories. The trajectory is then executed on the robot. Since
collisions with objects may still be possible, the UR10 arm is conigured to stop on
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7.2. Overall System Performance

Table 7.1: Final scores of the top four teams for each task.
Stowing

Team Score
Delft (Hernandez et al. 2016) 214
NimbRo Picking (ours) 186
MIT 164
PFN 161

Picking
Team Score
Delft (Hernandez et al. 2016) 105
PFN 105
Nimbro Picking (ours) 97
MIT 67

unexpected contact forces. The software can then cancel the trajectory, re-enable
the arm and execute a retract trajectory. Failed objects are retried at the end of
the picking sequence.

7.2. Overall System Performance
During the APC 2016, the object detection pipeline was in an earlier state than the
best architectures described in Chapter 5. In particular, depth illing was done
using the slightly inferior Domain Transform implementation and the external
proposal generator was used to incorporate depth measurements. Finally, the
SVM classiier was used for classiication.

The system attempted both the picking and the stowing tasks successfully. Ta-
ble 7.1 shows the inal oicial scores of the top four teams of APC 2016. Videos
from both runs as well as an overview video are available online.2 During the
stowing task, the system stowed eleven out of twelve items into the shelf. Sadly,
one of the successfully stowed items was misrecognized. Since the system masked
out objects already stowed (the informed case), the remaining item (a toothbrush)
could not be detected. We anticipated this problem and had built in a fallback
mechanism, which reset the mask to all objects after some number of failed at-
tempts, but this failed due to an object size threshold. The misrecognition led to
the second place, since team Delft successfully stowed all items.

In our picking run, the system picked ten out of twelve items (see Table 7.2).
Due to the diicult arrangements of items in the shelf bins, the robot dropped
three items during retraction from the bin, since they collided with other items.
However, the items fell into the tote and were thus counted as successful picks.
Unfortunately, the system judged that the drop happened inside the shelf bin and
marked the items as present in the shelf in the output ile. The resulting penalties

2Overview: https://youtu.be/7Dlt8T3s3HY, stowing: https://youtu.be/B6ny9ONfdx4,
picking: https://youtu.be/q9YiD80vwDc.
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7. System Integration for the APC 2016

Table 7.2: Picking Run at APC 2016
Bin Item Pick Drop Report
A duct tape × × ×
B bunny book ✓ ✓ ×2

C squeaky eggs ✓ × ✓

D crayons1
✓ × ✓

E cofee ✓ ✓ ×2

F hooks ✓ × ✓

G scissors × × ×
H plush bear ✓ × ✓

I curtain ✓ × ✓

J tissue box ✓ × ✓

K sippy cup ✓ × ✓

L pencil cup ✓ ✓ ×2

Sum 10 3 7
1 Misrecognized, corrected on second attempt.
2 Incorrect report, resulting in penalty.

dropped our score from 152 points to 97 points—just behind the irst and second
place with both 105 points.

On the inal day of the competition, we showed the capabilities of the system
in an open demonstration. In a very successful demonstrated picking run, we
showcased our ability to handle both “hard” objects with three bonus points: The
pencil cup (requires knocking over to be able to suction it) and the heavy dumbbell
(requires very precise suction point localization).
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8. Conclusion
This thesis presents an end-to-end pipeline for RGB-D preprocessing, object detec-
tion, grasp selection and motion execution. Besides the demonstrated integration
efort, scientiic contributions were the method for fusing two RGB-D streams us-
ing guided upsampling, adaption of the DenseCap method for object detection,
incorporation of depth measurements, and a custom inverse kinematics solver for
reaching into the shelf.

The individual design decisions were evaluated on the APC dataset, and the
object detection pipeline shows good performance on both the APC and the dis-
aster response dataset. Finally, the entire system was evaluated at the APC 2016,
reaching a very good second and third place. A general description of the en-
tire system has been submitted and accepted for the International Conference on
Robotics and Automation (ICRA) 2017 (Schwarz, Milan, et al. 2017).

A possible extension point is the eicient training for new objects, which may be
required daily in high-volume warehouses. Of particular interest in this context is
keeping the annotation workload low, since this is easily the most time-consuming
part of training. In particular, the current system requires manual arrangement
of “natural” training scenes with multiple objects.

The Amazon Robotics Challenge (ARC) 20171 is the successor of the Amazon
Picking Challenge. It raises the diiculty of existing tasks (packing items into
cardboard boxes instead of totes), and introduces a new hybrid task (irst stowing
objects and then picking them into boxes). The shelf is replaced by a participant-
designed storage system. For object perception, the main challenge is eicient
training: Half of the items to be picked or stowed will be new items, which are
provided to the team 30 min before the run starts. Eiciently using this time to
capture data, annotate it, and train classiiers will be key to win the competition.
Here, a hybrid Softmax/SVM system might be applicable: For the training set
available before the run, the pipeline can be trained end-to-end. The pretrained
network can then be used to extract feature vectors for fast SVM training on the
new objects.

1https://www.amazonrobotics.com/#/pickingchallenge
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A. Detailed APC results

Table A.1: Distribution of Average Precision and F1-Score over the objects of the
APC shelf dataset.

Average Precision
Object Uninf. Inf. Gain F1-Score

barkely_hide_bones 0.906 0.959 +0.054 0.816
cherokee_easy_tee_shirt 0.736 0.756 +0.020 0.625
clorox_utility_brush 0.888 0.903 +0.015 0.801
cloud_b_plush_bear 0.975 0.980 +0.005 0.835
command_hooks 0.678 0.734 +0.056 0.617
cool_shot_glue_sticks 0.815 0.931 +0.115 0.750
crayola_24_ct 0.936 0.956 +0.020 0.854
creativity_chenille_stems 0.801 0.826 +0.025 0.680
dasani_water_bottle 0.879 0.887 +0.008 0.815
dove_beauty_bar 0.934 1.000 +0.066 0.877
dr_browns_bottle_brush 0.879 0.888 +0.009 0.788
easter_turtle_sippy_cup 1.000 1.000 +0.000 0.898
elmers_washable_no_run_school_glue 0.571 0.668 +0.097 0.589
expo_dry_erase_board_eraser 0.919 0.943 +0.024 0.831
fiskars_scissors_red 0.726 0.779 +0.054 0.633
fitness_gear_3lb_dumbbell 1.000 1.000 +0.000 0.873
folgers_classic_roast_coffee 0.969 0.989 +0.020 0.937
hanes_tube_socks 0.869 0.902 +0.033 0.817
i_am_a_bunny_book 0.836 0.968 +0.132 0.840
jane_eyre_dvd 0.847 0.918 +0.071 0.773
kleenex_paper_towels 1.000 1.000 +0.000 0.939
kleenex_tissue_box 1.000 1.000 +0.000 0.922
kyjen_squeakin_eggs_plush_puppies 0.914 0.914 +0.000 0.796
laugh_out_loud_joke_book 0.923 0.934 +0.011 0.830
oral_b_toothbrush_green 0.662 0.780 +0.118 0.678
oral_b_toothbrush_red 0.697 0.773 +0.076 0.585
peva_shower_curtain_liner 0.929 0.947 +0.018 0.863
platinum_pets_dog_bowl 1.000 1.000 +0.000 0.883
rawlings_baseball 0.886 0.886 +0.000 0.781
rolodex_jumbo_pencil_cup 1.000 1.000 +0.000 0.907
safety_first_outlet_plugs 0.961 0.994 +0.033 0.868
scotch_bubble_mailer 0.864 0.912 +0.048 0.819
scotch_duct_tape 0.906 0.906 +0.000 0.825
soft_white_lightbulb 0.960 1.000 +0.040 0.894
staples_index_cards 0.754 0.795 +0.041 0.746
ticonderoga_12_pencils 0.904 0.918 +0.014 0.740
up_glucose_bottle 1.000 1.000 +0.000 0.922
womens_knit_gloves 0.984 0.984 +0.000 0.812
woods_extension_cord 0.766 0.836 +0.071 0.680
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Table A.2: Distribution of Average Precision and F1-Score over the objects of the
APC tote dataset.

Average Precision
Object Uninf. Inf. Gain F1-Score

barkely_hide_bones 0.891 0.891 +0.000 0.817
cherokee_easy_tee_shirt 0.835 0.892 +0.057 0.741
clorox_utility_brush 0.974 0.977 +0.003 0.891
cloud_b_plush_bear 0.934 0.934 +0.000 0.803
command_hooks 0.954 0.969 +0.015 0.827
cool_shot_glue_sticks 0.790 0.845 +0.055 0.726
crayola_24_ct 0.900 0.908 +0.008 0.790
creativity_chenille_stems 0.718 0.737 +0.019 0.644
dasani_water_bottle 0.954 0.955 +0.001 0.864
dove_beauty_bar 0.960 0.973 +0.013 0.884
dr_browns_bottle_brush 0.946 0.953 +0.007 0.833
easter_turtle_sippy_cup 1.000 1.000 +0.000 0.875
elmers_washable_no_run_school_glue 0.779 0.792 +0.013 0.682
expo_dry_erase_board_eraser 0.846 0.859 +0.014 0.757
fiskars_scissors_red 0.469 0.514 +0.045 0.357
fitness_gear_3lb_dumbbell 0.906 0.948 +0.042 0.770
folgers_classic_roast_coffee 1.000 1.000 +0.000 0.930
hanes_tube_socks 0.690 0.691 +0.001 0.756
i_am_a_bunny_book 0.914 0.929 +0.015 0.790
jane_eyre_dvd 1.000 1.000 +0.000 0.900
kleenex_paper_towels 0.941 0.967 +0.026 0.808
kleenex_tissue_box 0.962 0.963 +0.001 0.878
kyjen_squeakin_eggs_plush_puppies 0.934 0.934 +0.000 0.836
laugh_out_loud_joke_book 0.934 0.934 +0.000 0.832
oral_b_toothbrush_green 0.734 0.753 +0.020 0.652
oral_b_toothbrush_red 0.340 0.386 +0.047 0.302
peva_shower_curtain_liner 0.737 0.750 +0.013 0.643
platinum_pets_dog_bowl 0.974 1.000 +0.026 0.893
rawlings_baseball 0.937 0.951 +0.014 0.818
rolodex_jumbo_pencil_cup 1.000 1.000 +0.000 0.901
safety_first_outlet_plugs 0.680 0.690 +0.010 0.557
scotch_bubble_mailer 0.864 0.869 +0.005 0.788
scotch_duct_tape 0.952 0.967 +0.015 0.825
soft_white_lightbulb 0.898 0.947 +0.049 0.799
staples_index_cards 0.801 0.822 +0.022 0.751
ticonderoga_12_pencils 0.916 0.934 +0.018 0.882
up_glucose_bottle 0.864 0.938 +0.074 0.806
womens_knit_gloves 1.000 1.000 +0.000 0.890
woods_extension_cord 1.000 1.000 +0.000 0.880
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