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Abstract

Dexterous manipulation of everyday objects has become a key interest to allow
robots to seamlessly integrate in human-centred environments. As the objects
in question are shaped for human hands, anthropomorphic end-effectors are a
versatile and effective interface, but they come with a high dimensional control
space which hinders an agent’s ability to learn robust manipulation strategies.
Learning from human demonstrations can aid learning in such complex search
spaces.

Offline reinforcement learning (RL) is a data-driven form of RL able to take
advantage of large and diverse datasets. Prior work has observed a performance
gap of offline RL algorithms when applied on human demonstrations in contrast
to machine-generated demonstrations. In this thesis, we investigate whether aug-
menting state-of-the-art offline RL algorithm CQL with history-aware components
can help to close this gap. First, we develop an immersive Virtual Reality (VR)
teleoperation system enabling intuitive and fast collection of human demonstra-
tions. We then propose three variants of CQL and evaluate them on our demon-
strations. We provide an extensive analysis of the benefits and shortcomings of
all considered variants, and find that simple changes to the agent input, such as
concatenating subsequent observed states, can improve performance in complex,
high precision tasks.





Contents

1. Introduction 1

2. Preliminaries 5
2.1. Task Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Gym-grasp tasks . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Robomimic datasets . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 9
2.2.2. Offline Reinforcement Learning . . . . . . . . . . . . . . . . 12
2.2.3. Conservative Q-Learning . . . . . . . . . . . . . . . . . . . . 12

3. Related Work 15
3.1. Considerations for learning from human demonstrations . . . . . . . 15
3.2. Human demonstrations for dexterous manipulation . . . . . . . . . 16
3.3. Dexterous Teleoperation . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Dexterous Teleoperation Framework 21
4.1. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2. Haptic Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. History-aware Offline Reinforcement Learning 25
5.1. History-aware observations . . . . . . . . . . . . . . . . . . . . . . . 25
5.2. Extended State Variant . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3. Recurrent Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6. Evaluation 29
6.1. Dexterous Teleoperation Framework . . . . . . . . . . . . . . . . . 29

6.1.1. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.2. Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2. History-aware Offline Reinforcement Learning . . . . . . . . . . . . 32
6.2.1. Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.2. Hyperparameter Scanning . . . . . . . . . . . . . . . . . . . 33

vii



Contents

6.2.3. Experimental Results . . . . . . . . . . . . . . . . . . . . . . 35

7. Conclusion 39

Appendices 41

A. Hyperparameter Scans 41

B. Additional results 43

viii



1. Introduction

As robot capabilities have grown beyond the structured and well-defined applica-
tion space of industrial settings, dexterous manipulation of everyday objects has
become a key interest to allow robots to seamlessly integrate in human-centred en-
vironments. However, robot manipulation skills are still far from matching those of
humans [1]. Equipping robots with anthropomorphic end-effectors is an intuitive
and practical choice, since the objects in question are shaped for human hands.
These end-effectors come with a high-dimensional action space which makes it dif-
ficult to learn robust manipulation strategies, especially for tasks requiring high
precision.

Reinforcement learning is an online interactive learning paradigm where an agent
receives information about the current environment state and is rewarded for ac-
tions that lead to successful task completion. During training, the agent aims to
find actions which will yield high rewards, resulting in a trial-and-error approach
to solving the task at hand. Given both enough time to explore the search space
and meaningful feedback, RL can find a successful and robust strategy to solve vir-
tually any well-defined task. Indeed, this method has shown great results across
different domains [2–5], but its online learning character has several drawbacks
when compared to data-driven methods. As the agent starts out with a random
policy, it will most likely achieve none or only low rewards initially. To improve
the strategy, high reward regions need to be found. For large state-action spaces,
it can take many iterations for the agent to encounter such high reward regions.
Collecting such large amounts of online samples is not only expensive, but those
initial interactions can also be unsafe, especially when they need to be carried out
in the real world. For example, taking an action with a high force in a delicate
state can lead to damage in the robot or its environment.

Manually designed dense reward functions can help guide learning towards suc-
cess, therefore effectively decreasing the number of samples required. In the case
of an agent that should learn to pick up an object, an increasing reward could
be provided for smaller distance between the robot end-effector and the object.
This reward shaping can be non-trivial for complex tasks and may even impede
the agent: In some settings, it might not be obvious for the person designing
the reward function what strategy is the most effective or robust for the agent at
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1. Introduction

hand. For the specific case of dexterous manipulation with an anthropomorphic
end-effector, online RL can additionally lead to undesired strategies like opening
a door with the wrist instead of using the fingers [6]. While effective, this can be
alienating to humans potentially interacting with the robot.

Of course, an agent learning to utilize an anthropomorphic end-effector for dex-
terous manipulation tasks would ideally not start from scratch. Humans already
know how to manipulate those objects with their hands, and we should try to
effectively leverage their expertise to teach robots the same. Imitation learning [7]
can successfully mimic demonstrations, but performance is thereby limited by the
demonstrated behaviour. Alternatively, an RL agent can be initialized with a pol-
icy learned with imitation learning. This form of bootstrapping the RL algorithm
significantly decreases the sample complexity of standard RL and produces poli-
cies with high generalization capabilities [6]. However, these methods also show
a so-called unlearning effect at the start of online interaction [8, 9], suggesting
that demonstrations are not ideally used during the entire learning process. In
this work, we instead employ offline reinforcement learning, a data-driven form of
RL which requires no online interaction and instead trains only on pre-recorded
demonstrations. In comparison to online RL, this method is much more sample-
efficient as the demonstrations provide a good starting point of how higher rewards
can be achieved. Moreover, in contrast to imitation learning, this method does
not limit the agent performance to that of the demonstrator. Instead, offline
RL enables the use of more extensive and diverse datasets, including suboptimal
demonstrations or data from other tasks, allowing the agent to effectively gen-
eralize, identify particularly good behaviours in the dataset and even recombine
demonstrated behaviour. For example, a dataset containing demonstrations of
lifting an object out of an open drawer could be increased by few unlabelled (i.e.
zero rewards) demonstrations of opening said drawer. The added demonstrations
enable the agent to learn how to reach the initial state of the demonstrations
showing the lifting motions, allowing for a combination of the two strategies [10].

Mandlekar et al. [11] observe that offline RL algorithms shows better perfor-
mance when trained on synthetic demonstrations generated by a policy trained
with RL than when trained on human demonstrations. While the former are
inherently Markovian, actions demonstrated by humans may depend on other fac-
tors apart from the current state, such as past observations. The authors observe
that imitation learning methods with recurrent components are more successful
in learning from human data. They hypothesize that history-aware components
might aid offline RL to effectively leverage such datasets as well. To our knowl-
edge, the impact of combining history-aware components with offline RL has not
been investigated, and this thesis aims to fill that gap.
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The contributions of this work are twofold: First, we present an immersive
VR teleoperation framework with haptic feedback to collect demonstrations for
dexterous manipulation tasks from human operators. Secondly, we propose three
approaches to augment an offline RL algorithm with history-awareness and inves-
tigate the performance of these methods on human datasets. We find that some
forms of history-awareness can aid performance when learning complex manipula-
tion tasks with high precision requirements from human demonstrations.
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2. Preliminaries
In this chapter, we first describe the tasks considered for experimental evaluation
and then discuss the theoretical concepts applied in this work.

2.1. Task Overview
The majority of the experiments presented in this thesis are carried out on tasks
from gym-grasp [12], a framework for robot grasping and dexterous hand manip-
ulation powered by IsaacGym with tasks representing daily life. We also carry
out some experiments on datasets from robomimic [11] which utilize tasks from
robosuite [13], a simulation framework for robot learning powered by MuJoCo. In
the following, we describe all tasks considered.

2.1.1. Gym-grasp tasks
All environments in the gym-grasp framework feature a robotic arm and hand,
specifically a UR5 arm and a Schunk SIH hand. The environment receives relative
actions consisting of a 6-dimensional wrist pose and 5 finger positions. Figure 2.1
shows how the arm and hand are actuated. The initial position of the robot arm
and hand is randomized within a small cube at the start of each episode.

In our experiments, we utilize low-dimensional observations which can be config-
ured to hold combinations of pose and velocity information of the robot wrist and
fingers, finger contacts observations and pose information of task-specific objects.
Additionally, gym-grasp offers visual observations which are not considered here.

Both sparse and dense rewards are available, but only the former are considered
in this work. The sparse reward given is 0 once the task is completed successfully
and -1 otherwise.

All considered tasks are depicted in figure 2.2, and we give short descriptions of
each in the following.

OpenDrawer The task starts with a closed drawer and is solved when the agent
has opened the drawer by 20 cm. As the box with the drawer is always initialized
in the same spot, task-specific observations only include the x-dimension of the
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Arm target angles

Hand target angles

6D pose

Actuated hand 
joints

Inverse kinematics

Joint coupling

Figure 2.1: SIH actuation. Only the
joints marked green can be directly ac-
tuated. Figure from [14].

(a) OpenDrawer. (b) OpenDoor.

(c) PourCup. (d) LiftObject.

Figure 2.2: Gym-Grasp Tasks.

handle position. This is the simplest task considered, as it can be completed in
one motion and requires little precision.

OpenDoor The door is always initialized at the same position and closed in the
beginning. The task is solved when the agent has turned the handle and pulled
it open by 45◦. This requires the concatenation of two more difficult motions,
making the task more complex than OpenDrawer. The current pose of the handle
is tracked as a task-specific observation.

PourCup This task consists of an empty bowl and a cup filled with particles
representing liquid. Both containers are always initialized at the same positions,
and the goal is to pour the particles from the cup into the bowl. The task is
solved when at least 90% of the particles are in the bowl. Dropping the full cup
into the bowl is not considered a success. This task has a high risk of failure,
as the agent cannot recover if too many particles are spilled. Both the grasping
and pouring motion require high precision. Task-specific observations comprise
the pose of both containers.

LiftObject In this task, the agent must lift a lemon lying on the table to a height
of 10 cm. In contrast to the other tasks, both the object pose and the agent’s hand
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2.1. Task Overview

(a) Lift. (b) Can. (c) Square. (d) Transport. (e) Tool Hang.

Figure 2.3: Robomimic Tasks. Figures from [11].

position are randomly initialized as the object is dropped from a random position
onto the table. Solving the task requires precise positioning of the fingers for
a stable grip as well as generalization capabilities. The current object pose is
available as a task-specific observation.

2.1.2. Robomimic datasets

The datasets from robomimic [11] that were considered for this work were recorded
in environments with one or two Panda robotic arms. One arm is controlled using
7-dimensional actions consisting of 3 coordinates respectively for the translation
and rotation from the end-effector pose and one coordinate controlling the opening
and closing of the gripper fingers.

For this work, we only consider low-dimensional observations. These consist of
proprioception observations, i.e. the end-effector pose and gripper finger position,
as well as object observations. Both sparse and dense rewards are available. The
datasets we utilize have binary sparse rewards of 1 once the task is completed and
0 otherwise.

All considered tasks are depicted in figure 2.3, and we give short descriptions of
each in the following.

Lift In this task, the agent must lift a small cube. The cube position is random-
ized within a small square on the table, as is its rotation in the z-axis. Object
observations consist of the absolute cube pose and the cube position relative to
the end-effector. This is the simplest task from the robomimic datasets.

Can This task comprises a large bin containing a can and a smaller empty bin.
The agent must lift the can and place it into the smaller bin. The can position
is randomized within the large bin, as well as its z-rotation. Object observations
consist of the absolute can pose and its relative position to the end-effector. Solving
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this task is slightly more difficult than Lift, as it requires the concatenation of two
motions, picking and placing, and picking the can is harder than picking the cube.

Square The agent must pick a square nut and place it on a rod. The nut position
as well as its z-rotation are randomized in a square region on the table. Object
observations consist of the absolute nut pose and the nut pose relative to the robot
end-effector. Solving this task requires higher precision than Lift and Can.

Transport This task comprises two robot arms. One must pick a hammer from
a closed container on a shelf while the other clears a target bin on another shelf by
removing a piece of rubbish. Then, the first arm hands the hammer to the second
one which places the hammer in the target bin. The positions of all bins and the lid
are randomized within small squares. Additionally, the positions and z-rotations
of the hammer and piece of rubbish are randomized. Object observations consist
of the absolute poses of the hammer, piece of rubbish, and lid handle, the absolute
position of the target and rubbish bin, the relative positions of the hammer and lid
handle to the first arm, the relative positions of the hammer and piece of rubbish
to the second arm, and binary indicators for the hammer reaching the target bin
and the rubbish reaching the rubbish bin. As this task consists of multiple stages,
it takes longer than the others and is accordingly difficult to solve with binary task
rewards.

Tool Hang The agent must insert a hook into a base and hang a wrench on
the hook. The positions and z-rotations of the hook and wrench are randomized
within a small square. Object observations consist of the absolute and relative
pose of the base frame, the insertion hook and the wrench to the end-effector, and
binary indicators for assembly of the base and hook and placement of the wrench
on the hook. This task is the most difficult one in this set, as it requires multiple
high precision movements.

2.2. Theoretical Background
In this section, we first define the reinforcement learning (RL) problem following
Sutton and Barto [15]. Then, we highlight the opportunities and challenges in of-
fline reinforcement learning and outline different approaches to offline RL. Finally,
we detail the formalism behind CQL [16] as the main algorithm used in this thesis.
For a more in-depth analysis of offline RL methods, please refer to recent surveys
by Levine et al. [9] and Prudencio et al. [17].
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2.2. Theoretical Background

2.2.1. Reinforcement Learning
Reinforcement learning aims at learning to control a dynamical system through in-
teraction. The dynamical system is modelled as a Markov decision process (MDP):

Definition 2.1 (Markov decision process). A Markov decision process is defined
by a tuple M = (S,A, T, d0, r, γ), where

• S is the set of states,

• A is the set of actions,

• T (st+1|st, at) describes the system dynamics in terms of the probability of
transitioning into state st+1 ∈ S when executing action at ∈ A in state
st ∈ S,

• d0(s0) defines the initial state distribution,

• r : S ×A → R defines a reward function and

• γ ∈ [0, 1] is a scalar discount factor.

It is a stochastic process that satisfies the Markov property, meaning that there
is no dependency on previous states as the current state contains all necessary
information.

A behaviour policy π (at|st) is a distribution of actions at ∈ A conditioned on
the current state st ∈ S, inducing a marginal state-action distribution ρπ(st, at).
The goal of reinforcement learning is then to learn a policy which maximizes the
expected sum of rewards discounted over time, expressed in the following learning
objective:

J(π) = E(st,at)∼ρπ(τ)

[∑
t

γtr(st, at)

]
(2.1)

Reinforcement learning algorithms begin with an agent carrying out an initial,
usually random policy in an environment governed by an MDP as defined above.
The agent-environment interaction is depicted in figure 2.4a: At each time step
t, the agent receives the current state st ∈ S of the environment and selects an
action at ∈ A based on the policy π. It then receives the environment’s next
state st+1 ∈ S and a reward signal rt = r(st, at) ∈ R judging the usefulness of
the selected action in this state. Based on these interaction tuples (st, at, st+1, rt),
reinforcement learning algorithms employ policy updates to maximize the learning
objective.
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online interaction

Environment
Agent policy update

s, r

a

(s, a, s′, r)

π′
max

∑
rπ(a | s)

(a) Online RL Framework. The agent policy is iteratively updated with the objective to maximize
the expected sum of rewards with respect to the current interaction.

demonstrated interaction

learn πoff

deployment

Environment
Demonstrator

D from πβ

policy update
Environment

Agent

π′

s, r

a

(s, a, s′, r)

(s, a, s′, r)
s, r

a

πβ(a | s)

max
∑

r

πoff(a | s)

πoff(a | s)

(b) Offline RL Framework. Samples of demonstrated behaviour πβ are collected into dataset
D, then the agent policy πoff is trained from D without additional interaction, with the same
objective as in online RL. After training, πoff is deployed.

Figure 2.4: Reinforcement Learning framework
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2.2. Theoretical Background

Policy gradient methods directly estimate the gradient of the policy and up-
date the policy accordingly. On the other hand, dynamic programming methods
maximize the objective by learning value functions that estimate the expected
discounted sum of rewards when starting in state st and following some policy
π (at|st):

V π(st) = Eπ

[
∞∑
k=0

γkr(st+k, at+k)

∣∣∣∣∣ st
]

Qπ(st, at) = Eπ

[
∞∑
k=0

γkr(st+k, at+k)

∣∣∣∣∣ st, at
]

where V π(st) is the value of state st and Qπ(st, at) the value of taking action at in
state st. It follows that

V π(st) = Eat∼π(at|st) [Q
π(st, at)]

and thus

Qπ(st, at) = r(st, at) + γEst+1∼T (st+1|st,at) [V
π(st+1)]

= r(st, at) + γEst+1∼T (st+1|st,at),at+1∼π(at+1|st+1) [Q
π(st+1, at+1)]

(2.2)

Choosing the action with maximum value will result in an optimal policy. The Q-
function update in equation 2.2 is often expressed in terms of the Bellman operator
Bπ, resulting in ~Qπ ← Bπ ~Qπ with ~Q referring to the representation of Q as a vector
of length |S| × |A|.

To learn value functions, we can further distinguish between Q-learning methods
and actor-critic methods. Q-learning methods implicitly define a greedy policy
π (at|st) = arg maxat Q(st, at) and learn the corresponding optimal Q-function:

Q∗(st, at) = r(st, at) + γEst+1∼T (st+1|st,at)

[
max
at+1

Q∗(st+1, at+1)

]
This can be again expressed as ~Q = B∗ ~Q in terms of the Bellman optimality oper-
ator B∗. Actor-critic methods, on the other hand, separately train a parameterized
policy πθ (the actor) and the corresponding parameterized value function Qπ

φ (the
critic). First, the Q-function is updated with respect to the current policy:

Qπ
φ(st, at) = r(st, at) + γEst+1∼T (st+1|st,at),at+1∼πθ(at+1|st+1)

[
Qπ

φ(st+1, at+1)
]

⇔ ~Qπ
φ = Bπ

θ
~Qπ
φ

11



2. Preliminaries

Then, the policy is updated to select actions with a high value according to the
updated Q-function.

2.2.2. Offline Reinforcement Learning

Offline reinforcement learning is a data-driven approach to RL, optimizing the
same objective from equation 2.1 but without online interaction (as depicted in fig-
ure 2.4b). Instead, these algorithms leverage a static datasetD = {(st, at, st+1, rt)i}
of previously collected transitions. D is produced by an unknown behaviour policy
πβ which induces the marginal state-distribution dπβ(s), meaning that the state-
action tuples (s, a) ∈ D are sampled according to dπβ(s)πβ (a|s).

The main challenge in offline reinforcement learning is the distributional shift.
Recall equation 2.2: the target value Qπ(st, at) is only updated during training for
in-distribution actions at ∼ πβ (at|st), but this update uses the estimated value
of actions at+1 ∼ π (at+1|st+1). For these out-of-distribution (OOD) actions at+1,
the value of Q(at+1, st+1) could be erroneously high. While such errors would
be corrected through interaction in online reinforcement learning, they instead
accumulate in the offline setting. Policies trained to maximize the Q-value might
be biased towards those OOD actions.

Possible mitigations for this issue include policy constraints and uncertainty
estimation. The latter method aims to determine the trust-worthiness of the Q-
value prediction. When the uncertainty of the estimate is high, as is expected to
be the case for OOD actions, conservative target values are produced. In practice,
this method does not perform well as the demands on the fidelity of the uncertainty
estimates are immense [9].

Policy constraint methods limit how far the learned policy π deviates from the
behaviour policy πβ. The constraint usually looks at the distance between the two
policies and therefore requires explicit modelling of πβ. Learning is thus limited
by the capability to model the behaviour policy which can be difficult in complex
scenarios. In practice, these methods tend to be overly conservative [9].

2.2.3. Conservative Q-Learning

Kumar et al. [16] propose to address the distributional shift by learning a con-
servative Q-function that lower-bounds the true Q-function. In the following, we
derive their method.

In standard Q-function training, we aim to minimize the error ε(D, Qk) with

12



2.2. Theoretical Background

respect to the Bellman objective:

Qk+1 ← arg min
Q

1

2
Es,a,s′∼D

[(
Q(s, a)− BπkQk(s, a)

)2]︸ ︷︷ ︸
ε(D,Qk)

To learn a conservative Q-function, the authors propose to additionally minimize
the Q-values under the distribution µ (a|s), therefore penalizing high Q-values for
actions drawn according to µ:

Qk+1 ← arg min
Q

αEs∼D,a∼µ(a|s) [Q(s, a)] + ε(D, Qk)

They show that the resulting function is indeed a point-wise lower bound of the
true Q-function Qπ at all s ∈ D, a ∈ A. As this objective would be far too
conservative, a maximization term is added to tighten the bound:

Qk+1 ← arg min
Q

α
(
Es∼D,a∼µ(a|s) [Q(s, a)]− Es∼D,a∼πβ(a|s) [Q(s, a)]

)︸ ︷︷ ︸
CCQL(D,Qk)

+ε(D, Qk)

While the result is not a point-wise lower bound as before, it can be shown to
be a lower bound in expectation under the current policy. The intuition behind
this objective is that for all states in D, high Q-values for actions drawn according
to µ will be penalized, while the Q-values for in-distribution actions a ∼ πβ will
be penalized less because of the Bellman backup. For an adversarially chosen µ,
this impedes overestimation of Q-values of OOD actions, while still encouraging
improvement over the observed behaviour.

Regarding the choice of µ, Kumar et al. propose a family of optimization prob-
lems over µ (a|s) characterized by a regularized adversarial R(µ):

min
Q

max
µ

α CCQL(D, Qk) + ε(D, Qk) +R(µ) (2.3)

An interesting instance of this family is given by setting R(µ) = −DKL(µ, ρ), i.e.
the KL divergence against a prior distribution ρ (a|s). The authors note that for
the maximization problem

max
µ

Ex∼µ(x) [f(x)] +DKL(µ, ρ) s.t.
∑
x

µ(x) = 1,∀xµ(x) ≥ 0

the optimal solution is µ∗(x) = 1
Z
ρ(x) exp (f(x)), where Z is a normalization factor.

13
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We can rewrite equation 2.3 as

min
Q

max
µ

αEs∼D
(
Ea∼µ(a|s) [Q(s, a)]− Ea∼πβ(a|s) [Q(s, a)]

)
+ ε(D, Qk)−DKL(µ, ρ)

(2.4)
and focus on the maximization problem regarding µ marked in red which yields
µ∗ (a|s) = 1

Z
ρ (a|s) exp (Q(s, a)). Plugging this into 2.4 yields a variant of CQL

denoted by CQL(ρ):

min
Q

αEs∼D

(
Ea∼ρ(a|s)

[
Q(s, a)

exp(Q(s, a))

Z

]
− Ea∼πβ(a|s) [Q(s, a)]

)
+ ε(D, Qk)

(2.5)
We can choose ρ = Unif(a) and note that

DKL(µ,Unif) = Ex∼µ [log(µ(x))− log(Unif(x))]

= Ex∼µ [log(µ(x))]− Ex∼µ

[
Unif(x)︸ ︷︷ ︸

]
const

= Ex∼µ [log(µ(x))]︸ ︷︷ ︸
−H(µ)

−const

≈ −H(µ)

which is why this variant is then denoted as CQL(H). We can then further simplify
equation 2.5:

min
Q

αEs∼D

(
log
∑
a

exp(Q(s, a))− Ea∼πβ(a|s) [Q(s, a)]

)
+ ε(D, Qk) (2.6)

The first term marked in red has to be estimated via importance sampling. The au-
thors propose another variant called CQL(ρ), where ρ (a|s) = πk−1 (a|s). This vari-
ant does not require sampling. The authors find that while CQL(H) outperforms
CQL(ρ) in most experiments, CQL(ρ) can perform better in higher-dimensional
action spaces such as in the Adroit tasks [6] utilizing a 24-DoF robotic hand,
where it is difficult to estimate log

∑
a exp using importance sampling due to high

variance.
In this thesis, we only consider the variant CQL(H) as our action space is only

11-dimensional and this variant was also used in the experiments we consider for
comparison [11].
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3. Related Work

In the following, we summarize recent literature on the different aspects considered
in this work.

3.1. Considerations for learning from human
demonstrations

Algorithms utilizing demonstrations are commonly evaluated on machine-generated
data as such demonstrations are often easy to obtain in a lab setting. However, a
real-world application of such algorithms will likely involve human demonstrations,
especially in application domains like humanoid robotics. Recent works have indi-
cated that machine-generated demonstrations are not a good substitute for human
ones.

In their study [11], Mandlekar et al. explore the challenges when learning from
human demonstrations in the context of robot manipulation. They consider tasks
of different complexity for a robot with a gripper as end-effector and collect both
human and machine-generated demonstrations. Their evaluation examines imita-
tion learning and offline reinforcement learning algorithms, and we leverage their
open sourced framework, robomimic, for this work. Among other lessons, they
find that state-of-the-art offline RL algorithms CQL [16] and BCQ [18] strug-
gle to learn from human demonstrations and show much better performance on
machine-generated data. On the other hand, imitation learning methods that
include history-dependent models like RNNs are more successful. While machine-
generated datasets are Markovian by design, human actions might depend on
more than the current observation alone. The authors hypothesize that in this
non-Markovian setting, history-dependent models are better suited to capture the
decision process.

In a similarly extensive study, Orsini et al. [19] investigate the impact of design
choices specifically in the adversarial imitation learning (AIL) setting. AIL takes
inspiration from Generative Adversarial Networks (GANs) and Inverse RL and
trains a policy to generate trajectories that are indistinguishable from the teacher
demonstration. Interestingly, they also find performance differences between hu-

15



3. Related Work

man and machine-generated demonstration, and note that the impact of different
design decisions differs between data sources. In their experiments, learning from
human demonstrations shows an increased need for regularization and benefits
from a reward function that minimizes the Jensen-Shannon divergence instead of
the KL divergence. The KL divergence penalizes the policy more for visiting states
the teacher has not visited than for not visiting states the teacher has visited. On
the other hand, the Jensen-Shannon divergence is symmetric and bounded, which
the authors hypothesize fits the human data better as it might not be possible to
exactly replicate the demonstrations due to circumstantial factors. That said, the
objective in AIL is inherently different from the objective of offline RL which is
considered in this work, as AIL aims to match the policy behaviour to the demon-
strated behaviour, whereas offline RL tries to improve on it. The specific findings
of Orsini et al. are thus likely not transferable to the offline RL setting, but show
that investigating algorithmic choices for learning from different data sources is of
paramount importance.

3.2. Human demonstrations for dexterous
manipulation

Rajeswaran et al. [6] propose a suite of manipulation tasks which comprises com-
plex dexterous manipulation tasks such as in-hand rotation of a pen, opening
a door, moving a ball to a target position and hammering a nail into a board.
The action space is much higher-dimensional than in our work, as they consider
a 24-DoF robotic hand whereas we utilize coupled finger control resulting in an
11-dimensional action space. They collect a dataset of 25 successful human demon-
strations leveraging an updated version of the MuJoCo HAPTIX [20] framework
described below. Their tasks and datasets have become part of the D4RL [21]
benchmark under the name Adroit. Furthermore, they propose and evaluate Demo
Augmented Policy Gradient (DAPG), an online RL method based on Natural Pol-
icy Gradient (NPG) [22]. First, they train a BC policy from the demonstrations
and use it to initialize RL training. In contrast to previous works that bootstrap
RL with demonstrations, they further add a BC loss to NPG’s gradient which is
weighted according to a heuristic weighting scheme. This motivates the policy to
stay close to the demonstrated behaviour, especially during the beginning of train-
ing. Their method significantly outperforms all baselines, especially when using
sparse task completion rewards. Moreover, it shows a higher robustness to varia-
tions in the mass and size of the considered object, suggesting that the strategies
learned from human behaviour have better generalization capabilities. DAPG has
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also been successfully applied to dexterous manipulation tasks in the real world
using kinaesthetic teaching [23].

The Adroit dataset has been further investigated by Nair et al. [24] who propose
their algorithm Advantage Weighted Actor Critic (AWAC). AWAC is designed to
leverage prior datasets from diverse sources, such as data for the task at hand,
suboptimal data, or data from related tasks, and improve policies pre-trained on
these datasets: They employ off-policy temporal difference (TD) learning but use a
supervised learning style update for the actor. The actor is implicitly constrained
to mitigate distribution shift. For evaluation on the Adroit dataset, they combine
the human demonstrations with samples from a BC policy to increase the number
of available samples. In this setting, AWAC fine-tunes faster than DAPG and
outperforms all baselines.

A more recent approach to offline RL are so-called one-step methods [25, 26].
These methods avoid the distribution shift challenge by performing only a single
step of policy evaluation, i.e. critic update, followed by a single step of policy
improvement, i.e. updating the actor. In this way, the critic is never queried on
out-of-distribution actions. These methods show slightly higher success on the
Adroit dataset than the considered baseline.

Mandikal and Grauman [27] take a different approach to human demonstra-
tions. Instead of recording trajectories, they leverage a large dataset of video
frames from how-to videos on YouTube showing human interactions with differ-
ent objects. First, they use a state-of-the-art computer vision method to extract
human hand poses from the frames and apply inverse kinematics to transfer the
pose to their 30-DoF simulated robot hand. They then augment a grasp success
reward function with a term accounting for affordance regions predicted from an
image-based model and a term encouraging the agent to match the pose extracted
from the video data. After training with deep online RL in simulation, they find
that their model outperforms DAPG, purely affordance based models and other
baselines with respect to success, stability and functionality of the grasp.

3.3. Dexterous Teleoperation
We can separate related work in hand teleoperation into roughly three categories
based on how finger movements are tracked: motion capture, vision-based and
glove-based.

In the field of motion capture, a human operator wears motion capture markers
on the fingers which are tracked by an array of cameras. The labelling of those
markers proves a challenge as the fingers they are attached to are self-similar and
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movements can easily lead to occlusion. Han et al. [28] are very successful in
solving this problem by using convolutional neural networks to process the camera
images, resulting in a precise and reliable tracking framework that can successfully
be used for teleoperation. However, many cameras are required for motion capture
approaches, making them expensive and essentially restricting them to lab setups.

Hence, more recent work has mostly focused on vision-based teleoperation, us-
ing fewer cameras and no motion capture markers. Handa et al. [29] propose
their teleoperation framework DexPilot which consists of a human pilot arena di-
rectly adjacent to a robot system. The operator can directly observe the operating
space of the robot, and their hand movements are tracked by four depth cameras
positioned around the pilot space. Deep neural networks are pre-trained in this
setup to process the camera images and estimate the current hand state to im-
prove tracking provided by DART [30], a model-based tracker. Online kinematic
retargeting is applied to the tracked motion to be suitable to the robot hand. The
system enables the operator to successfully carry out a range of tasks like inserting
cups and extracting money from a wallet. Qin, Su, and Wang [31] further reduce
the number of cameras required to a single one, specifically an iPad video stream.
First, they construct a customized simulated hand for each individual operator.
This makes costly online retargeting obsolete, as the operator’s movements can
be directly mapped to movements in the simulated environment. Afterwards, the
collected trajectories are processed and converted to trajectories for different ex-
isting robot hands, allowing for reusable trajectories while saving resources during
recording. The authors then train DAPG [6] on their converted trajectories and
show good results. While these approaches have a much lower cost compared to
motion tracking, they are less capable when dealing with occlusion and require
careful pre-training or tuning. Moreover, using fewer cameras limits the tracking
area and thus the available workspace.

Glove-based approaches forgo cameras and instead track the finger movement
using gloves equipped with sensors that the operator wears, like the SenseGlove we
utilize in this work. This allows for precise real-time movement tracking without
the need of post-processing for state estimation. Moreover, the setup is flexible
and easy to reproduce. On the downside, the gloves come with more bulk attached
to the user, like the glove itself, add-ons like buzzers, and cables. Kumar et al. [20]
propose MuJoCo HAPTIX, a framework based on the simulation engine MuJoCo.
The operator is equipped with a CyberGlove [32] to track wrist and finger move-
ments, a 3D-printed wristband for tracking the hand base using infrared motion
capture and motion capture markers on glasses to track the head movements. The
tracked hand movements are applied to a hand in simulation, and the simulation is
shown to the operator using stereoscopic visualization. Rather than an immersive
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first-person view like in our system, this creates the impression of looking through
a window. The authors evaluate the usability of their system using tasks from the
Southampton Hand Assessment Procedure [33], a clinically validated test of hand
function developed to test the functionality of hand prostheses. They find that
users are able to successfully complete the selected tests in a reasonable amount
of time using their framework. Rajeswaran et al. [6] used an updated version of
the MuJoCo HAPTIX framework to record the demonstrations for their dexterous
manipulation dataset Adroit, substituting the motion capture markers with a VR
headset and a Vive tracker. Our framework is similar to this updated version in
terms of the utilized hardware, but we explicitly focus on creating an immersive
experience, with a first-person view that exactly matches the operator’s view angle
and haptic feedback mimicking forces of contact.
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Framework

To collect human demonstrations for dexterous manipulation tasks from gym-
grasp, we developed an immersive teleoperation framework. In contrast to recent
works in dexterous teleoperation, which largely propose vision-based approaches
(see section 3.3), we opt for a combination of Virtual Reality (VR) and glove-
based teleoperation. This allows us to incorporate intuitive haptic feedback, and
the reliability of VR tracking provides the operator with a large workspace. The
human operator is equipped with a Vive VR headset, a SenseGlove to track fin-
ger movements and provide haptic feedback, and a Vive Tracker to determine the
wrist pose. In the headset, the operator sees an immersive view of the IsaacGym
environment defined by a gym-grasp task where they can move their head and
look around. The reference pose for the head is positioned such that the distance
to the robot hand is realistic, as if it were the operator’s own hand. We employ a
clutch-like mechanism where the operator is able to freely move their hand with-
out controlling the simulated robot hand until pressing a key combination. This
allows the operator to position their hand in a way that feels compliant with the
simulation. When the keys are pressed, the current pose is stored as the reference
pose. From then, the movements of the operator’s hand are translated into con-
trol of the robot hand, and they remain locked until the end of the episode. The
starting pose of the robot hand is set to a random position for each episode, which
makes it necessary to reset the reference pose after each demonstration. Otherwise,
pose tracking would be shortly interrupted during loading of the new episode, and
subsequent pose errors would accumulate over multiple demonstrations.

During the episode, we collect the observations, reward and done signals pro-
vided by the simulation, as well as the operator’s actions. At the end of each
episode, the data is written to an HDF5 file in a structure compatible with the
robomimic framework [11] which we use for training.
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Figure 4.1: Teleoperation framework.

4.1. System Overview
The logical components and the corresponding hardware components are shown in
figure 4.1. All logical components communicate via the ROS framework [34] with
a frequency of around 90 messages per second.

To enable the operator to view the simulation for gym-grasp tasks, we add
two dedicated cameras into the simulation that act as the operator’s eyes. The
pose of these cameras is updated by applying the tracked headset pose which is
transmitted with a frequency of 100 Hz. Concurrently, the sensor information from
the SenseGlove and Vive Tracker is combined into a hand state consisting of the
6-dimensional wrist pose, the normalized flexion for thumb, index, middle and ring
finger, as well as the rotation of the thumb. This information is used as relative
action input with coupled finger control for the simulation. The haptic feedback
is calculated from the resulting contact forces of carrying out the simulation. The
IsaacGym simulation steps at a frame rate of 90 Hz, transmitting the current view
from both cameras to the VR application and the haptic feedback commands to
the SenseGlove at each step. 90 Hz is the recommended minimum frequency for
VR applications [35, 36], but we may want to select actions at a lower frequency.
This both reduces the task length, avoiding otherwise long-horizon tasks and thus
speeding up learning, and increases comparability with other robot simulation
frameworks like Gym [37], which uses a frame rate of 25 in most environments.
We therefore decouple the control frequency of the Markov decision process from
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the camera and feedback frequency by repeating an action c times, resulting in
a control frequency of 90

c
. In practice, we found a control frequency of 30 Hz to

be sufficient for intuitive and accurate control. The VR application is built in the
OpenVR framework [38] and updates the displayed frame every time a new image
message comes in.

Hardware Details In our setup, the IsaacGym simulation ran on a single ma-
chine with an AMD Ryzen 9 5950X CPU and an NVIDIA RTX A6000 GPU. The
operator is equipped with a Vive Pro Headset, a Vive Tracker and SenseGlove
DK1.

4.2. Haptic Feedback
Humans rely heavily on tactile perception when manipulating objects, and hap-
tic feedback has been shown to significantly increase the sense of embodiment
VR users experience [39]. Hence, in our framework, we harness the feedback ca-
pabilities provided by SenseGlove to provide similar feedback to the operator.1
The rigid-body contact forces of the fingertips are decomposed into the absolute
force Fabs and a directional component Feff acting against closing a finger. Feff

is mapped to the SenseGlove’s braking system, increasing the resistance against
moving the finger further and mimicking the sensation of holding an object. Ad-
ditionally, we activate the SenseGlove’s vibration feedback for sudden increases in
contact force, e.g. collisions, by mapping the feedback to Fabs −MA(Fabs), where
MA is a moving average low-pass filter smoothing the absolute force. In our
experiments, we find that enabling haptic feedback helps operators to recognize
moments of contact and results in more confident and faster object manipulation.

4.3. Optimization
We thoroughly investigated the timing impact of the processing steps of the camera
images to maximize resolution of the VR view while consistently achieving the
recommended frame rate of 90 Hz. The camera images have to first be retrieved,
then flipped to transfer the origin to the lower left corner as expected by the VR
application and finally converted to a byte stream before being handed over to the
ROS messaging system. IsaacGym provides direct GPU access to camera images,
and utilizing this option significantly speeds up the process as shown in figure 4.2.

1The haptic feedback capabilities described here were implemented by Malte Mosbach as part
of our submission to the Humanoids 2022 conference [14].
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Figure 4.2: Median time measured for image processing steps carried out using either
CPU or GPU access.

The maximum possible resolution will vary depending on the hardware and vi-
sual complexity of the task. At a fixed resolution, we can observe that the image
processing is fast at the start of the simulation, resulting in a high frame rate. How-
ever, the frame rate significantly drops once the operator starts moving around
and manipulating objects in the simulation. To consistently achieve 90 FPS, we
have limited the resolution to 900 × 1000 pixels per eye, which corresponds to
62.5% of the resolution available on the Vive Pro headset. Reducing the frame
rate to achieve higher resolution results in a perceivable delay between the opera-
tor’s movements in the real world and the simulation view, which directly hinders
performance.
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Reinforcement Learning

We investigate different possibilities for augmenting an offline RL algorithm with
history awareness. The simplest way of introducing time dependency into the
learning process is by adding relevant observations. Moreover, we explore two
variants of offline RL, an extended state variant and a recurrent variant, which
incorporate history awareness on an architectural level. In this chapter, we detail
all three variants and showcase their implementation on top of CQL.

5.1. History-aware observations
In most experiments, observations only comprise the current hand pose, the five
degrees of freedom for the fingers (see figure 2.1), as well as object observations.
However, we also consider incorporating history-aware observations. For our gym-
grasp demonstration datasets, we collect different types of observations which can
be specifically enabled for learning. We consider velocity information, which com-
prises 17-dimensional joint velocities and, in the LiftObject task, the linear and
angular velocities of the object. Another possibility to add history-aware observa-
tions is by including the 11-dimensional previous action.

These types of observations are easy to add in the simulation setting, but might
be difficult to obtain in more noisy, real-world surroundings.

5.2. Extended State Variant
For the Extended State variant, short EXT, we form a history-aware state input
by concatenating the current observation with the last t − 1 observations. To
augment robomimic’s CQL implementation, we sample sequences of (s, a, r, d) of
length t and adjust the encoder networks to expect observations of shape (t, o),
where o is the size of one observation. The input to the agent is composed of the
sequence of state observations, (s)1:t, and the last action, reward and done signal
of the sequence, (at, rt, dt).
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This design leads to a discrepancy between the data seen during training and
testing: At the beginning of a test episode, there are no past observations available,
but the trained networks cannot be queried with less than t observations. We can
either repeat the first observation t times, or wait t time steps. In our specific
case, i.e. the simulated tasks described earlier, the result is the same for both
methods as the environment does not change while the agent does not act, hence
the observations are the same. This might be different in a real-world environment,
where the surroundings change even when the agent does not act. Regardless, the
resulting combined first state has possibly not been seen during training. This
initial state distribution shift is not investigated further in this work as our focus
lies on examining the effect of different aspects of history-awareness.

5.3. Recurrent Variant

For the recurrent variant, we augment the model architecture with a recurrent
neural network (RNN) and consider input sequences (s, a, r, d)t of length t. Our
design is based on the architecture explored by Ni, Eysenbach, and Salakhutdinov
[40] in their study of RNNs for online reinforcement learning in different types
of partially observable MDPs (POMDPs). They show that a carefully designed
and tuned recurrent model-free RL algorithm can perform as well as, and in fact
sometimes better than, algorithms specifically designed for the type of POMDP
at hand. On the basis of their extensive ablation study, they derive lessons for
augmenting RL with recurrent architectures which we take into consideration in
our own design, such as implementing separate RNNs for the actor and critic.
They note that for RNNs, the chosen context length has major influence on the
performance but is task-specific and thus requires additional tuning.

Robomimic’s CQL implementation is based on Soft Actor Critic (SAC) [41],
which fits well with the findings in [40] where the authors note that off-policy
algorithms perform better when recurrent components are introduced. They also
note that SAC led to better performance in environments with harder dynamics,
whereas in environments with simpler dynamics, TD3 seemed to be a better choice.

SAC maintains separate networks for an actor and an ensemble of critics. Figure
5.1 shows the two options we implemented for adding RNNs to the ensemble of
critics: The critics can either share one RNN or maintain one RNN each. While
sharing the RNN saves memory, it makes coupling the critic’s losses necessary.
The actor can also be configured to be recurrent, which results in the architecture
shown in figure 5.2. However, previous work [40] has indicated that a non-recurrent
actor can lead to better performance. We evaluate the effect of these design choices
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Figure 5.1: Recurrent critics architectures. Components of standard CQL are depicted
in grey, added components in blue.
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Figure 5.2: Optionally recurrent actor. Components of standard CQL are depicted in
grey, added components in blue.

during hyperparameter scanning in chapter 6.
Of all three variants, CQL-RNN has the highest demand for resources and run-

time due to the extended network architecture.
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6.1. Dexterous Teleoperation Framework
In this section, we first validate the system with respect to its purpose, i.e. col-
lecting demonstrations for learning. Then, we evaluate its usability.

6.1.1. Validation
To validate the teleoperation system, we posed two questions:

1. Can we successfully collect demonstrations in a reasonable amount of time?

2. Can we learn from the collected demonstrations?

In the following, we describe our experiments to address these questions.

Can we successfully collect demonstrations in a reasonable amount of time?

We collected 20 demonstrations with an experienced user for the tasks OpenDrawer
and PourCup. Each demonstration was subject to a task-specific time limit and
considered successful if the task was solved within said time limit. Moreover, we
measured the overall time required to collect the demonstrations. The results are
reported in table 6.1.

For both tasks, the 20 demonstrations are recorded within a few minutes. A
dataset large enough for training, e.g. consisting of 200 demonstrations, can thus
be recorded in a reasonable time frame of 15 to 30 minutes. The discrepancy
between the mean length of a demonstration and the overall time stems from
the environment reset and subsequent reset of the clutch mechanism after each
demonstration.

Table 6.1: Success and timing analysis of demonstration collection.

Task Time limit Success rate Overall time Mean length
of demonstration

OpenDrawer 4s 100% 70s 1.5s
PourCup 10s 85% 180s 6s
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Table 6.2: Success Rates of behaviour cloning averaged over three seeds. For all
configurations we report the mean and standard deviation of at least
three runs with 100 test episodes per run.

Method OpenDrawer OpenDoor PourCup LiftObject

BC 1.0± 0.0 0.96± 0.02 0.76± 0.23 0.27± 0.03

Table 6.3: Success rates and completion times for the tasks performed in the user
study.
Haptic
feedback

Task Success rate Completion time [s]
Mean StdDev

3

Stack cubes 0.83 35.17 9.98
Open door 1.0 6.47 1.82

Pour cup 1.0 13.86 3.46

7

Stack cubes 1.0 43.26 22.13
Open door 1.0 9.37 5.26

Pour cup 1.0 15.63 3.56

Can we learn from the collected demonstrations?

We collected datasets of 200 demonstrations for all four gym-grasp tasks and split
them into 90% training data and 10% validation data. We leveraged robomimic’s
learning framework to train behaviour cloning policies over 1000 epochs, where
each epoch consisted of 100 training and 10 validation steps. For testing, we chose
the trained model with the lowest validation loss to avoid policies affected by
overfitting, and ran 100 test episodes for each of the models. The achieved success
rates are reported in table 6.2.

BC is able to learn highly successful and robust policies for OpenDrawer and
OpenDoor. For PourCup, the standard deviation is much higher, probably due to
the increased complexity of the motions required to solve the task. LiftObject is
the only task considered where random initialization is applied, and BC seemingly
struggles to generalize from the provided demonstrations: In rollouts, the end
effector sometimes makes grasping motions in the wrong spot or performs no action
at all. Overall, we can infer that it is possible to learn meaningful policies from
our recorded demonstrations.
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Was it easy to control the robot?

Was it intuitive to control the arm?

Was it intuitive to control the fingers?

Was it easy to grasp an object?

Did you feel like you were
handling the objects directly?

Was it easy to stack 2 cubes?

Were you able to detect
the moments of contact?

With HF
Without HF

better

Figure 6.1: Statistical results of the user questionnaire. The median, lower and upper
quartile (including interquartile range), lower and upper fence, outliers (marked with
•), and average value (marked with ×) are displayed for each item captured in our
questionnaire. Figure from [14].

6.1.2. Usability

We conducted a small user study to evaluate both the general user experience
and the specific influence of haptic feedback. The six participants had no prior
experience with the framework and were asked to perform three tasks from gym-
grasp: Stacking three cubes, opening a door and pouring particles from a cup into
a bowl. After that, they were given a short questionnaire to rate their experience
with seven-level Likert items. This process was completed once with and once
without haptic feedback, and the order of these two trials was randomized.

Table 6.3 shows the completion time and success rates observed, and the high
success rates indicate that our VR system can be effectively used even without
prior experience. Across all tasks, there was only one failure when one of the
cubes fell off the table. The stacking task also has a high standard deviation as
the tower of cubes is easily knocked over, requiring the user to start again. On
average, completion time was lower when haptic feedback was enabled.

Figure 6.1 summarizes the results of the questionnaire. Intuitive control was
generally rated highly, and haptic feedback seems to have a positive impact on
the ability to grasp an object and the impression of direct interaction. Most
notably, haptic feedback significantly improved the ability to detect moments of
contact. Recognizing those moments increases confidence in the pose of the hand in
simulation and can be helpful to discern different phases of motion such as moving
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towards a cube, grasping it and releasing it. We hypothesize that this aspect was
a main contributor to the overall lower completion times observed when haptic
feedback was enabled.

6.2. History-aware Offline Reinforcement Learning

We evaluated our history-aware variants of CQL against standard CQL with the
aim of answering the following questions:

Q1: Does CQL benefit from history-awareness when learning from human
demonstrations? Mandlekar et al. [11] observe that algorithms with history-
aware components performed better on human datasets than those without, and
hypothesize that adding such components to an offline RL algorithm such as CQL
might improve their performance on such datasets. In our experiments, we look
at a total of nine tasks with different levels of complexity and required precision,
both from gym-grasp with an anthropomorphic end-effector and robomimic with
a simple gripper end-effector.

Q2: How do different history-aware variants of CQL compare? As we have
explored in chapter 5, there are multiple ways to provide an algorithm with infor-
mation about recent history, each with different practical benefits and drawbacks.
When it comes to considerations such as availability of observations and resources,
we need to be able to estimate the advantage of adding specific types of history-
awareness. We thoroughly investigate the effect of our three methods on human
gym-grasp datasets.

Q3: What are the implications for learning from machine-generated demon-
strations? Machine-generated demonstrations are recorded by a successful policy
and are inherently Markovian, meaning that the state at each time step holds all
information needed to select the correct action. Augmenting the state by extending
it over multiple time steps or introducing a recurrent hidden state should therefore
show little effect on this type of data. We evaluate standard CQL and the two
variants CQL-EXT and CQL-RNN on machine-generated gym-grasp datasets.

In the following, we describe our procedure from collecting the required datasets
to hyperparameter scanning and running experiments to answer the aforemen-
tioned questions.
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Table 6.4: Average trajectory length of demonstrations for gym-grasp tasks.
Dataset Type OpenDrawer OpenDoor PourCup LiftObject

machine-generated 11± 1 73± 62 35± 50 19± 0
human 47± 17 73± 15 102± 22 91± 32

6.2.1. Dataset Collection
For our experiments with robosuite tasks, we used the proficient-human (PH)
datasets provided by robomimic. They consist of 200 demonstrations collected
from an experienced teleoperator through RoboTurk [42].

For tasks from the gym-grasp framework, we collected both human and machine-
generated demonstrations. Table 6.4 shows the average trajectory length of the
collected demonstrations.

Machine-Generated We trained RL agents on all four tasks using dense rewards
and Proximal Policy Optimization (PPO) for 1000 epochs, where each epoch con-
sists of 32 steps in 16384 parallel environment instances. Then, we played 200
episodes of the trained model and recorded them as demonstrations. All collected
demonstrations were successful.

Human For each task, we collected 200 demonstrations with an experienced user
in our VR teleoperation framework. Only successful episodes were recorded.

6.2.2. Hyperparameter Scanning
We carried out extensive hyperparameter scanning for all variants of CQL on both
gym-grasp and robomimic datasets using Weights and Biases [43]. The results can
be viewed online1.

For gym-grasp tasks, we used the OpenDoor datasets to select hyperparame-
ters separately for machine-generated and human data. We first determined a
set of hyperparameters for standard CQL, consulting the hyperparameter choices
reported by Mandlekar et al. [11] as a starting point. The most surprising finding
was the effect of normalizing observations. Figure 6.2a shows that in our experi-
ments, normalizing observations more than doubled the achieved success rate. For
the EXT variant, we then only scanned the sequence length and network sizes.
Our hyperparameter scans for the RNN variant were more extensive, considering
the architecture and size of the added networks. However, we could not observe

1https://wandb.ai/moraw/thesis-human-OpenDoor/reportlist
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Figure 6.2: Results from hyperparameter scanning. We report the mean smoothed suc-
cess rate across three seeds on the task OpenDoor. The shaded area corresponds to the
smoothed minimum and maximum success rate.

improvements across different configurations, hence opting for the simplest and
most resource-saving variant with a non-recurrent actor and recurrent critics with
one shared RNN. The resulting sets of hyperparameters were used for all other
gym-grasp datasets from the same source, as each run took about 1.5 hours and
scanning more tasks would have been infeasible.

For robomimic tasks, we adopted the same hyperparameters as reported by
Mandlekar et al. [11] and scanned only the hyperparameters added by our variants
of CQL on the Can task. Again, we could not discern gains from different RNN
architectures and decided to use the same hyperparameters as for the gym-grasp
tasks.

As Ni, Eysenbach, and Salakhutdinov [40] indicate that the appropriate sequence
length can be highly task-specific, we carried out additional short sweeps of only
200 epochs on a single seed regarding the sequence length for the EXT variant on
all tasks. In our case, the most appropriate sequence length varied not between
tasks, but task suites, as robomimic tasks performed better with a sequence length
of 4, whereas gym-grasp tasks benefitted from a sequence length of 2. Figure 6.2b
shows the impact of the sequence length: Even a small change, like from 2 to
4, leads to poorer overall performance. A detailed breakdown of the scanned
hyperparameters and subsequent choices is given in appendix A.
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6.2. History-aware Offline Reinforcement Learning

Table 6.5: Results of CQL variants on human gym-grasp datasets. For all methods,
we report the mean and standard deviation of the maximum success
rates averaged over three seeds.

Method OpenDrawer OpenDoor PourCup LiftObject

CQL 1.00± 0.00 0.95± 0.07 0.77± 0.02 0.60± 0.15
CQL-EXT 1.00± 0.00 0.90± 0.00 0.60± 0.07 0.67± 0.06
CQL-RNN 0.00± 0.00 0.00± 0.00 0.02± 0.02 0.00± 0.00

Table 6.6: Results of additional observation types on human gym-grasp datasets.
For all observation types, we report the mean and standard deviation
of the maximum success rates averaged over three seeds.

Added observations OpenDrawer OpenDoor PourCup LiftObject

velocity 0.68± 0.17 0.70± 0.27 0.02± 0.02 0.20± 0.11
previous actions 0.43± 0.22 0.45± 0.04 0.03± 0.05 0.17± 0.02

velocity, previous actions 0.43± 0.33 0.48± 0.14 0.00± 0.00 0.05± 0.04

finger contacts 1.00± 0.00 0.90± 0.08 0.67± 0.09 0.48± 0.06
fingertip positions 1.00± 0.00 1.00± 0.00 0.93± 0.05 0.73± 0.06

6.2.3. Experimental Results

We carried out comprehensive experiments and evaluated them with respect to
the achieved maximum success rate averaged across three seeds. Tables 6.5 to 6.8
show the results which we discuss with respect to the questions posed above.

Q1 Tables 6.5 and 6.8 show that using an extended state significantly aids per-
formance in complex tasks that require high precision, such as LiftObject and
Square. However, we also note that it seems to hinder performance in tasks like
OpenDoor and PourCup that are subject to less randomization. Augmenting the
CQL critics with an RNN is substantially harmful to performance. Table 6.6
shows that including history-aware observations such as velocity information and
previous actions has a detrimental effect on performance. This is particularly
surprising considering that we utilize a sequence length of 2 for gym-grasp tasks,
meaning that the extended state considered in CQL-EXT contains implicit veloc-
ity information. For the LiftObject task specifically, adding velocity observation
causes the performance to drop by two thirds when compared to standard CQL.
The extended state, on the other hand, proves a substantial benefit in learning
this task. The same phenomenon can be observed for previous actions: These
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Table 6.7: Results of CQL variants on machine-generated gym-grasp datasets. For
all methods, we report the mean and standard deviation of the maxi-
mum success rates averaged over three seeds.

Method OpenDrawer OpenDoor PourCup LiftObject

CQL 0.75± 0.04 0.57± 0.08 0.90± 0.00 0.00± 0.00
CQL-EXT 0.45± 0.11 0.53± 0.08 0.62± 0.05 0.00± 0.00
CQL-RNN 0.05± 0.04 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 6.8: Results of CQL variants on robomimic PH datasets. For all methods,
we report the mean and standard deviation of the maximum success
rates averaged over three seeds. For comparison, we also include the
results of BC-RNN reported by Mandlekar et al. [11].

Method Lift Can Square Transport Tool-Hang

CQL [11] 0.93± 0.05 0.38± 0.08 0.05± 0.03 0.00± 0.00 0.00± 0.00
CQL-EXT 1.00± 0.00 0.38± 0.05 0.22± 0.08 0.00± 0.00 0.00± 0.00
CQL-RNN 0.15± 0.04 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

BC-RNN [11] 1.00± 0.00 1.00± 0.00 0.84± 0.00 0.71± 0.07 0.19± 0.05

can also be inferred from the two consecutive states available in CQL-EXT, but
only show a harmful effect on performance when made available as explicit inputs.
Neither the EXT variant nor the RNN variant manage to improve performance
in the long-horizon multi-stage tasks Transport and Tool-Hang from robomimic.
As Transport and Tool-Hang require a much slower pace in action than the other
tasks, we hypothesize that the EXT variant might be able to achieve better results
for longer sequences in later epochs than we considered during sweeping of the se-
quence length. Both variants are also far from reaching the performance reported
by Mandlekar et al. for BC-RNN on their tasks.

Q2 We note that neither of our three approaches to history-aware CQL enable
consistently improved performance. CQL-RNN and history-aware observations
prove significantly harmful across all considered tasks. CQL-EXT is able to boost
performance in complex tasks. However, if one were to consider employing CQL-
EXT in such a difficult, possibly long-horizon task, successfully tuning the se-
quence length would likely require more than the 200 epochs we employed here,
further adding to the increased effort in time and computation that comes with
this variant.
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Figure 6.3: Human datasets for gym-grasp tasks.

Q3 Table 6.7 shows that our history-aware variants of CQL do not improve per-
formance for machine-generated demonstrations but instead harm performance.
This is expected, as the demonstrated behaviour is Markovian and a single state
already contains all information the behaviour policy used to decide on an ac-
tion. Adding more information in this case occludes the true state the demon-
strator was using. Moreover, no variant of CQL is able to learn from machine-
generated demonstrations of LiftObject, which we attribute to the comparatively
small dataset available considering the complexity of the task.

Additional findings We also explored the effect of adding other types of observa-
tions such as fingertip position and fingertip contact forces. Surprisingly, fingertip
position observations boosted performance for all tasks and achieved the highest
success rates across all gym-grasp experiments, as shown in table 6.6. The fin-
gertip position can in principle be inferred from the standard observations, as the
degrees of freedom of the hand and the wrist pose are included. Nevertheless,
providing them as explicit inputs to the learning agent seems beneficial. Over-
all, we find that CQL is highly sensitive not only to hyperparameter choices such
as learning rates, but also to different tasks and input types. Figure 6.3 shows
how performance usually drops after 50 to 200 epochs, suggesting that the model
quickly overfits. However, we can observe that some configurations can recover
from this effect while others are unable to achieve any success in later epochs. In
the PourCup task, no configuration is able to maintain good success rates.

37





7. Conclusion

Offline RL methods are a promising technique to effectively learn robust policies
from large, diverse datasets. Particularly in the field of dexterous manipulation,
where we deal with a vast amount of tasks and a high-dimensional state-action
space, the ability to learn from suboptimal data or demonstrations from other
tasks would drastically increase the efficiency of the learning process.

In this work, we presented an immersive VR teleoperation system designed to
enable intuitive and efficient collection of demonstrations for tasks from the gym-
grasp [12] suite. Our setup uses only few hardware components and runs at a
high frame rate, allowing for seamless interaction with objects in simulation. The
incorporation of haptic feedback further decreases the time a human operator
requires to solve a task, hence enabling faster data collection.

Prior work [11] has indicated that offline RL algorithms perform better on
machine-generated data than on human data, and suggested that history-aware
components might aid performance on potentially non-Markovian data sources
such as human demonstrations. We proposed and investigated three ways of in-
cluding history-awareness in state-of-the-art offline RL algorithm CQL [16]: incor-
porating history-aware observations, concatenating multiple subsequent states into
one (CQL-EXT), and incorporating recurrent neural networks into the architecture
(CQL-RNN). Overall, we find that CQL is highly sensitive to both hyperparame-
ter changes and input changes, which makes it challenging to effectively evaluate a
large set of tasks such as the one we study here. Our variants struggle to improve
performance in the tasks considered, more often hindering success than boosting
it. The most promising of our variants is CQL-EXT, which improves performance
in complex tasks with high precision demands. For future work, it would be in-
teresting to investigate whether an extended state as in CQL-EXT can lead to
similar improvements when applied to other offline RL algorithms.

In the broader picture, developing effective and robust offline RL algorithms will
enable turning large and diverse datasets into generalizable policies. As discussed
earlier, these algorithms are in principle capable of learning optimal behaviour
policies from datasets containing suboptimal and unlabelled (i.e. zero-reward)
data. The demands on the demonstrations are thus much lower than in imitation
learning, where we usually require a teacher demonstrating optimal behaviour,
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facilitating the collection of large datasets.
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A. Hyperparameter Scans

Each run carried out during hyperparameter scanning consisted of 1000 epochs,
and we collected 20 rollouts of the current policy every 50 epochs. Hyperparameter
choices were judged by the success rates achieved during rollouts. For standard
CQL on gym-grasp datasets, we scanned the hyperparameters shown in table A.1
on the task OpenDoor. Tables A.2 and A.3 show the scanned hyperparameters
for our history-aware variants of CQL on gym-grasp datasets. For robomimic
datasets, we did not scan the actor and critic network dimensions but kept them
equal to those utilized by Mandlekar et al. [11] for their evaluation of standard
CQL. Tables A.4 and A.5 show the resulting hyperparameter values which are
identical to those used for gym-grasp datasets except for the sequence length.

Table A.1: Scanned hyperparameters for standard CQL on gym-grasp datasets.
Hyperparameter Scanned values Choice

Actor Network Dimensions (256, 256), (512, 512), human: (256, 512, 256),
(256, 512, 256) mg: (256, 256)

Critic Network Dimensions (256, 256), (512, 512), (256, 512, 256),
(256, 512, 256)

Critic Action Samples 1, 2, 4, 10, 30 1
Critic Target Q Gap 1, 5, 10 5

Actor LR Decay Factor 0, 0.1 0.1

Actor Initial LR 1× 10{−5,−4,−3,−2}, 1× 10−4
3× 10{−5,−4,−3,−2}

Critic LR Decay Factor 0, 0.1 0

Critic Initial LR 1× 10{−5,−4,−3,−2}, 3× 10−5
3× 10{−5,−4,−3,−2}

Actor Target τ 5× 10−3, 5× 10−4 5× 10−4

Actor L2 Regularization 0, 0.01, 0.1 0
Critic L2 Regularization 0, 0.01, 0.1 0
Actor Gradient Clipping true, false false
Critic Gradient Clipping true, false false
Normalized Observations true, false true
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Table A.2: Scanned hyperparameters for CQL-EXT on gym-grasp datasets.
Hyperparameter Scanned values Choice

Actor Network Dimensions (256, 256), (512, 512), human: (256, 512, 256),
(256, 512, 256) mg: (256, 256)

Critic Network Dimensions (256, 256), (512, 512), (256, 512, 256),
(256, 512, 256)

Sequence Length 2, 4, 10, 30 2

Table A.3: Scanned hyperparameters for CQL-RNN on gym-grasp datasets.
Hyperparameter Scanned values Choice

Actor Network Dimensions (256, 256), (512, 512), human: (256, 512, 256),
(256, 512, 256) mg: (256, 256)

Critic Network Dimensions (256, 256), (512, 512), (256, 512, 256),
(256, 512, 256)

Sequence Length 2, 4, 10, 30 2
Recurrent Actor true, false false

Critic RNN Dimensions (256, 256), (512, 512), (256, 256),
(256, 256, 256)

Shared Critic RNN true, false true

Table A.4: Scanned hyperparameters for CQL-EXT on robomimic datasets.
Hyperparameter Scanned values Choice

Sequence Length 2, 4, 10, 30 4

Table A.5: Scanned hyperparameters for CQL-RNN on robomimic datasets.
Hyperparameter Scanned values Choice

Sequence Length 2, 4, 10, 30 4
Recurrent Actor true, false false

Critic RNN Dimensions (256, 256), (512, 512), (256, 256),
(256, 256, 256)

Shared Critic RNN true, false true
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