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Abstract

Convolutional Neural Networks (CNNs) are the main building block in state-of-the-
art approaches for numerous computer vision task. They are good at extracting
features on all levels of granularity, but they are bad at understanding the relation
between an image and a spatially transformed version of that same image.

In this thesis, we try to develop methods that have a better understanding of
that exact relation. Rather than using the spatial domain representation, which is
critically deformed by spatial transformations, we make use of the frequency do-
main representation. This representation behaves in a completely different manner
when a spatial transformation is applied, and we investigate whether we can take
advantage of this. For instance, a spatial translation is mainly encoded in the
phase spectrum of the frequency domain representation, so an idea would be to
use the phase spectrum in order to recover the translation parameters.

We limit our investigation to one-dimensional signals and try to extract semantic
information from those signals, i.e. we decompose the signals into a localization,
which tells us where in the signal some interesting pattern occurs, and a normal-
ization, which tells us what kind of interesting pattern occurs. In other words,
the localization is a spatial translation that characterizes the relation between the
signal and the normalized pattern, and finding an estimate of the localization is
equivalent to understanding the relation between the signal and the normalized
pattern.

We suggest numerous solutions for these signal decomposition tasks, ranging
from very simple methods, like multiplying two arrays in the frequency domain, to
more sophisticated methods, such as building and training CNNs that work with
the frequency domain representation. We also combine two of those methods in
an iterative manner, which gives us the possibility to accurately simultaneously
extract both localization and normalization at once, even for two different patterns
at the same time.

In order to evaluate our methods, we construct our own Morse signal dataset.
Since different Morse letters can look very similar to each other, it is not trivial
to decompose Morse signals. We find that methods which combine frequency do-
main computations with CNNs reach high accuracies, showing that the frequency
domain can indeed be used to deal with spatial translations on the input data.
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1 Introduction

1.1 Motivation
Convolutional Neural Networks (CNNs) sit at the core of state-of-the-art ap-
proaches to numerous computer vision tasks such as object detection, image clas-
sification, and semantic segmentation, where their ability to learn features on all
levels of granularity makes them an extremely powerful tool.

Convolutional layers in neural networks maintain a number of small kernels
(also called filters or feature detectors); during inference, these kernels are con-
volved with the input (e.g. an image) to produce a feature map. The feature map
contains information about whether and where the feature encoded by the kernel
is present in the input or not. During learning, the values in the kernels (also
called weights) are usually adjusted using a backpropagation optimization scheme,
enabling the network to learn on its own which exact features are important and
how it wants to represent them in the kernels.

If several of these convolutional layers are connected in series, the features be-
come more complex the further away they are from the original input. Just like
a single convolutional layer locally combines pixel values of an input image to
get rudimentary features, a subsequent convolutional layer can combine these fea-
ture map values to get more sophisticated patterns. Consider, for example, a CNN
that recognizes faces: The features in the first layers would be as simple as straight
edges; in the next layer, the features may be circles or curved lines; further layers
would combine these simple structures to eyes and ears, and the final layer would
have the entire face as feature.

Even though contemporary deep CNNs are far more elaborate than just exe-
cuting many simple convolutional layers one after another, they can still suffer
from one problem rooted within their basic building block, the convolution layer
itself: Missing comprehension of viewpoint changes. If the object in the image
is transformed in an affine manner, e.g. translated, rotated, or scaled, then the
network will not be able to make use of the features it finds in the original image
to find the features in the transformed image.

For instance, using the face recognition example again, we could have a look at
two images of the same face, where the second image is simply a rotated version of

1



1 Introduction

Figure 1.1: Example of facial features. The two images show the same face, only rotated
differently. Accordingly, the facial features are the same in both images, only
rotated differently. A CNN cannot make use of that correlation and treats
the two sets of features as completely independent from each other.

the first one (see Figure 1.1). In the first image, a simple CNN that has never seen
rotated images of faces during training would find mid-level features such as eyes,
the nose, and the mouth, but for the second image, it would not find these features,
because it is unable to see the simplification that the eyes, nose and mouth in the
second image are the same as in the first, only rotated. Instead, an additional
set of feature detectors is required, where each detector corresponds to a rotated
feature. And, of course, the network needs to be trained with additional data
samples, namely rotated faces, to learn the weights for those new kernels. This
is extremely inefficient, because it means that in order to be able to generalize
to unseen examples, the CNN needs a large number of individual kernels: it re-
quires, for each feature, roughly one kernel for each possible rotation of the in fact
semantically same object, and it needs a large training set that contains samples
for each possible rotation. Analogously, introducing other affine transformations
to the input images would increase required network size and training dataset size
even more. Today’s state-of-the-art CNN architectures incorporate methods to
keep the network to a moderate size, but they still need large datasets for effective
training.
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1.2 Approach

1.2 Approach
Spatial deformations change the structure of an input image in a way that makes it
difficult for CNNs to recognise the correlation between the features in the original
image and the features in the deformed image. Therefore, the basic idea we inves-
tigate in this thesis is to transfer the input to another representation before passing
it on to any convolutional layer. Specifically, we apply a Fast Fourier Transform
(FFT) to get the frequency domain representation of the input. In the spatial
domain, information is manifested in a mapping from pixel locations to intensity
or RGB values; contrary to this, the FFT decomposes images into a sum of sinu-
soids, i.e. in the frequency domain, the image is represented as a mapping from
frequency values to the characteristics of those sinusoids within the given image.
This means that unlike in the spatial domain, where the features which CNNs de-
tect are mostly coherent visual structures, in the frequency domain, a CNN could
detect abstract patterns in the interaction of sinusoids of neighbouring frequen-
cies. We hope to exploit this difference, premising that spatial deformations do
not alter frequency domain features as critically as they do alter spatial domain
features. However, our goal is not to simply insert a preprocessing step, which
applies the FFT, into an existing state-of-the-art CNN architecture. Rather, we
want to find methods that make use of the specific characteristics of the frequency
domain representation, and combine them with more simplistic CNNs.

1.3 Problem Statement
In order to work out whether this approach is feasible at all, we simplify the prob-
lem by considering one-dimensional signals instead of two-dimensional images.
Since any one-dimensional array can be interpreted as an image with height (or,
alternatively, width) equal to one, this simplification does not disqualify our meth-
ods from being generalized to images with height (or width, respectively) greater
than one. However, this simplification does restrict the number of spatial deforma-
tions we can choose from; for example, rotations do not exist for one-dimensional
signals. In this thesis, we will focus on one specific transformation which is equally
important for both 1D and 2D: the translation.

At this point, it is important to note that it is often said that CNNs are, in fact,
already invariant to translations in the input. And indeed, if an object is shifted
by an integer amount of pixels within an image, then the CNN’s feature detectors
will find the same features in both the orignal image and the image containing the
shifted object, only at the shifted locations. So, in this case, the translation com-
mutes with the convolutions (this property of convolutions is also called translation
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equivariance). Most CNNs then use pooling layers which subsample the feature
maps by combining (e.g. take the maximum, or the average) small regions (usually
of size 2×2) to a single output value (effectively halving the size of the feature map
in the 2 × 2-case). This aims at making the exact location of the feature within
that (2× 2-)region irrelevant, and the main information that is forwarded by the
pooling layer is that somewhere inside that small region, the feature was found.
If the initial shift was small enough, then the ouput feature map is approximately
the same for both the original image and the translated input image. Due to the
cascading effect of many consecutive of such convolution and pooling operations,
a CNN’s output can be made mostly invariant to even larger shifts.

There are two problems with that strategy: First, the pooling operation sim-
ply discards the precise location of the feature. This important information could
otherwise be used to make the network more efficient or even more accurate. The
second problem is that this strategy only works well if the shift is equal to an
integer amount of pixels. If the shift has a sub-pixel value, then, in general, it can-
not be expected that the feature detectors will find the same features as before,
because the shift changes the actual pixel intensity values. The conclusion is that
arbitrary translations still pose a challenge to CNNs.

The task that we will deal with in this thesis is the task of signal decomposition:
Many one-dimensional signals in the real world contain time-limited patterns that
are the main interest of analyzing those signals. For example, in an ECG signal,
which records the electrical activity of a heart over time, the individual heart beats
are the time-limited patterns of major importance. In seismograms, which record
ground motions, earthquakes create time-limited patterns. A signal that contains
such a pattern can be decomposed into a localization, which transports the in-
formation at which point in time this pattern has occurred, and a normalized
pattern, which transports the information what kind of pattern has occurred.
This decomposition task can be split up into four individual sub-tasks:

1.) Reconstruction: Given the localization and the normalized pattern, we
want to reconstruct the original signal.

2.) Localization: Given the signal and the normalized pattern, we want to find
where exactly in the signal the normalized pattern can be found.

3.) Normalization: Given the signal and the localization, we want to extract a,
in some sense, canonical representation of the pattern found at that location.
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4.) Simultaneous Localization and Normalization: Given only the signal,
we want to extract both the localization of the interesting pattern and, at
the same time, a canonical representation of that pattern.

We will suggest solutions to all four of those problems.
Since we want to investigate methods that work in the frequency domain, we
will use FFT to transfer the input(s) from the spatial domain into the frequency
domain, and only there will we use CNNs (see also Figure 1.2). Usually, the
normalized pattern array will contain the important pattern at the beginning of
the array (i.e. the pattern is “normalized” in the sense that it starts at time 0),
and the localization is a translation that characterizes the relation between the
normalized pattern and the signal (i.e. how much the normalized pattern needs
to be shifted in time in order to align with the pattern in the original signal).
This means that the localization contains critical information, thus it is pivotal for
the accuracy of the decomposition that the solutions do not have weaknesses with
respect to sub-pixel translations. The type of signals we will be considering during
these tasks is Morse code. Obviously, the individual Morse letters are time-limited
patterns, and since different letters can look very similar to each other, it is not
trivial to decompose a Morse signal using convolutions and feature detectors.

1.4 Structure of the Thesis
The rest of the thesis is structured the following way:

• In Chapter 2, we will discuss related work, including ideas that tackle the
problem CNNs have with spatial deformations, and approaches that use the
frequency domain for finding solutions to computer vision tasks.

• Chapter 3 describes the most relevant aspects from Fourier Analysis, such as
the DFT, the FFT and some elemental properties of the frequency domain.

• Chapter 4 specifies the Morse signal dataset that we will use for testing and
evaluating our suggested solutions.

• Chapter 5 represents the core of this thesis, as it contains the description
and evaluation of our suggested signal decomposition modules.

• Chapter 6 gives a small example of how to extend one of our frequency
domain modules to the 2D case.

• Chapter 7 summarizes the insights and results of this thesis.
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All figures in this thesis, including the drawing of a face in Figure 1.1, were created
by the author.

Figure 1.2: Illustration of the signal decomposition tasks: In the spatial domain, we are given
two of the following three arrays: a signal, a normalized version of an interesting
pattern in that signal, and the localization of that pattern within that signal. We
apply an FFT to the given arrays and need to find a way in the frequency domain
that enables us to retrieve an accurate approximation of the missing array, i.e. we
need to find out how to implement the Localization module, the Reconstruction
module and the Normalization module. Note that the Localization module does
not need to output a full array that approximates the localization, it suffices for
this module to output a single number that characterizes the point in time where
the interesting pattern occurred. Also, notice that the Reconstruction module is
the only one whose output needs to be manually transferred back into the spatial
domain by an inverse FFT (IFFT). The two other modules directly output spatial
domain objects. Not drawn in the figure is a fourth module, which gets as input
only the signal and needs to output both an estimated localization parameter and an
estimated normalized pattern. This module will be a combination of the Localization
module and the Normalization module.

6



2 Related Work

In this chapter, we give a short overview about the related work. Particularly,
methods that attempt to resolve the problem CNNs have when dealing with spatial
deformations and frequency domain methods in computer vision.

2.1 Convolutional Neural Networks versus Spatial
Deformations

Convolutional Neural Networks have set the state-of-the-art for numerous com-
puter vision tasks, e.g. DenseNet [16] for image classification, YOLO [30] for
object detection and Mask R-CNN [14] for object instance segmentation. All of
these CNN architectures have one thing in common: during training, they all
rely on extensive data augmentation in order to increase their capability to model
spatial deformations. Data augmentation means that for each training sample,
a spatial transformation is randomly sampled (e.g. translation, scaling, rotation,
mirroring) and applied to the input data before it gets passed to the CNN, thereby
increasing the variety of possible spatial deformations in the training data.

Other, more elegant solutions to improve the ability of CNNs to handle spa-
tial deformations include Spatial Transformer Networks [17], Deformable Convo-
lutional Networks [7, 48], Capsule Networks [15, 33], and Scattering Networks [3].
Spatial Transformer Networks [17] try to transform the input data into a some-
what canonical representation. A so-called localisation net is trained to compute
transformation parameters from an input feature map. The parameters are then
used to generate a grid, and finally, the input feature map is sampled at the grid
points, producing the warped feature map. This largely eliminates the variety
of possible spatial deformations in the data which a subsequent CNN would en-
counter otherwise.
Deformable Convolutional Networks, introduced by Dai et al. [7] and improved by
Zhu et al. [48], try to break up the geometric limitations introduced by rectangu-
lar feature detectors. For each convolution, they additionally train a predictor for
offsets, and these offsets are then used to effectively deform the receptive field of
the individual entries in the output feature map. This leads to the output feature
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maps being, to a certain level, independent from spatial deformations in the input
feature map.
Both Spatial Transformer Networks and Deformable Convolutional Networks re-
quire a large number of random accesses in the input data, which we try to avoid
in this thesis because they are expensive to implement in hardware and there is no
evidence that the visual cortex of the human brain does something similar [18].
In Capsule Networks [15], the feature maps do not only contain, for each pixel, a
confidence value which tells us that a certain feature is present there, rather they
are built out of so-called capsules which contain both the information that a cer-
tain feature is present and, additionally, some information about the inner state of
the feature. This inner state includes parameters about the spatial transformation
of the feature, meaning that Capsule Networks explicitly try to understand spatial
transformations, and use this information in a process called dynamic routing [33]
to decide which higher-level capsule should have access to the information of which
lower-level capsule. Capsule Networks do not exclude the use of the frequency do-
main, in fact, it might be possible to combine frequency domain methods with a
Capsule Network architecture.
Scattering Networks [3] use a CNN with fixed kernels to perform wavelet scattering.
The result is a representation of the input that is invariant to some transformations
e.g. translations and rotations. So, a CNN that works on top of this representation
does not need to model spatial deformations. While this is useful for some tasks,
like image classification, other tasks, like object localization, cannot profit from
translation invariance.

2.2 Computer Vision and the Frequency Domain

While the frequency domain is widely used in image processing (e.g. filtering [32],
denoising [4], and compression [41]), only few attempts have been made to use of
the characteristics of the frequency domain representation in order to solve com-
puter vision tasks. Some approaches use hand-crafted frequency domain features
for classification or detection tasks [9, 20, 26], but in more recent times, the fre-
quency domain is almost exclusively used, in the context of computer vision, as a
method to accelerate the calculation of convolutions [2, 23, 24] using the convolu-
tion theorem (which we will elaborate in Section 3.3.5).
However, there is one computer vision task where using the frequency domain
is very common: image registration. This is very interesting for this thesis, be-
cause our localization task is closely related to image registration. While there
are many different possibilities to perform image registration [49], there exists one

8
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class of methods that is based on the phase correlation [21], which is a frequency-
domain-based approach for extracting the translational offset between two images.
However, in its most basic version, phase correlation cannot give sub-pixel accu-
racy, and can only determine translations. Reddy et al. [29] and Chen et al. [5] use
a log-polar transform on the frequency domain representation of the input images
which converts scaling and rotation into translations, thereby enabling them to
also determine scaling and rotation parameters using phase correlation. Foroosh
et al. [10] derive an analytical method that improves phase correlation to be ca-
pable of sub-pixel registration. Takita et al. [38] realize sub-pixel registration by
using the Phase-Only Correlation and fitting a peak model to it. Stone et al. [37]
achieve sub-pixel accuracy by fitting a hyperplane through the phase spectrum of
the phase correlation. This last idea does not require any inverse FFTs and serves
as inspiration for one of our localization modules.

There are also some works that use the frequency domain in combination with
CNNs, for example:
Wang et al. [42] use the frequency domain for compressing CNNs in order to
increase efficiency, not only in terms of time performance but also in terms of re-
quired storage space.
Yao et al. [45] use the frequency domain representation of sensor data as input
for their combined CNN/RNN architecture because they assume that this repre-
sentation contains more useful patterns than the spatial domain representatation.
Rippel et al. [31] study the frequency domain representation of convolutional
kernels and use this spectral parametrization to learn the filters directly in the fre-
quency domain. Additionally, they introduce a spectral pooling layer which crops
the frequency domain representation, thereby reducing the feature map size, but
without throwing away as much information as spatial pooling operations usually
do. Still, this approach maintains the standard CNN structure without trying to
customize it for the special characteristics of the frequency domain representation
of the input data.
A recent work by Yao et al. [46] also adapts CNN layers using the frequency
domain, with the goal of making them more compatible with the structure of the
frequency domain representation of the input data. Additionally, they use the
short-time Fourier transform and employ a procedure called hologram interleaving
that helps to maintain both a high time and a high frequency resolution.
However, all of these works still rely on standard CNN architectures. The ap-
proach that is closest to the idea of this thesis is the one by Farazi et al. [13]: In
the context of video prediction, the authors use phase correlation combined with
a small neural network to predict a transformation which, when applied to the
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current frame, generates an estimate of the next frame. In contrast, our method
focuses on decomposing a signal in a single-shot manner.

2.3 Signal Decomposition
In most literature, the term signal decomposition refers to either decomposing a
signal into its spectral components (which is usually done by e.g. Fast Fourier
Transform, Discrete Cosine Transform, or Wavelet Transform), or it refers to sep-
arating different, superimposed signals from each other. In this thesis, however,
we decompose signals into semantic components: localizations, which point at in-
teresting regions in the signal, and normalized patterns, which tell us exactly what
is so interesting about those regions.

As we have already mentioned above, the task of extracting the localization
is similar to image registration, which is a well-studied challenge with numerous
approaches to solve the task [49].

The task of extracting the normalized pattern, on the other hand, is not as
straightforward, because it requires us to extract a somehow canonical represen-
tation of the pattern, while getting rid of any other pattern that might be present
in the signal. Spatial Transformer Networks [17] try to perform some sort of nor-
malization, but they can only predict global parametric transformations, thus not
necessarily removing additional patterns, and use an expensive warping method.
Considering the difference between the pattern in the original signal and the nor-
malized pattern as noise, the normalization task becomes a very special denoising
task. The normalized pattern can then be recovered using Denoising Autoencoders
[39], a method that finds, in a first step called encoding, a very compact repre-
sentation of the input, and then, in a second step called decoding, unfolds that
compact representation again to get an output of the same size as the input. The
idea is that the compact representation is noise-invariant, s.t. the model outputs
a noise-free version of the input. Vincent et al. [40] and Xie et al. [44] use deep
neural networks where, during the encoding step, the layers become progressively
smaller, eventually reaching a bottleneck (i.e. the compact representation of the
input), and then, during decoding, the layers become larger again until they reach
the same size as the input. Zhu et al. [47] and Gondara [12] also use deep neural
networks, but in a convolutional architecture, which is an idea that we will also
use for one of our normalization modules.

To our knowledge, no method exists that is capable of doing something similar
to extracting both localization and normalized pattern simultaneously.
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3 Elemental Fourier Analysis

Transforming an one-dimensional input signal from the spatial domain to the fre-
quency domain is a central idea of this thesis. To perform this operation, we
will be using the Fast Fourier Transform, which itself is an efficient way of
computing the Discrete Fourier Transform of a signal. In this chapter, we
will describe these operations as well as the most relevant characteristics of the
frequency domain representation. Smith [35] gives a good overview about these
aspects of elemental Fourier Analysis.

3.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) takes as input a finite sequence of complex
numbers and maps it to another complex sequence of the same length.

Definition 3.1 (Discrete Fourier Transform):
Let A = {aj}j=0,...,N−1 ⊂ C be a complex sequence of length N ∈ N. The
Discrete Fourier Transform of A, written as DFT(A), is the complex
sequence DFT(A) = {ân}n=0,...,N−1 ⊂ C given by the formula

ân =
N−1∑
k=0

ak · exp
(
−i2πnk

N

)
for n = 0, . . . , N − 1. (3.1)

Using above notation, for each n = 0, . . . , N − 1, the coefficients

exp
(
−i2πnk

N

)
= cos

(
2πnk

N

)
− i sin

(
2πnk

N

)
correspond to complex sinusoids of the form ωn : x 7→ cos (2πnx) − i sin (2πnx).
More precisely, ωn is a complex sinusoid with frequency n, and for each k =

0, . . . , N − 1, the coefficient exp(−i2πnk/N) is obtained by evaluating ωn(x) at
the point x = k/N .

11



3 Elemental Fourier Analysis

This leads to the intuition that the n-th component of DFT(A),

ân =
N−1∑
k=0

ak · ωn(k/N),

contains information about how the sinusoid ωn contributes to the input array A.
This intuition becomes even more obvious when looking at the inverse DFT:

Definition 3.2 (Inverse Discrete Fourier Transform):
Let Â = {ân}n=0,...,N−1 ⊂ C be a complex sequence of length N ∈ N. The
Inverse Discrete Fourier Transform of Â, written as IDFT(Â), is the
complex sequence IDFT(Â) = {aj}j=0,...,N−1 ⊂ C given by the formula

aj =
1

N

N−1∑
k=0

âk · exp
(
i2πjk

N

)
for j = 0, . . . , N − 1. (3.2)

If, in Definition 3.2, the sequence Â has previously been obtained by applying a
DFT to an input sequence A, then Equation (3.2) tells us that the j-th component
of A can be reconstruced as the dot product of N−1 ·DFT(A) and the vector Ω =

(ω0(j/N), ω1(j/N), . . . , ωN−1(j/N))T , where ωk(j/N) are the complex conjugates
of the sinusoids ωk evaluated at the points j/N . This again illustrates that DFT(A)

tells us how to combine the sinusoids ωn in order to recover the input array A. It
also illustrates why we use term frequency domain to refer to the space in which
the output DFT(A) = {ân}n=0,...,N−1 of a DFT lives: For a frequency value f ,
the component âf gives information about the characteristics of the sinusoid ωf

within the input sequence A. While, theoretically, the frequency value f can be
any real number, we will only come across integer frequency values in our signal
decomposition computations.

3.2 Fast Fourier Transform
The straightforward way to implement the DFT is to use a matrix multiplication.
If the input sequence is written as N -dimensional vector A = (a0, a1, . . . , aN−1)

T ,
then the output vector DFT(A) = (â0, â1, . . . , âN−1)

T can be calculated as
DFT(A) = WA, where the DFT matrix W is given by

W =

(
exp

(
−i2πjk

N

))
j=0,...,N−1
k=0,...,N−1

.

12



3.2 Fast Fourier Transform

Figure 3.1: Illustration of the FFT. For an input A of length N = 2m for some m ∈ N,
the algorithm computes two-dimensional arrays, where the output of the p-th
FFT step, 1 ≤ p ≤ m, has size 2p×N/2p. The last array, which is the output
FFT(A), has size N × 1, and is equivalent to DFT(A).

The matrix multiplication requires N times N multiplications and N times N − 1

additions, thus the complexity of this matrix multiplication is O(N2).
Several approaches exist to speed up the calculation of the DFT, the most common
being the method developed by Cooley and Tukey [6]; this method is what we will
refer to as Fast Fourier Transform (FFT).
Given a complex input sequence A = {aj}j=0,...,N−1 ⊂ C of length N = 2m for
some m ∈ N, the way the FFT works is usually described the following way: the
FFT splits A up into a subsequence of even indices, Aeven = {a2j}j=0,...,N/2−1 and
a subsequence of odd indices, Aodd = {a2j+1}j=0,...,N/2−1. These subsequences both
have length N/2. The algorithm then calculates the DFT of both Aeven and Aodd,
and then combines these two (using factors of the form ± exp(−i2πk/N)) to get
FFT(A). The DFTs of Aeven and Aodd are computed recursively using the FFT
approach again. Since it is trivial to calculate the DFT of an array of length two,
the recursion is guaranteed to finish after m = log2(N) levels of recursion.

Alternatively, we illustrate the FFT process the other way around (see also
Figure 3.1): Starting with a complex input sequence A = {aj}j=0,...,N−1 ⊂ C of
length N = 2m for some m ∈ N, we write it as a 1 × N -matrix. The first step
of the FFT then produces a 2 × N/2 -matrix A1, where for the computation of
each entry of A1, only two entries of A are used. The second step then produces a
4×N/4 -matrix A2, where, again, for each entry of A2, only two entries of A1 are
accessed. This happens m times, where the p-th step (for 1 ≤ p ≤ m) produces a
2p×N/2p -matrix, until the m-th step outputs a N ×1-matrix which is equivalent
to DFT(A).
The exact computation works as follows: For an arbitrary p, 1 ≤ p ≤ m, the input
matrix of the p-th FFT step has size 2p−1 ×N/2p−1:

Input =

 ...


︸ ︷︷ ︸

N/2p−1 columns

 2p−1 rows

13



3 Elemental Fourier Analysis

The input matrix is then cut in half:

Inputleft =

Inp1 Inp2 ... InpN/2p


︸ ︷︷ ︸

N/2p columns

 2p−1 rows

and

Inputright =

Inp1+N/2p Inp2+N/2p ... InpN/2p−1


︸ ︷︷ ︸

N/2p columns

 2p−1 rows

where Inpk is the k-th column of the input matrix. The parameter matrix P for
the p-th FFT step is defined as:

P =

Ω Ω ... Ω


︸ ︷︷ ︸
N/2p columns

 2p−1 rows, with Ω =


exp(−i2π 0

2p
)

exp(−i2π 1
2p
)

...
exp(−i2π 2p−1−1

2p
)

 .

Finally, the output of the p-th FFT step is computed:

Output =


Inputleft + P ◦ Inputright

Inputleft − P ◦ Inputright


︸ ︷︷ ︸

N/2p columns


2p rows

where P ◦ Inputright is the componentwise complex product of the two matrices.
The whole computation consists of 2p−1 · N/2p = N/2 multiplications and 2p ·
N/2p = N additions, meaning that the p-th FFT step requires O(N) operations.
Since there are m = log2(N) of these FFT steps necessary to reach the final output,
the FFT has an overall complexity of O(N log(N)).
The inverse FFT (IFFT) works almost the same way, with the exception that the
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3.3 Characteristics of the Frequency Domain Representation

parameter matrices PIFFT are the complex conjugates of the parameter matrices
P used in the FFT, and the output matrix at the end of each IFFT step needs to
be scaled by 1

2
.

3.3 Characteristics of the Frequency Domain
Representation

3.3.1 Inclusion of negative Frequencies

As we have seen, the DFT (and thereby also the FFT) maps an input array
A = {aj}j=0,...,N−1 ⊂ C, with N = 2m for some m ∈ N, to complex coefficients
{ân}n=0,...,N−1 ⊂ C, where ân contains information about how the complex sinusoid
ωn : x 7→ cos (2πnx) − i sin (2πnx), which has frequency n, contributes to A. It
does this by sampling the ωn at the points k/N for k = 0, . . . , N − 1 and using
these values as coefficients in the DFT formula Equation (3.1). However, due to
aliasing effects, the values ωn(k/N) are equal to ωn−N(k/N):

ωn−N(k/N) = exp(−i2π(n−N)k/N) =
exp(−i2πnk/N)

exp(−i2πNk/N)

=
exp(−i2πnk/N)

exp(−i2πk)
=

exp(−i2πnk/N)

1k

= exp(−i2πnk/N) = ωn(k/N),

which is why the second half of the resulting FFT values {ân}n=N/2,...,N−1 are
often interpreted as belonging to the sinusoids ωn−N , covering the negative fre-
quencies from −N/2 up to −1. So, FFT(A) = {ân}n=0,...,N−1 is often reordered to
FFTreorder(A) = {âg(n)}n=0,...,N−1 with

g(n) =

{
n+N/2, if n < N/2

n−N/2, else,

s.t. FFTreorder(A) is correctly ordered from frequency −N/2 up to frequency
N/2 − 1. We call this reordering operation fftshift, in the style of NumPy1 and
MATLAB2.

1https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftshift.html
2https://www.mathworks.com/help/matlab/ref/fftshift.html
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3 Elemental Fourier Analysis

3.3.2 Interpretation of the FFT Result

(a) FFT result for example signal s. (b) FFT result for sshifted.

Figure 3.2: Simple example of the FFT output. In (a), the continuous input signal is
s(t) = cos(2πx − 0.2π) + 0.5 cos(2π2x − 1.2π). The signal is sampled at 32
points and the FFT is applied to the discrete signal. The figure shows in the
third row the real and imaginary part of the output of the FFT, reordered by
fftshift; in the bottom row, the amplitude spectrum and the phase spectrum
of the input signal, also reordered by fftshift, are shown. When the signal
s is shifted by 0.2 to the right, i.e. sshifted(t) = s(t − 0.2), then the arrays
shown in (b) are obtained.

The input array A for the FFT is usually a signal that is located in the spatial/time
domain, and has been equidistantly sampled over some finite time interval. The
complex output values of the FFT, {ân}n=0,...,N−1, that are located in the frequency
domain, provide two important pieces of information:

1.) For each n = 0, . . . , N − 1, the absolute value |ân| =
√

Re(ân)2 + Im(ân)2

tells us, how strongly the sinusoid ωn contributes to the input signal. This
value is also called the amplitude of the frequency n, and plotting the am-
plitudes against the frequency values yields the amplitude spectrum of
A.

2.) The phase value of ân is computed as arctan2 (Im(ân),Re(ân)). It tells us
how to shift the sinusoid ωn along the time-axis in order to align ωn with
the input signal. Plotting the phases against the frequency values yields the
phase spectrum of A.
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Together, the amplitude spectrum and the phase spectrum make up the frequency
domain representation of the signal A.

Figure 3.2a shows a simple example: The continuous input signal is s(t) = cos(2πx−
0.2π) + 0.5 cos(2π2x − 1.2π), i.e. it is the sum of a cosine wave with frequency
1, amplitude 1, and phase −0.2π, and a second cosine wave with frequency 2,
amplitude 0.5 and phase −1.2π. After sampling it at 32 points, the array A is
obtained, which is visualized in the second row of Figure 3.2a. The computation
of FFT(A) yields complex numbers, visualized in the third row of Figure 3.2a. In
general, simply looking at the real and imaginary part of of the output coefficients
of FFT(A) does not give much insight into the characteristic properties of s; how-
ever, after calculating the amplitude spectrum and phase spectrum (visualized in
the last row of Figure 3.2a), the characteristics of s are revealed: The amplitude
spectrum shows the value 16 for frequency 1, and the value 8 for frequency 2; this
relates to the input signal, where the cosine of frequency 1 had double the am-
plitude of the cosine of frequency 2. The phase spectrum shows the value −0.2π
for frequency 1, and for frequency 2, it show the value 0.8π, which is, due to the
periodicity of sine and cosine, equivalent to a phase value of −2π+0.8π = −1.2π.
So, for frequency 1 and 2, the phase spectrum shows the exact phase values of the
respective cosines in the input signal. The only other frequencies that do not give
0 amplitude and phase values are the frequencies −1 and −2. Recall that the FFT
computes coefficients for the complex sinusoids ωn : x 7→ cos (2πnx)− i sin (2πnx).
For an entirely real-valued signal, like s, the imaginary parts need to add up to 0;
this can be done by assigning, to the negative frequencies, the complex conjugates
of the FFT coefficients of the respective positive frequencies, and this leads to
negative frequencies having the same amplitude values as the respective positive
frequencies, and to negative frequencies having the negative values of the phase
values of the respective positive frequencies.

3.3.3 Periodicity

Since all the complex sinusoids ωn are periodic, the DFT implicitly sees the input
signal as periodic as well, specifically it assumes that the discretized signal A =

{aj}j=0,...,N−1 can be periodically continued to aj+qN = aj for all q ∈ Z. This
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periodic extension is also present in the output FFT(A) = {âj}j=0,...,N−1:

ân+qN =
N−1∑
k=0

ak · exp
(
−i2π(n+ qN)k

N

)

=
N−1∑
k=0

ak · exp
(
−i2πnk

N

)
exp

(
−i2πqNk

N

)

=
N−1∑
k=0

ak · exp
(
−i2πnk

N

)
exp(−i2πqk)

=
N−1∑
k=0

ak · exp
(
−i2πnk

N

)
· 1qk

= ân for n = 0, . . . , N − 1 and q ∈ Z.

3.3.4 Behaviour with respect to Translations
Since we are particularly interested in translations, we now investigate how the
frequency domain representation of a signal changes when it is spatially shifted.
First off, for pixel-wise shifts, the Shift theorem is applicable:

Theorem 3.3 (Shift Theorem):
Let A = {aj}j=0,...,N−1 ⊂ C be a discretized input signal and Â = {ân}n=0,...,N−1 ⊂
C its FFT. Let q ∈ Z. Then, for the shifted signal B = {bj}j=0,...,N−1 :=

{aj+q}j=0,...,N−1, the FFT B̂ = {b̂n}n=0,...,N−1 is given as

b̂n = exp
(
−i2πnq

N

)
ân for n = 0, . . . , N − 1.

Proof:
A proof can be found in most books that deal with DFT, e.g. [35], chapter
7.

Note that the Shift Theorem makes use of the periodic extension discussed in
Section 3.3.3 s.t. bj = aj+q is well-defined for all j = 0, . . . , N − 1. Since
exp(−i2πnq/N) lies on the unit circle, this theorem implies that shifting an input
signal pixel-wise in the spatial domain does only change the phase spectrum and
leaves the amplitude spectrum untouched, i.e. the amlitude spectrum is invariant
to pixel-wise shifts and all the translational information is encoded in the phase
spectrum.

If the input signal is very simple (i.e. if it can be expressed as a combina-
tion of sines and cosines with integer frequencies smaller than half the sampling
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frequency), like the signal s in Figure 3.2, then sub-pixel shifts still affect the
frequency domain representation in a very well-defined manner: If the input sig-
nal is shifted by some value δ ∈ R, i.e. sshifted(t) := s(t − δ), then all the sines
and cosines in the input are shifted according to their frequency, i.e. if the phase
value for frequency n is ϕn before the shift, then the phase value for frequency
n after the shift is ϕn − 2πnδ. In our example in Figure 3.2b, we chose δ = 0.2.
ϕ1 was equal to −0.2π before the shift, and the phase spectrum shows the value
−0.2π − 2π · 1 · 0.2 = −0.6π afterwards. Likewise, for frequency 2, the phase
changed from −1.2π to −1.2π− 2π · 2 · 0.2 = −2π, which is equivalent to 0 due to
the periodicity of sine and cosine, which is also the value computed in the phase
spectrum after the shift. For the negative frequencies −1 and −2, the same consid-
erations as before apply, so they still show the negative values of the phase values
of the respective positive frequencies. The amplitude spectrum is not altered in
any way.

For more complex signals, we expect sub-pixel shifts to introduce more serious
effects, like aliasing, on both the amplitude spectrum and the phase spectrum, but
a goal of this thesis is exactly to investigate whether these effects are as fatal as
the effects a sub-pixel shift has on the spatial representation.

3.3.5 Convolution Theorem
The one-dimensional discrete convolution is defined the following way:

Definition 3.4 (Convolution):
Let A = {aj}j=0,...,N−1 be a discretized input signal and K = {kj}j=0,...,N−1

be a kernel. The n-th component of the convolution A ∗K is then defined
as

(A ∗K)n =
N−1∑
m=0

an−mkm. (3.3)

For indices l < 0 or l > N − 1, the values al have to be manually defined, depend-
ing on the application. For Convolutional Neural Networks (CNNs) , these values
are taken from a user-defined padding function, e.g. each al is assigned zero, or
al = a0 for l < 0 and al = aN−1 for l > N − 1. Usually, the kernels are much
smaller in size than the input array; in that case, in Equation (3.3), km can be
treated as zero if m is larger than the actual kernel size.
CNNs perform a large number of convolutions, and calculating the sum in Equa-
tion (3.3) for every single output value can become very computationally expensive.
So, some implementations make use of the frequency domain in order to accelerate
the computation of the convolution, making use of the convolution theorem:
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Theorem 3.5 (Convolution Theorem):
Let A = {aj}j=0,...,N−1 be a discretized input signal and K = {kj}j=0,...,N−1

be a kernel. The convolution A ∗K is equivalent to a componentwise multi-
plication in the frequency domain:

A ∗K = IFFT(FFT(A) ◦ FFT(K)),

where ◦ denotes the componentwise complex multiplication.
Proof:
A proof can be found in most books that deal with DFT, e.g. [35], chapter
7.

If the number of convolutions is large and/or the input arrays A are very long,
then the simple pointwise multiplication will outperform the naive sliding-window
calculation of the sums in Equation (3.3), even if the cost for the FFTs and IFFTs
is included.
In order to simplify this part, we only considered one-dimensional convolutions,
but analogous statements also apply to two-dimensional convolutions.
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In order to measure the success (or failure) of our solutions, we will be using a
Morse signal dataset. An already existing Morse code dataset would have been the
one made by Dey et al. [8], but their implementation does not support sub-pixel
shifts. So, we implemented our own Morse signal dataset. In this section, we will
explain the construction of our dataset.

4.1 Base Dataset
Our implementation follows the standards of the International Telecommunication
Union [28]: A morse letter is a combination of dots • and dashes −; Table 4.1 shows
the individual letter encodings. A dash is three times the length of a dot, and each
pause inside of a single letter has the same length as a dot. The length of the pause
inbetween two letters is equal to three dots. The length of the pause inbetween
two words is seven dots.

a • − n − •

b − • • • o − − −
c − • − • p • − − •

d − • • q − − • −
e • r • − •

f • • − • s • • •

g − − • t −
h • • • • u • • −
i • • v • • • −
j • − − − w • − −
k − • − x − • • −
l • − • • y − • − −

m − − z − − • •

Table 4.1: Morse codes for the English alphabet.

In our implementation, the Morse signals are located on a timeline that starts at
0 and ends at 1. The length of a dot is 0.03, and therefore, the length of a pause
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inside a letter is also 0.03, while the length of a dash is 3 · 0.03 = 0.09.
Each sample is constructed the following way: First, it is uniformly randomly

chosen which of the 26 letters of the English alphabet is used for that sample.
Then, the translation τ is uniformly randomly chosen from the interval [0, 1 − l],
where l is the length of the chosen letter (e.g. the letter “a” is equal to “•−”, which
is a dot (length: 0.03), an inner-letter pause (length: 0.03) and a dash (length:
0.09); so, the letter “a” has length l = 0.03 + 0.03 + 0.09 = 0.15). This ensures
that the entire Morse letter is always inside the interval [0,1], as τ is set to be the
starting point of the letter. Finally, dots and dashes are given the intensity value
1, and everything else 0. Using all these pieces of information, a continuous-time
function of the Morse signal, Ψ : [0, 1]→ {0, 1}, is constructed (see Figure 4.2, the
topmost row on the left). This function maps time values from the interval [0, 1]
to intensity values from the binary set {0, 1}.
The signal array is then generated by sampling that function at N equidistant
points (see Figure 4.2, the second row on the left), where N ∈ N is the resolution of
the discretization, and the distance between two adjacent sampling points is N−1.
This means that the i-th entry of the discrete signal array is given by Ψ(j ·N−1)

for j = 0, . . . , N − 1. We use N = 2j for some j ∈ N, because powers of two are
the optimal resolution for the FFT.
The localization (see Figure 4.2, the third row on the left) has two possible
representations: first, a single decimal number that is equal to the translation τ .
Second, it can be represented as a Gaussian curve with mean equal to τ ; we chose
the standard deviation 0.004 in order to get a thin Gaussian curve. Due to this
Gaussian curve definition, the localization is able to model uncertainties and the
presence of more than one hypotheses for the ground truth, similar to activity blobs
[1]. To get a discrete array, the Gaussian curve is also sampled at N equidistant
points in [0, 1].
Finally, the normalized pattern is generated. It is simply how the signal array
would look like in the case of τ = 0 and in the absence of noise and any additional
Morse letters (see Figure 4.2, the fourth row on the left).

The advantage of setting up a continuous-time function of the already shifted
letter, and then sampling a discretization from it, is that it avoids the necessity
of an interpolation. The alternative would be to generate the discrete normalized
pattern first, and then use the translation τ to shift the normalized pattern to its
target position in order to get the signal. However, this would require interpolating
the intensity values if the shift τ has a sub-pixel value (in this context, τ having
sub-pixel value means that τ is not an integer multiple of the sampling interval
N−1), which is why we chose the former approach.
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Figure 4.2: Morse code sample of the letter “p” (• − − •), with resolution N = 256.
Left column: first row: continuous-time signal Ψ, the vertical lines are only
added for visualization; second row: discretized signal; third row: localiza-
tion represented as thin Gaussian, with the numerical shift value τ written
next to the peak; fourth row: normalized pattern. Right column: first row:
Ψ convolved with the left-to-right filter; second row: Ψ convolved with the
right-to-left filter; third row: Ψfiltered; fourth row: discretized and normalized
Ψfiltered.

4.2 Extensions

4.2.1 Smoothing

The Morse code dataset we described so far has a major drawback, namely that
there are discontinuities at the locations where the intensity value changes from
0 to 1 and vice versa. This causes the Fourier decomposition of the underlying
continuous-time signal to contain sinusoids of (possibly infinitely) large frequen-
cies, which makes it impossible to meet the requirements of the Nyquist-Shannon
Sampling Theorem [34], which enables aliasing effects to come into play. If the
input signal is shifted by a sub-pixel value, then it might become difficult to distin-
guish between these aliasing effects and the modifications to the frequency domain
representation introduced by the translation. So, we emulate an analog low-pass
filter that smoothes the continuous-time Morse signal function. This will remove
high frequencies, thereby acting as an anti-aliasing filter.
We do this by convolving the continuous-time Morse signal function Ψ : [0, 1] →
{0, 1} with two filters and then computing the average of the two results. The
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first filter, Kl2r : R → R, smoothes Ψ from left to right, and the second filter,
Kr2l : R → R, smoothes Ψ from right to left. The two filters are defined the
following way (see also Figure 4.3):

Kl2r(x) =

{
α
(
(1− α)N

)x
, if x ≥ 0

0 , else.

Kr2l(x) =

{
α
(
(1− α)N

)−x
, if x ≤ 0

0 , else.

Figure 4.3: Exponential smoothing filters. Left is Kl2r, right is Kr2l. Note that the
convolution flips the filters horizontally, so Kl2r assigns nonzero weights to
the function values on the left of t (where t is the time value for which the
convolution is evaluated), and Kr2l assigns nonzero weights to the function
values on the right.

The parameter α ∈ (0, 1) influences, how strong the smoothing is; the smaller α

is, the stronger the smoothing becomes. In our case, α = 0.7 was chosen. N , as
always, denotes the number of sampling points that will be used for discretization.
The idea of these filters is similar to that of exponential smoothing (see [25], sec-
tion 6.4.3.1.), i.e. for each input time t, the left-to-right filter computes a weighted
average of the function value at t and the function values at the time values on
its left, where the weight is smaller the further away the time value is from t.
Similarly, the right-to-left filter uses the function values on the right of t for the
weighted average.
The filtered continuous-time Morse signal function, which will be used for sam-
pling, is then defined as

Ψfiltered(t) :=
1

2
((Ψ ∗Kl2r)(t) + (Ψ ∗Kr2l)(t))

=
1

2

(∫ 1

0

Ψ(x)Kl2r(t− x)dx+

∫ 1

0

Ψ(x)Kr2l(t− x)dx
)

=
1

2

(∫ t

0

Ψ(x)Kl2r(t− x)dx+

∫ 1

t

Ψ(x)Kr2l(t− x)dx
)
, (4.1)
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where, in the last equation, the integration limits have changed because Kl2r(x) =

0 for x < 0 and Kr2l(x) = 0 for x > 0. Since Ψ is equal to 1 only in some intervals,

and 0 everywhere else, we can use the function Ψc,d(x) =

{
Ψ(x) , if x ∈ [c, d]

0 , else
,

where 0 ≤ c ≤ d ≤ 1, to define

Ic,d := {[a, b] ⊂ [c, d] | ∀x ∈ [a, b] : Ψc,d(x) = 1 and
∃ε > 0 : ∀x ∈ [a− ε, a) ∪ (b, b+ ε] : Ψc,d(x) = 0}

which is the set of disjoint, maximum size intervals where Ψc,d is equal to 1. Using
this definition, we can write Equation (4.1) as:

Ψfiltered(t) =
1

2

 ∑
[a,b]∈I0,t

∫ b

a

Kl2r(t− x)dx+
∑

[a,b]∈It,1

∫ b

a

Kr2l(t− x)dx

 . (4.2)

It is possible to analytically calculate the indefinite integrals of Kl2r and Kr2l, so
Equation (4.2) can be computed via

Ψfiltered(t) =
1

2

 ∑
[a,b]∈I0,t

[
α
(
(1− α)N

)t−x

−N log(1− α)

]b
x=a

+
∑

[a,b]∈It,1

[
α
(
(1− α)N

)x−t

N log(1− α)

]b
x=a

 .

For better consistency, after discretization, we normalize the discretized signal s.t.
the maximum value of the array is 1. Figure 4.2, right column, shows an example
of the filtered continuous-time signals.

4.2.2 Two Morse Signal Dataset

The second important extension is the Two Morse signal dataset. It simply
adds a second Morse letter to each dataset sample. This dataset follows the rule
that both letters need to be fully inside the [0, 1] time interval, and the gap between
the two Morse letters needs to be at least three dots (i.e. 0.09) wide, s.t. the two
letters cannot be confused to be one large letter. Additionally, we disallow the same
letter to appear twice in a sample, because this ambiguity could possibly lead to
unwanted behaviour in the localization task (remember that the localization task
consists of taking a signal and a normalized pattern as input; if the normalized
pattern appears twice in the signal, then any solution for that task would have to
deal with this ambiguity).
In the spatial domain, there is a clear separation between the two letters, but in the

25



4 Morse Signal Dataset

frequency domain, both letters influence the amplitude spectrum and the phase
spectrum, so this extension is designed to make it more challenging to use the
frequency domain for the signal decomposition task. Note that this dataset also
maintains, for each sample, a random number called LeftOrRight, which is either
0 or 1. When requesting a sample from a Two Morse signal datasest, it will give
out the signal that contains the two letters, and then give out the localization and
the normalized pattern of the left letter, if LeftOrRight = 0; if LeftOrRight = 1,
then it will give out the normalized pattern and the localization that belong to the
right letter. This means that any module that wants to perform well on such a
dataset must be able to work well on both the left and the right letter. Figure 4.4
shows an example from a Two Morse signal dataset.

Figure 4.4: Two Morse signal dataset example. It can be seen that LeftOrRight=1 in
the example on the left, and LeftOrRight=0 in the example on the right.
Additionally, the example on the right is injected with localization noise, i.e.
the peak of the localization is far away from the numerical ground truth.

4.2.3 Noisy Localization
For the normalization task (i.e. given a signal and a localization, the task is
to find the normalized pattern at that location), it is useful to achieve robustness
towards lateral localization noise. When the localization does only point at a rough
estimate of the point in time where a Morse code letter in the signal starts, rather
than at the exact position, then the normalization task becomes more difficult, the
ground truth might even be ambiguous. We will make use of this extension in order
to get a robust solution for the normalization task. In our implementation, we
sample a random number from a normal distribution with mean zero and standard
deviation 0.1. Due to the 68-95-99.7 rule of thumb for Gaussian distributions, this
means that in roughly 99% of the cases, the localization noise will be inside the
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interval (−0.3, 0.3), which is not trivial given that all our signals are located in the
time interval [0, 1]. If the noise would send the localization out of the interval [0, 1],
then we make use of the periodicity implied by the FFT (recall Section 3.3.3), and
we cyclically project it back into the interval [0, 1] (e.g. the noisy localization
−1 < τoutside < 0 is projected to 1 + τoutside, and 1 < τoutside < 2 is projected to
τoutside−1). The signal array and the normalized pattern array are not affected by
this extension, because we only inject noise to the localization after constructing
the continuous-time signal function Ψ. Only the localization array is changed, i.e.
the peak in the localization is shifted along the time-axis, away from the ground
truth. The right column of Figure 4.4 shows an example with localization noise.

4.3 Evaluation Metrics

4.3.1 Loss Functions

Recall the tasks defined in Section 1.3. The first task was a reconstruction task,
so we need to output an array that is approximately the same as the ground truth
signal. Similarly, for the third task, the normalization task, we need to output
an array that is approximately the same as the ground truth normalized pattern.
For both of these tasks, we will measure the difference between our output and
the ground truth using the MSEloss (Mean Squared Error loss): For two arrays
a, b ∈ RN , the MSE loss is defined as

MSEloss(a, b) :=
N−1∑
i=0

(ai − bi)
2

N
.

The second task was the localization task. To solve this, we need to output a single
number ρ that should be close to the ground truth translational value τ (note that
we do not use the discretized thin Gaussian representation of the localization,
because it is too inaccurate). However, we cannot simply use the absolute value
|ρ − τ |, because, due to the periodicity in the input signal implied by the FFT,
ρ = −0.1 and τ = 0.9 describe the same translation for the frequency domain
representation. For this reason, we use a loss function that does not penalize
combinations such as ρ = −0.1 and τ = 0.9:

Closs(ρ, τ) := MSEloss
((

cos(2πρ)
sin(2πρ)

)
,

(
cos(2πτ)
sin(2πτ)

))
,
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4 Morse Signal Dataset

where Closs stands for Circular loss, because it uses ρ and τ as angles to produce
two points on the unit circle and then measures the difference between those two
2D-points. Obviously, if e.g. ρ = −0.1 and τ = 0.9, then both are mapped to the
same point on the unit circle, and the loss is zero.
The fourth task was a combination of the normalization and the localization task,
so in that task, we use both MSEloss and Closs to measure the difference between
our output and the ground truth.

4.3.2 Explicit Datasets
At this point, we define some datasets that we will use throughout the evaluations
in Chapter 5.

Testing datasets:

• MSD1000: A Morse signal dataset as defined in Section 4.1, containing 1000
samples and making use of the smoothing described in Section 4.2.1. The
resolution of the discretization is 256, i.e. the discretized signal, the dis-
cretized localization and the discretized normalized pattern are arrays of
length 256.

• MSDL1000: A Morse signal dataset as defined in Section 4.1, containing
1000 samples and making use of the smoothing described in Section 4.2.1.
Additionally, the localization array is distorted as specified in Section 4.2.3.
The resolution of the discretization is 256, i.e. the discretized signal, the
discretized localization and the discretized normalized pattern are arrays of
length 256.

• TMSD1000: A Two Morse signal dataset as defined in Section 4.2.2, contain-
ing 1000 samples and making use of the smoothing described in Section 4.2.1.
The resolution of the discretization is 256, i.e. the discretized signal, the dis-
cretized localization and the discretized normalized pattern are arrays of
length 256.

• TMSDL1000: A Two Morse signal dataset as defined in Section 4.2.2, con-
taining 1000 samples and making use of the smoothing described in Sec-
tion 4.2.1. Additionally, the localization array is distorted as specified in
Section 4.2.3. The resolution of the discretization is 256, i.e. the discretized
signal, the discretized localization and the discretized normalized pattern are
arrays of length 256.
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Training datasets:

• MSD∞: Same as MSD1000, just with 10000 samples instead of 1000. Addi-
tionally, this dataset has a randomize functionality, which randomly assigns
new letters and new translations τ to each sample. When training a neu-
ral network with this dataset, the randomize function will always be invoked
after each training epoch, s.t. each epoch gets different samples than the pre-
vious epochs. This makes this dataset practically infinitely large for training
purposes. Repititions are extremely improbable because the translations τ

are uniformly randomly sampled real numbers.

• TMSD∞: Same as TMSD1000, just with 10000 samples instead of 1000, and
equipped with the same randomize functionality as MSD∞. Additionally,
the randomize function also randomizes the numbers LeftOrRight that are
present in each Two Morse signal dataset.

• TMSDL∞: Same as TMSDL1000, just with 10000 samples instead of 1000,
and equipped with the same randomize functionality as TMSD∞. Addition-
ally, the randomize function also assigns new noise values to the localization
noise.
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5 Signal Decomposition Modules

In this chapter, we will present our approaches to solve the individual signal de-
composition tasks described in Section 1.3. For each task, we will discuss the idea
behind our suggested solutions, describe some implementation details if necessary,
and evaluate our solutions using the Morse Signal dataset. The entire implemen-
tation, including the Morse signal dataset and all experiments, was done using
the PyTorch deep learning library [27]. The tests were run on a 16-thread Intel®

Core™ i9-9900K CPU @ 3.60 GHz with 64 GiB of RAM. Note that the convo-
lution operation in PyTorch is highly optimized, likely more optimized than the
FFT/IFFT routines, meaning that it might be difficult to implement a frequency
domain method that is faster than a spatial CNN method.

5.1 Reconstruction Module
The Reconstruction task is defined the following way:

Given the localization and the normalized pattern, we want to reconstruct the
original signal.

Since the original signal is not an input, this might be the least interesting task,
because the localization and the normalized pattern already contain the most
important semantic information about the signal.

5.1.1 Idea

This is the easiest of the four tasks: It is a well-known fact that convolving a
signal with a delta peak delays the signal, i.e. the output of the convolution
shows the input signal shifted to the time/location where the delta peak is. In our
case, the localization is a discretized Gaussian curve instead of a delta peak, but
this can be split up into several delta peaks: If the localization array is given as
L = {li}i=0,...,N−1, then L is simply a weighted sum of delta peaks:

L =
N−1∑
i=0

li · δi,
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5 Signal Decomposition Modules

where δi is a sequence of length N whose i-th component is 1 and all other com-
ponents are 0. Due to the linear properties of the convolution, the convolution
between the normalized pattern P and the localization L can then be written as

P ∗ L =
N−1∑
i=0

li · (P ∗ δi)

So, P ∗ L is equal to the weighted sum of arrays, each of which contains a shifted
version of P . Since we want the weights li to add up to 1, we first divide L by the
sum of its components before convolving. Thus, our Reconstruction Module
produces the following output:

Output = P ∗ L∑N−1
i=0 li

The output is an approximation of the original signal. Figure 5.1a shows an
example of this approach.

5.1.2 Implementation

As for the implementation, the only real choice here is how to perform the con-
volution. The first possibility to do this is to directly compute the convolution in
the spatial domain, using Equation (3.3). However, using this formula makes it
necessary to define a padding function: We simply pad the array P with zeroes.
The second possibility is to use the detour through the frequency domain, where
the convolution breaks down to a simple componentwise multiplication:

Output = IFFT

(
FFT(P ) ◦ FFT

(
L∑N−1
i=0 li

))
.

5.1.3 Evaluation

We tested the reconstruction module on two datasets: MSD1000 and TMSD1000,
as defined in Section 4.3.2. The reconstruction error is measured using the MSELoss
described in Section 4.3.1.
In order to reconstruct signals in the Two Morse signal dataset, we get as inputs
both pairs of (localization, normalized pattern). Both pairs are sent individually
through the reconstruction module, and the outputs are added together; see also
Figure 5.1b for an example.
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5.1 Reconstruction Module

(a) Morse signal dataset example. (b) Two Morse signal dataset example.

Figure 5.1: Reconstruction examples. (a) is a Morse signal dataset example. Shown
are the localization L, the normalized pattern P , the output of the recon-
struction module (i.e. P ∗ L) and, in the last row, the ground truth signal.
Note that the reconstructed signal is a bit blurrier than the ground truth,
which is caused by the uncertainty introduced by using a Gaussian instead
of a delta peak as localization. For the Two Morse signal dataset example
in (b), the two normalized patterns are individually convolved with their
respective localization, and then simply added componentwise to obtain the
reconstruction.

Table 5.2 shows the result of our experiment. All of the reconstruction losses are in
the magnitude of 10−4, which means, by definition of the MSELoss, that for each
tested sample, the average component-wise absolute difference between the output
array of the module and the ground truth signal array lies around

√
10−4 = 10−2.

So, on average, each array element of the reconstructed signal differs for about
0.01 from the ground truth, which means that the reconstruction is quite accu-
rate. Unsurprisingly, for the reconstruction error, it does not matter whether the
Reconstruction Module uses the spatial domain or the frequency domain. The
efficiency, however, is strongly affected by that choice: The module using the fre-
quency domain is more than twice as fast as the other module, showing the speed
advantage of the frequency domain convolution. Since our method of reconstruct-
ing one TMSD1000 sample is equivalent to reconstructing two MSD1000 samples
individually, it is also not surprising that both Reconstruction Modules need twice
the time for the TMSD1000 dataset as compared to the MSD1000 dataset, and are
double as inaccurate for the former as compared to the latter.
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5 Signal Decomposition Modules

Average Average Average Average
Reconstruction error Time needed Reconstruction error Time needed

MSD1000 MSD1000 TMSD1000 TMSD1000

RM 3.041 · 10−4 0.375ms 5.970 · 10−4 0.742ms
RM_fd 3.070 · 10−4 0.149ms 6.031 · 10−4 0.294ms

Table 5.2: Evaluation of the Reconstruction Module. RM denotes the reconstruc-
tion module performing the convolution in the spatial domain, while
RM_fd denotes the reconstruction module performing the convolution
in the frequency domain. The reconstruction errors show the average
MSELoss the respective module produces on a sample of the respective
dataset. The time measurements show the average time needed by the
modules to perform a single forward pass on the respective dataset.

5.2 Localization Module
The Localization task is defined the following way:

Given the signal and the normalized pattern, we want to find where exactly in
the signal the normalized pattern can be found.

This is probably the most interesting task, because it requires us to estimate
the translational parameter itself. The task is closely related to image registration,
where the goal is to find a transformation that aligns two given images.

5.2.1 Different Approaches
We found several solutions for constructing the Localization Module. The input
to this module is the signal S and the normalized pattern P , and the output is a
number ρ that is an estimate of the ground truth translational value τ .

Division in the Frequency Domain

The first idea we had was to again make use of the assumption that the signal S =

{si}i=0,...,N−1 is obtained by convolving the normalized pattern P = {pi}i=0,...,N−1

with the localization L = {li}i=0,...,N−1:

S = P ∗ L,

or, equivalently, according to the convolution theorem (Section 3.3.5):

FFT(S) = FFT(P ) ◦ FFT(L).
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5.2 Localization Module

This means that, given the signal S and the normalized pattern P , the localization
L can be recovered by dividing S by P in the frequency domain:

Lpredicted = IFFT
(

FFT(S)

FFT(P ) + ε

)
, (5.1)

where ε > 0 is some small constant that prevents divisions by zero. However, we
want our localization module to output a single number ρ, which can be directly
compared to the ground truth translational value τ . So we need to read ρ off
the predicted L. To do this, we construct an xvals vector that contains the time
values that were used to discretize the signal: xvalsi = i ·N−1 for i = 0, . . . , N−1.
We can then set ρ = xvalsi∗ with i∗ = argmax(Lpredicted).
This ρ is the output of our first localization module, which we will call LMdiv−fd.

Phase Correlation

As it turns out, that first idea is very similar to an other, very well-known approach
for image registration: Phase Correlation [21]. The phase correlation method com-
putes the so-called cross-power spectrum between the signal S and the normalized
pattern P in order to recover the frequency domain representation of L:

FFT(Lpredicted) =
FFT(S) ◦ FFT(P )

|FFT(S) ◦ FFT(P )|
, (5.2)

where FFT(P ) is the complex conjugate of FFT(P ) and | • | denotes the amplitude
spectrum of its argument.
It can now be shown that, under certain circumstances, Equation (5.1) and Equa-
tion (5.2) are the same (note that the =-sign denotes componentwise equality, as
all objects in the following equations are arrays and all operations are componen-
twise):

FFT(S) ◦ FFT(P )

|FFT(S) ◦ FFT(P )|
=

FFT(S) ◦ FFT(P ) ◦ FFT(P )

FFT(P ) ◦ |FFT(S)| ◦ |FFT(P )|
(5.3)

=
FFT(S)

FFT(P )
◦ |FFT(P )|2

|FFT(S)| ◦ |FFT(P )|
(5.4)

=
FFT(S)

FFT(P )
◦ |FFT(P )|
|FFT(S)|

?
=

FFT(S)

FFT(P )
. (5.5)
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In order to obtain Equation (5.3), we simply multiplied FFT(P ) on both numerator
and denominator, and we make use of the fact that the amplitude spectrum of the
product of two arrays is equal to the product of the two individual amplitude spec-
tra, due to elementary properties of complex numbers. Equation (5.4) also follows
from elementary properties of complex numbers. Equation (5.5) is the critial state-
ment; in only holds if the amplitude spectra are equal, i.e. if |FFT(S)| = |FFT(P )|.
As we have seen in Section 3.3.4, this condition is met for very simple signals or
if the translation between S and P has a value that is an integer multiple of the
discretization interval N−1, but in general, we have to assume that aliasing effects
have distorted the amplitude spectrum s.t. |FFT(S)| 6= |FFT(P )|. Figure 5.3
shows an example what can happen if the amplitude spectra are not equal.

(a) (b)

Figure 5.3: Comparison between Phase Correlation and Division in frequency domain.
In (a), both methods compute very similar Lpredicted and thus output the
same ρ. In (b), the difference between the amplitude spectra of S and P
causes the two methods to compute very dissimilar Lpredicted, the LMdiv−fd

module even outputs a completely wrong value for ρ.

Finally, we define the second localization module, LMpc, which calculates Lpredicted

according to the phase correlation formula Equation (5.2) and then outputs ρ =

xvalsi∗ with i∗ = argmax(Lpredicted).

Global Line Fitting

Both approaches so far have a major drawback: They do not have sub-pixel res-
olution, they still output an integer multiple of the discretization interval N−1.
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We tried to achieve sub-pixel accuracy by using Lpredicted as weights for the xvals

vector, e.g. ρ =
∑N−1

i=0 lpredictedi · i · N−1, but this had very little success because
Lpredicted is too noisy (which can also be seen in Figure 5.3). They also both apply
an IFFT operation and leave the frequency domain in order to compute the final
value for ρ, which might not be in the spirit of a true frequency domain method.

(a) (b)

Figure 5.4: Global Line Fitting example. Calculating the cross-power spectrum between
S and P and taking the phase spectrum from it yields the truncated phase
spectrum in the third row. Unwrapping the phase spectrum using the method
in [11] gives the unwrapped phase spectrum in the fourth row. Fitting a line
through the unwrapped phase spectrum using the idea from [37] works well
for example (a), but not for example (b), because the unwrapped phase
spectrum in (b) does not show a unique line structure.

So, investigating the phase part of the cross-power spectrum between S and P , one
can often find line structures, such as the ones in Figure 5.4, third row. These line
structures give the idea that it is possible to fit a hyperplane (i.e. a line) through
the phase spectrum in order to recover the localization parameter. Note that for
the rest of this section, we will consider the frequency domain representation that
uses the negative frequencies as described in Section 3.3.1.
A problem is that the phase spectrum is truncated s.t. all phase values are inside
the interval (−π, π], so fitting a line through that spectrum will almost certainly
always lead to a line that is close to the constant zero-line. We first need to unwrap
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the phases in order to be able to fit a line through the spectrum; we do this by
using the very simple phase unwrapping method found in [11]; an example can be
seen in Figure 5.4, fourth row.
From here, we can apply the line fitting idea, which is inspired by Stone et al.
[37], who also recover a translational parameter from the phase spectrum of the
cross-power spectrum: By definition of the cross-power spectrum between S and
P (Equation (5.2)), the phase part of the cross-power spectrum is equal to the
difference between the phase spectrum of S and the phase spectrum of P , i.e.

phasef

(
FFT(S) ◦ FFT(P )

|FFT(S) ◦ FFT(P )|

)
= phasef (FFT(S))− phasef (FFT(P )) (5.6)

for each frequency f = −N/2, . . . , N/2 − 1. This, again, follows from elemental
properties of complex numbers. Assuming that both S and P are very simple
signals that are only combinations of sinusoids with frequencies smaller than N/2,
then we know from Section 3.3.4 that for each frequency f , f = −N/2, . . . , N/2−1,
the corresponding entries of the phase spectra satisfy the following equation:

phasef (FFT(S)) = phasef (FFT(P ))− 2πfτ, (5.7)

where τ is the ground truth translational value that we want to find out. For
ease of notation, we will denote the cross-power spectrum between S and P as
CPS(S, P ). Then, Equation (5.6) and Equation (5.7) can be combined to

phasef (CPS(S, P )) = −2πfτ. (5.8)

In other words, the phases of the cross-power spectrum are a linear function of the
frequency values, with slope equal to −2πτ . Therefore, we will use a simple linear
regression on the phase part of the cross-power spectrum to calculate the slope of
the line that fits through the phase spectrum, and then divide that slope by −2π
in order to get an approximation for τ . The final formula is the following:

ρ = − 1

2π

N/2−1∑
f=−N/2

(phasef − phase)(f − f)

N/2−1∑
f=−N/2

(f − f)2
, (5.9)
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where we use the abbreviations

phasef := phasef (CPS(S, P )),

phase :=
1

N

N/2−1∑
f=−N/2

phasef , and

f :=
1

N

N/2−1∑
f=−N/2

f.

This ρ in Equation (5.9) will be the output of our global line fitting localization
module LMglobal−lf.

Local Line Fitting

For samples such as the one in Figure 5.4b, the global line fitting module is not
very accurate, because the unwrapped phase spectrum simply does not have a line
structure. However, upon closer inspection, we can see that the ground truth line
does fit through the middle part of the phase spectrum, i.e. if we only consider
the frequencies in a small interval centered around 0, then the line fitting could
produce a more precise approximation of the localization. Additionally, there are
also other regions of the phase spectrum that seem to have a line structure that
is parallel to the one in the middle (see also Figure 5.5).

Figure 5.5: Parallel line segments in the phase spectrum. Note that the right example
seems to have two dominant gradients, one positive and one negative, and
there are many line segments that belong to the negative gradient as well as
other line segments that belong to the positive gradient.

So, instead of calculating the slope of a line that fits through the entire phase spec-
trum, we calculate the slopes of lines that fit through small parts of the spectrum.
To be more precise, we calculate the local gradients of the phases between pairs
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of neighbouring frequencies in the cross-power spectrum:

gradf =
phasef+1 − phasef

f + 1− f
. (5.10)

Dividing the gradient by −(2π), like in Equation (5.9), converts the slope value to
an estimate of the translation τ :

ρf = − 1

2π
gradf . (5.11)

In order to decide which ρf are important and which ρf are not, we make use of
the amplitude spectra of S and P . For each estimate ρf , we calculate the weight

wf = ampf+1 + ampf , (5.12)

where

ampf =
amplitudef (FFT(S)) · amplitudef (FFT(P ))(

N/2+1∑
k=−N/2

amplitudek(FFT(S))

)
·

(
N/2+1∑
k=−N/2

amplitudek(FFT(P ))

) .

As we have seen in Section 3.3.2, the amplitude spectrum tells us, how strongly
the frequency f contributes to the input signal. So, we normalize the amplitude
spectra of S and P s.t. each of them sums up to 1, and then ampf is simply
the product of the normalized amplitude spectra of S and P at frequency f . So,
wf should tell us how important the gradient gradf (and thereby ρf ) is, because
it contains the information how important the frequencies f and f + 1 are for S

and P . Note that we cannot use the amplitude part of the cross-power spectrum,
because due to its definition Equation (5.2), the amplitude part of the cross-power
spectrum is always equal to one for all frequencies.
Finally, we normalize the weights wf s.t. they sum up to 1, i.e.

ŵf =
wf

N/2−1∑
k=−N/2

wk

(5.13)

and calculate

ρ =

N/2−1∑
f=−N/2

ŵfρf . (5.14)
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Figure 5.6: Two examples of gradients projected to the unit circle. We can see that
the 2D-points ρ̂f are clustered around the projection of the ground truth τ ,
(cos(2πτ), sin(2πτ))T , which is marked as blue cross.

However, this approach has a problem: due to the periodicity induced by the
FFT (as we have seen in Section 3.3.3), the ground truth translation τ ∈ [0, 1]

is equivalent to −1 + τ ∈ [−1, 0] in the frequency domain representation. This
causes some ρf to approximate the positive translation τ , and some other ρf to
approximate the negative translation −1 + τ . This can also be seen in the right
example of Figure 5.5, where there seem to be two gradients that dominate the
spectrum, one positive and one negative. When some ρf pull the weighted sum
in Equation (5.14) towards τ and some other ρf pull the sum towards −1 + τ ,
then ρ often ends up somewhere in the middle. So, we use the same trick we used
to define the circular loss Closs in Section 4.3.1: we project the estimates ρf to
the unit circle, where it does not matter if ρf approximates the positive τ or the
negative −1 + τ , and define

ρ̂f =

(
cos(2πρf )
sin(2πρf )

)
. (5.15)

Note that this means that it is not necessary anymore to unwrap the phase part of
the cross-power spectrum beforehand, because the phase unwrapping described in
[11] only adds integer multiples of 2π to each phase. So, due to the 2π-periodicity of
sin and cos, Equation (5.15) would be the same with or without phase unwrapping.
Figure 5.6 shows an example of ρf projected to the unit circle. We now compute
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the weighted sum of these circle-points ρ̂f :

ρ̂ =

N/2−1∑
f=−N/2

ŵf ρ̂f , (5.16)

extract its angle angle(ρ̂) ∈ [0, 2π) (e.g. by calculating atan2(Im(ρ̂),Re(ρ̂)) ∈
(−π, π] and then mapping it to the interval [0, 2π)) and finally divide it by 2π in
order to get a value ρ in the interval [0, 1) that approximates the ground truth
translational parameter τ :

ρ =
angle(ρ̂)

2π
, (5.17)

which will be the output of our local line fitting localization module LMlocal−lf.

Local Line Fitting CNN

The question that now arises is how to further improve the line fitting procedure.
Recall that both line fitting modules so far assume that the signal S and the nor-
malized pattern P satisfy the relation phasef (FFT(S)) = phasef (FFT(P ))−2πfτ

(Equation (5.7)), which might be too strong of an assumption for more complex
signals. We try to alleviate the effects which could arise if that condition is not
satisfied by inserting a convolutional neural network into the procedure. Specif-
ically, this new module LMlocal−lf−CNN will do exactly the same as the previous
LMlocal−lf module, with one exception: the weights wf are not computed manually,
as in Equation (5.12), rather they are calculated by a CNN that gets as input the
amplitude spectra of both S and P . That way, the new module will learn which
frequencies are the most important, based on features in the amplitude spectra. In
our CNN architecture (see Figure 5.7), each convolution has kernel width 5, zero
padding of length 2 on both sides to ensure that all feature maps have the same
length as the input array, and is followed by a non-linear activation function

ReLU(x) := max{0, x},

except the last convolutional layer, which is followed by a Softmax layer

Softmax(xi) :=
exp(xi)∑
j exp(xj)

,

s.t. the output weights are all in the interval [0, 1] and sum up to 1.
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Figure 5.7: Architecture of the CNN that is used by the LMlocal−lf−CNN module. Its
input are the phase spectra of the signal S and the normalized pattern P ,
and the output is a weight vector. All 1D-convolutions have kernel length 5.
The small number next to the feature maps denotes the number of feature
map channels.

Spatial CNN

Finally, we take a look at a spatial domian method, because we want to investigate
what the advantage of using the frequency domain over the spatial domain is. To
do this, we leave the signal S and the normalized pattern P in the spatial domain
and calculate the cross-correlation between the two. The cross-correlation can be
characterised as “convolution without flipping the kernel”, i.e.

(S ? P )n :=
N−1∑
m=0

Sn+mPm.

Notice that the complex conjugation of P has no effect in our case, as P only has
real values. Figure 5.8 shows, how the result of a typical cross-correlation looks
like.

For each location, the cross-correlation shows how well the normalized pattern
matches the structure in the signal at that location. So, to find an approximation
of the ground truth translation τ , we need to find out the global maximum of S?P .
Again, we cannot simply take the argmax of the cross-correlation, because we want
to achieve sub-pixel accuracy. So, we send S ? P through a CNN which calculates
weights wi, that tell us which of the discrete time points are most relevant. Recall
that the i-th element of S belongs to the time value i ·N−1, i.e. the output will be

ρ =
N−1∑
i=0

wi · i ·N−1. (5.18)
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Figure 5.8: Examples for the cross-correlation between S and P .

Figure 5.9: Architecture of the spatial CNN. First, the cross-correlation between the
signal S and the normalized pattern P is computed. The result is passed
through a CNN which eventually outputs a weight vector.

Figure 5.9 shows the architecture of that CNN. Again, each convolution has kernel
length 5 and zero padding of size 2 on both sides, and all but the last convolutional
layers are followed by a ReLU-layer, and the last convolutional layer is followed
by a Softmax layer in order to get weights that are in the interval [0, 1] and sum
up to 1. The ρ in Equation (5.18) is the output of our spatial CNN localization
module, LMspatial−CNN.

5.2.2 Evaluation

We will now evaluate how well our localization modules perform. First, a small
summary of the different modules. All of them get as input a discretized signal S
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and a discrete normalized pattern P , both of which have length N , and output a
single number ρ that approximates the ground truth localization parameter τ .

• LMdiv−fd: Divides FFT(S) by FFT(P ), transfers the result back to the
spatial domain, calculates the argmax and outputs ρ = argmax ·N−1.

• LMpc: Calculates the cross-power spectrum between S and P , transfers it
back to the spatial domain, calculates the argmax and outputs
ρ = argmax ·N−1.

• LMglobal−lf: Calculates the cross-power spectrum between S and P , unwraps
its phase spectrum, fits a line through these unwrapped phase, takes the slope
of that line, and converts in into an estimate ρ of τ .

• LMlocal−lf: Calculates the cross-power spectrum between S and P , takes the
local gradients in its phase spectrum without unwrapping it, projects these
gradients to the unit circle, and computes the weighted sum of these circle
points, where the weights are calculated from the amplitude spectra of S

and P , to get an estimate ρ of τ .

• LMlocal−lf−CNN: Same as LMlocal−lf, except that the weights are calculated
by a CNN that gets as input the amplitude spectra of S and P .

• LMspatial−CNN: Calculates the cross-correlation between S and P , and sends
it into a CNN which outputs weights wi. The module then outputs ρ =∑

i wi · i ·N−1.

Notice that the last two modules contain CNNs, which means that they require to
be trained. We trained both of these using the Adam optimizer [19] with learning
rate 1 · 10−4, and all other parameters were the default parameters from PyTorch
(they are equal to the “good default settings” suggested in Algorithm 1 of [19]).
The loss function we used for training is the Closs, as defined in Section 4.3.1.
We trained separately on two datasets, once on the dataset MSD∞ and once on
the dataset TMSD∞ (as defined in Section 4.3.2); the subscript MSD or TMSD
will denote whether the module has been trained on the former or the latter
dataset, and a number behind it will denote the number of training epochs, e.g.
LMlocal−lf−CNN

MSD10 is the module LMlocal−lf−CNN trained on the MSD∞ dataset for 10
epochs, and LMspatial−CNN

TMSD100 is the LMspatial−CNN module trained on the TMSD∞

dataset for 100 epochs.

For testing, we used both the MSD1000 and the TMSD1000 dataset, as defined
in Section 4.3.2. We expect the first four modules, i.e. the modules that do
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not train a CNN, to perform badly on the TMSD1000 dataset, because when
constructing those modules, we did not consider large sources of noise such as the
second Morse letter that is present in each sample of the TMSD1000 dataset. For
this evaluation, the localization modules need only to localize one Morse letter in
the TMSD1000 samples, not both (also, recall that the dataset contains a fixed
vector LeftOrRight∈ {0, 1}1000 that decides for each sample whether the left or
the right letter shall be the letter of interest, so this test is not biased towards
either the left or the right letter). For measuring the accuracy, we used the Closs
as defined in Section 4.3.1.

|ρ− τ | Closs(ρ, τ)
0.5 2

1 · 10−1 ∼ 2 · 10−1

1 · 10−2 ∼ 2 · 10−3

1 · 10−3 ∼ 2 · 10−5

1 · 10−4 ∼ 2 · 10−7

1 · 10−5 ∼ 2 · 10−9

Table 5.10: Conversion between |ρ−τ | and Closs(ρ, τ). E.g., if Closs(ρ, τ) is in the
order of 10−5, then the absolute distance between ρ and τ is approx-
imately in the order of 10−3. Due to periodicity reasons, Closs(ρ, τ)
cannot become larger than 2 for ρ, τ ∈ [0, 1].

Table 5.11 shows the results of our experiments. It now becomes obvious why we
tried out so many approaches: While most of the ideas work well for signals that
only contain one Morse letter, only two modules (namely the two that use a CNN)
have a satisfying accuracy for signals that contain two Morse letters.
For better clearness, Table 5.10 shows how to convert between |ρ−τ | and Closs(ρ, τ).
Our datasets have resolution 256, so the pixel width is equal to N−1 = 256−1 ≈
3.9 · 10−3. This means that sub-pixel accuracy is achieved if the Closs error is in
the order of at most 10−6.

Evaluation on MSD1000

The two modules LMdiv−fd and LMpc were not constructed to have sub-pixel
accuracy, and this is confirmed by Table 5.11. The LMglobal−lf module has the
worst accuracy, the reason being that the unwrapped phase part of the cross-power
spectrum contains line segments of both positive and negative slopes, causing
the global line fitting module to output values around zero most of the time.
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Average Average
Localization Error timing per

MSD1000 TMSD1000 forward pass

LMdiv−fd 2.322 · 10−3 3.255 · 10−1 0.202ms
LMpc 3.254 · 10−5 1.166 · 10−1 0.238ms
LMglobal−lf 1.653 · 10−1 9.244 · 10−1 4.741ms
LMlocal−lf 1.350 · 10−6 5.552 · 10−1 0.473ms
LMlocal−lf−CNN

MSD40 3.064 · 10−9 2.357 · 10−1 1.454ms
LMlocal−lf−CNN

TMSD300 2.766 · 10−6 6.325 · 10−4 1.432ms

LMspatial−CNN
MSD40 5.386 · 10−7 1.534 · 10−1 0.664ms

LMspatial−CNN
TMSD300 1.125 · 10−6 6.312 · 10−5 0.657ms

Table 5.11: Evaluation of the Localization Modules. The localization errors are
the average Closs the respective module produces on a sample of the
respective dataset. The time measurements show the average time the
respective module needs to perform a single forward pass, which is
the same on both datasets, because both have the same discretization
resolution N = 256. Marked in bold are the highest accuracies for the
two datasets.

Separating the line segments and looking at each local gradient individually, like
the LMlocal−lf module does, works very well, as it does reach sub-pixel accuracy.
Even better, when removing the manual weight computation and instead inserting
a CNN that computes the weights for the local gradients, like the LMlocal−lf−CNN

module does, then the best accuracy of all the modules is achieved, if trained on
the MSD∞ dataset for 40 epochs. The LMspatial−CNN performed the second best
when trained on the MSD∞ dataset for 40 epochs. If the two CNN modules
have instead been trained in the TMSD∞ dataset for 300 epochs each, then their
accuracy is still in the sub-pixel range.

Evaluation on TMSD1000

Only the two modules that contain a CNN were able to produce satisfying accuracy,
albeit not in the sub-pixel accuracy range. In addition, this required hundreds of
epochs of training on the TMSD∞ dataset, and training on the MSD∞ dataset
was useless for this challenge. The LMspatial−CNN module has slightly higher ac-
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curacy than the LMlocal−lf−CNN module, so it seems like using the spatial domain
is the best way to treat the localization task for signals that contain two Morse
letters. All the other modules failed completely, because the second Morse letter
in the signal introduced noise effects that were simply too devastating for those
modules.

Speed Analysis

Unsurprisingly, the two modules LMdiv−fd and LMpc were the fastest, but the
price for this efficiency is the lack of sub-pixel accuracy. The LMglobal−lf module
was extremely slow, the reason for this is our inefficient implementation of the
phase unwrapping. However, since that module is the most inaccurate of them
all anyways, we did not bother to try and make it more efficient. The LMlocal−lf

module was not as fast as the first two modules, but it achieves sub-pixel accuracy
for the MSD1000 dataset without having to train a CNN, so this module has a
good trade-off between accuracy and speed for the MSD1000 dataset. The two
CNN modules are slower than all the other modules (except the global line fitting
module), but they achieve the best accuracies on both datasets. However, at
this point, we can do a more in-depth analysis of the efficiency of the two CNN
modules. For this, we constructed several Morse signal datasets, with resolutions
ranging from N = 28 = 256 up to N = 213 = 8192. We want to find out if
at some point, the spatial CNN becomes considerably slower than the local line
fitting CNN, which would justify the use of the frequency domain instead of the
spatial domain. Table 5.12 shows the result of this comparison.

256 512 1024 2048 4096 8192

LMlocal−lf−CNN 1.443 2.368 3.783 6.919 14.252 36.723
LMspatial−CNN 0.661 1.128 2.047 4.946 34.432 123.734

Table 5.12: Speed comparison. For each resolution value N ∈
{256, 512, 1024, 2048, 4096, 8192}, we constructed 1000 Morse signal
dataset samples and let the two modules do a forward pass on all
1000 samples. The time values in the table show the average time in
ms that the respective module needs for performing a single forward
pass on a sample of the respective resolution.

Table 5.12 reveals that if the resolution of the discretized signal is at least 212 =

4069, then the spatial CNN is far slower than the local line fitting CNN. The reason
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is the cross-correlation operation; it is very costly in the spatial domain, especially
if the input arrays S and P are very long. So, for datasets with resolutions up to
211, the LMspatial−CNN is the preferred alternative, and for resolutions larger than
that, the LMlocal−lf−CNN module can be preferred.

5.3 Normalization Module
The Normalization task is defined the following way:

Given the signal and the localization, we want to recover the normalized pattern
for the structure present in the signal at the given location.

This task is related to a denoising task, where the noise is a lateral shift, and the
normalized pattern is how the signal would look like if there were no translation
along the timeline, and no other pattern in the signal.

5.3.1 Different Approaches
The Normalization Module gets as input the signal S and the localization L

and needs to output an estimate Q which should approximate the ground truth
normalized pattern P .

Division in the Frequency Domain

As always, the first approach is to make use of the assumption that the signal
S = {si}i=0,...,N−1, the normalized pattern P = {pi}i=0,...,N−1 and the localization
L = {li}i=0,...,N−1 satisfy the following condition:

S = P ∗ L or, equivalently, FFT(S) = FFT(P ) ◦ FFT(L).

P can then be recovered the following way:

P = IFFT
(

FFT(S)

FFT(L) + ε

)
,

where ε > 0 is a small constant that prevents divisions by zero.
However, as can be seen in the Figure 5.13a, this produces very bad results; the
end result seems to be distorted by aliasing and high-frequency noise.

So, we try to get rid of the aliasing noise by applying a filter. Specifically, we
define

Qfd = {qfd
k }k=−N/2,...,N/2−1 :=

FFT(S)

FFT(L) + ε
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(a) Example without filtering. (b) Example with filtering.

Figure 5.13: Normalization by division in frequency domain. (a) shows an example with-
out filtering, (b) shows an example with filtering.

and calculate the amplitude spectrum

amps(S) := |FFT(S)|

of S. We then set the k-th component of Qfd to 0 if the k-th component of amps(S)
is smaller than 0.01 ·max(amps(S)). In other words, if the frequency k is not very
important for S, then we also discard this frequency from Qfd. We then calculate
Q̂ = {q̂n}k=0,...,N := IFFT(Qfd) and apply a smoothing filter to it in order to obtain
Q = {qn}k=0,...,N :

qn =
1

4

(
n∑

j=0

q̂j
2n−j

+
N−1−n∑
j=0

q̂n+j

2j

)
, (5.19)

which filters out high frequency noise. This filter is a discrete version of the expo-
nential smoothing [25] that we already used in Section 4.2.1. Finally, we normalize
Q s.t. max(Q) = 1. Figure 5.13b shows an example output of this procedure. We
will call the normalization module which outputs this Q the NMdiv−fd module.

Convolution with the Reverse Localization

The second approach is to use a convolution, i.e. we want to recover P by somehow
convolving S with L. We already know that the convolution S ∗ L will delay the
signal S, i.e. S is shifted to the right. However, we want to shift S to the left.
Recall that the interesting pattern (e.g. Morse letter) starts at the ground truth
time point τ . If we can shift that pattern to the left, s.t. it starts at time point 0
instead, then this is an approximation for the normalized pattern P . In order to
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(a) Simple example. (b) Example with localization noise.

Figure 5.14: Normalization by convolution with flipped localization. It works well for
(a), but for (b), the localization is not precise, so the normalization result
is unsatisfying.

achieve this, we make use of the periodicity of the frequency domain representation:
If we convolve S with the reverse localization in the frequency domain (i.e. convolve
S with the flipped localization that has its peak at 1− τ), then the pattern which
started at τ , will, after the convolution, start at the localization τ + (1 − τ) = 1.
Thanks to the periodicity of the frequency domain representation, this is equivalent
to the pattern starting at the time point 0.
Convolving S with the flipped L in the frequency domain can be realised by the
following formula:

FFT(S ∗ Lflipped) = FFT(S) ◦ FFT(L),

i.e. all we need to do is use the complex conjugate of FFT(L) in order to flip L

for the convolution. So, the second normalization module, NMconv, outputs

Q =
IFFT(FFT(S) ◦ FFT(L))

max(IFFT(FFT(S) ◦ FFT(L)))
,

where the division by the maximum ensures that max(Q) = 1. Figure 5.14 shows
how an example output from this module looks like.

Classifier and Storage

Both normalization modules so far assume that the localization L is precise and
that the signal S contains only the one pattern P and nothing else. However, we
want to find a solution for the normalization task that is more robust: it should

51



5 Signal Decomposition Modules

be able to input a signal that contains more than just one interesting structure,
and it should be possible to input somewhat misplaced localizations. Figure 5.14b
shows an example where the output NMconv is not very precise due to localization
noise.
From our experience with the localization modules, it seems like we need to make
use of CNNs again if we want our normalization module to be able to deal with
noisy and more complex signals.
Our idea is to build a CNN classifier, that extracts the semantic information what
kind of pattern it encounters in the signal. Then, this class, say c, is sent to a
learnable storage, and the storage simply outputs its c-th entry, which we define as
the output Q of the classifier-storage normalization module NMclass−storage. This
concept is related to Memory Networks [43], however in our implementation, the
storage is exclusively updated through backpropagation, and is not directly up-
dated by the input. Figure 5.15 shows our architecture for this module.

Figure 5.15: Architecture of the classifier-storage normalization module.

The classifier is inspired by the original LeNet-5 architecture [22]. It contains, be-
sides convolutional layers and ReLU activation layers, also MaxPool layers (which
subsample the feature map by taking the maximum value from small patches) and
fully connected (FC) layers (which apply a learnable, linear transformations). The
output of the classifier is a vector whose length is equal to the number of possible
classes (26, in the case of our Morse signal datasets), and whose c-th entry is the
confidence that the pattern in the input belongs to class c. Our NMclass−storage

module simply takes the argmax c∗ of that vector, and outputs the c∗-th entry of
the learnable storage. This means that in the storage, the module maintains esti-
mates of all possible normalized patterns. The question that remains is what the
input of the classifier should be. For this, we have two possibilities: We convolve,
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as before, the signal with the reverse localization in the frequency domain

FFT(S ∗ Lflipped) = FFT(S) ◦ FFT(L)

in order to have the pattern, that belongs to L, start roughly at the beginning
of the array, and hand this is as input to the classifier, thereby defining the
NMclass−storage−fd module, or we first apply an inverse FFT on that array and
hand that spatial domain representation over to the classifier, thereby defining
the NMclass−storage−sd module. Comparing these two modules directly will tell us
whether there is any advantage in passing the frequency domain reprensentation
to the classifier instead of the spatial domain representation. Notice that in both
cases, the normalized patterns which are maintained and output by the storage
are in the spatial domain representation.

Encoder-Decoder

Another approach is to use an Encoder-Decoder CNN, a normalization module
which we will call NMencdec. The encoder produces a vector that contains the
most characteristic information about the input, and the decoder unwraps that
information and produces an output that is a somehow canonical representation
of the input. This idea is similar to that of Denoising Autoencoders [47, 12]. In
our implementation, the encoder part will be the same as the classifier part of the
NMclass−storage module. This means that the vector produced by the encoder can
maybe contain some class information about the input, but it is also possible that
the encoder learns an entire different information representation. In any ways, the
decoder will then have to unpack that information and produce an estimate of the
normalized pattern. The advantage is that this module has more flexibility than
the classifier-storage combination. The encoder part does not necessarily have to
learn how to classify the input, rather it learns some abstract representation of the
input which it thinks is most useful.
Figure 5.16 shows the architecture of our NMencdec module. The encoder part is
the same as the classifier part from the NMclass−storage module, and the decoder
part is the almost symmetric counterpart, i.e. it reverses the operations of the
encoder in some sense. The “reverse” of the MaxPooling layers in this case are the
Upsample layers, which employ a linear interpolation method for upsampling.

As was the case with the NMclass−storage module, the NMencdec module also
supports two modes of operation: If its input is the convolution of the signal S
with the flipped localization in the frequency domain, i.e.

Input = FFT(S) ◦ FFT(L),
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then the module will be called NMencdec−fd. If the convolved signal is first brought
back into the spatial domain before being passed to the encoder, i.e. if

Input = IFFT(FFT(S) ◦ FFT(L)),

then the module will be called NMencdec−sd. In both cases, the output of the
module will be an estimate of the normalized pattern in its spatial domain repre-
sentation.

Figure 5.16: Architecture of the encoder-decoder normalization module. The Encoder
part is equal to the Classifier part in Figure 5.15.

5.3.2 Training
The four modules NMclass−storage−fd, NMclass−storage−sd, NMencdec−fd, and NMencdec−sd

contain neural networks that need training. To do this, we used the Adam opti-
mizer [19] with learning rate 1 · 10−4, and all other parameters were the default
parameters from PyTorch (i.e. the exponential decay rates for the moment esti-
mates are β1 = 0.9 and β2 = 0.999, and the term to increase numerical stability
is ε = 10−8). We used a special dataset for training, namely the TMSDL∞

dataset, as defined in Section 4.3.2. This dataset poses two big challenges for the
normalization modules:

• Each sample signal S of this dataset has two Morse letters, which should
make it more challenging for the normalization modules to focus on the
one letter that is pointed at by the localization L. We will call this letter
l.o.i., which is short for letter of interest. We will call the other letter, the
one which does not belong to the localization L, the n.i.l., short for not
interesting letter. Recall that this dataset randomly chooses whether the left
or the right letter in the signal is the l.o.i., which is why we have to introduce
this terminology.
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• In this dataset, the localization L is additionally noisy, meaning that it
does not exactly point at the starting location of the l.o.i., which forces the
modules to develop robustness towards this kind of noise.

Finally, during training, we also added a third source of variation to this dataset:

• We generate a random window V = {vi}n=0,...,N−1 and apply it to S (i.e.
perform a component-wise multiplication) in order to obtain Swindowed. These
windows are constructed in a manner s.t. exactly one of the three following
cases is true:

Case 1: Swindowed contains only l.o.i. and nothing else.

Case 2: Swindowed contains both l.o.i and n.i.l.

Case 3: Swindowed contains l.o.i. and a part of n.i.l.

Figure 5.17 shows some examples of how Swindowed can look like. Notice that
the window always includes the l.o.i. For example, if the l.o.i. is the left
letter, then the left border of the window is the startpoint of the l.o.i., and
the right border of the window is somewhere between the endpoint of the
l.o.i. and the enpoint of the n.i.l.: we sample a normal distributed random
number r with mean 0 and standard deviation

1

6
(endpoint(n.i.l)− endpoint(l.o.i.));

if r < 0, then the right border of the window is set to endpoint(n.i.l) + r,
and if r ≥ 0, the right border of the window is set to endpoint(l.o.i.) + r.
This means that Case 1 and Case 2 are approximately equally probable, and
Case 3 happens, on average, slightly less often than the other two. In case of
l.o.i. being the right letter in the signal, then we use analogous mechanisms:
The right border of the window is equal to the endpoint of l.o.i. and the
left border is randomly chosen to be between the startpoint of n.i.l and
the startpoint l.o.i. using a normal distribution with mean 0 and standard
deviation

1

6
(startpoint(l.o.i.)− startpoint(n.i.l.)).

The modules then use Swindowed instead of S as input signal.

When a normalization module trains on this dataset, then it will learn how to deal
with 1.) signals that contain only one Morse letter, 2.) signals that contain two
Morse letters and 3.) signals that contain a Morse letter and a part of another
Morse letter. It will also learn how to deal with localization noise. The advantage
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(a) Example 1. The letter of interest is
the left one.

(b) Example 2. The letter of interest is
the right one.

(c) Example 1 Case 1. The window only
covers the l.o.i.

(d) Example 2 Case 1. The window only
covers the l.o.i.

(e) Example 1 Case 2. The window covers
both letters entirely.

(f) Example 2 Case 2. The window covers
both letters entirely.

(g) Example 1 Case 3. The window fully
covers the l.o.i. and only a part of the
other letter.

(h) Example 2 Case 3. The window fully
covers the l.o.i. and only a part of the
other letter.

Figure 5.17: Examples for the windowing used when training the normalization modules.
The window is constructed in a manner such that one of the 3 cases shown
above is true. In particular, the letter of interest is never cut off by the
windowing.
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of this is that we do not need to train the normalization modules on multiple
datasets.

As for the loss function, we used the MSEloss (as described in Section 4.3.1) for
training the encoder-decoder modules.
For the classifier-storage modules, we used a combination of MSEloss and Py-
Torch’s CrossEntropyLoss, which is defined the following way:

CrossEntropyLoss(X, c) := − log

(
xc∑

j exp(xj)

)
,

where X = {xj}j=0,...,C−1 is a vector whose j-th entry is the confidence for class
j, c is the ground truth class and C is the total number of classes (in our case,
C = 26).
To be more precise, let Q,X be the output of a NMclass−storage module, where Q is
the estimate of the normalized pattern and X is the intermediate vector produced
by the classifier inside the module. Let P be the ground truth normalized pattern
and c be the ground truth class of the normalized pattern (i.e. P represents the
c-th letter of the alphabet in Morse code). Then, we compare if argmax(X) = c.
If that is the case, then the loss that is propagated back through the module will
be

CrossEntropyLoss(X, c) + MSELoss(Q,P).

If argmax(X) 6= c, then the loss that is propagated back through the module will
be

CrossEntropyLoss(X, c).

This ensures that the learnable storage inside the NMclass−storage module is, during
training, only updated if the classifier produced a correct prediction. Updating
the storage upon a misclassification would not make much sense.

All four modules were trained for 400 epochs.

5.3.3 Evaluation

We will now evaluate the normalization modules. Each of them gets as input
the signal S and the localization L, and is supposed to output an array Q which
should be an approximation of the ground truth normalized pattern P . First, a
small summary of the modules:
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• NMdiv−fd: Divides FFT(S) by FFT(L), performs some filtering based on
the amplitude spectrum of S, applies an IFFT on the result, and smoothes
it to get the output Q.

• NMconv: Shifts S to the left by calculating FFT(S) ◦ FFT(L), then applies
the IFFT to get Q.

• NMclass−storage−fd: Calculates FFT(S) ◦ FFT(L), and passes it on to a clas-
sifier CNN, whose output yields an index c. The output Q is the c-th entry
of an internal, learnable storage.

• NMclass−storage−sd: Same as NMclass−storage−fd, except that it passes the IFFT
of FFT(S) ◦ FFT(L) to the classifier.

• NMencdec−fd: Calculates FFT(S) ◦ FFT(L), and passes it on to a Encoder-
Decoder CNN, to get the output Q.

• NMencdec−sd: Same as NMencdec−fd, except that it passes the IFFT of
FFT(S) ◦ FFT(L) to the Encoder-Decoder.

We will test them on four datasets: MSD1000, MSDL1000, TMSD1000, and
TMSDL1000, all of which were defined in Section 4.3.2. We will measure the
normalization error using the MSEloss. Table 5.18 shows how to convert between
the absolute difference and the MSEloss, so it is easier to interpret the error values.
For the classifier-storage modules, we will also state the ratio of misclassifications.
Note that for the Two Morse signal dataset samples, only one of the two Morse
letters will be normalized, namely the one specified by the dataset’s internal fixed
LeftOrRight ∈ {0, 1}1000 vector, whose goal it is to prevent the modules to have
any bias towards the left or the right letter.

Table 5.19 shows the results of our test. We can see that the two simple modules,
NMdiv−fd and NMconv, only give satisfactory results on the MSD1000 dataset.
The reason is obvious: They were not designed to deal with localization noise or
a second Morse letter in the signal. However, even on the MSD1000 dataset, the
accuracy of these two modules is far worse than the accuracy of the classifier-
storage and the encoder-decoder approaches. The four CNN modules profit from
their training, they give acceptable results on all four datasets (i.e. the largest
normalization error among these modules is 5.374 · 10−3, which means that, on
average, the componentwise difference between output Q and ground truth P is
in the order of 10−2). To a certain degree, they acquired robustness towards local-
ization noise and the presence of a second Morse letter in the signal. Figure 5.20
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|a− b| MSEloss(a, b)
1 1

∼ 3 · 10−1 1 · 10−1

1 · 10−1 1 · 10−2

∼ 3 · 10−2 1 · 10−3

1 · 10−2 1 · 10−4

∼ 3 · 10−3 1 · 10−5

1 · 10−3 1 · 10−6

∼ 3 · 10−4 1 · 10−7

1 · 10−4 1 · 10−8

Table 5.18: Conversion between |a − b| and MSEloss(a, b). E.g., if MSEloss(a, b)
is in the order of 10−5, then the absolute distance between a and b
is approximately in the order of 10−3. If A and B are vectors, and
MSEloss(A,B) is in the order of 10−5, then this means that the average
componentwise absolute difference between A and B is in the order of
10−3.

shows two examples on the TMSDL1000 dataset; in the first example, the CNN
normalization modules do not have any issues with the localization noise or the
presence of a second Morse letter, and in the second example, only the classifier-
storage architectures makes a gross mistake.
Looking at the accuracy numbers in Table 5.19, the encoder-decoder architec-
ture seems to have a slight edge on the classifier-storage architecture, except for
the MSD1000 dataset. The price for this slighlty better accuracy is the loss in
efficiency, as the classifier-storage modules work clearly faster than the encoder-
decoder modules.
The question whether to use the frequency domain representation or the spatial
domain representation as input for the CNNs cannot clearly be answered; in three
out of four cases, the NMclass−storage−fd module has a better accuracy than the
NMclass−storage−sd module, and, also in three out of four cases, the NMencdec−fd

module has a better accuracy than the NMencdec−sd module, so it seems like using
the frequency domain representation works better than using the spatial domain
representation as input for the CNN. However, the differences are very small. A
better argument for the frequency domain representation is that the concept of
convolving S with the reverse of L in order to shift S to the left only works in the
frequency domain, due to its periodicity properties, and we have now seen that
applying an IFFT before handing the convolved signal to the CNN is superfluous.
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5 Signal Decomposition Modules

Average Normalization Error
Average

MSD1000 MSDL1000 TMSD1000 TMSDL1000 timing

NMdiv−fd 1.396 · 10−3 6.782 · 10−2 6.803 · 10−2 1.305 · 10−1 0.474ms
NMconv 4.217 · 10−4 7.225 · 10−2 7.811 · 10−2 1.483 · 10−1 0.139ms
NMclass−storage−fd 1.456 · 10−8 1.333 · 10−4 9.057 · 10−4 5.078 · 10−3 0.454ms

misclassifications 0% 0.5% 2.8% 10.4%

NMclass−storage−sd 1.262 · 10−5 3.799 · 10−5 3.938 · 10−3 5.374 · 10−3 0.464ms
misclassifications 0.1% 0.3% 9.1% 10.7%

NMencdec−fd 7.447 · 10−6 7.523 · 10−5 2.344 · 10−4 2.971 · 10−3 0.774ms
NMencdec−sd 8.988 · 10−6 3.307 · 10−5 3.415 · 10−4 3.085 · 10−3 0.778ms

Table 5.19: Evaluation of the Normalization Modules. The normalization errors
are the average MSEloss the respective module produces on a sample of
the respective dataset. The time measurements show the average time
the respective module needs to perform a single forward pass, which
is the same on all datasets, because all have the same discretization
resolution N = 256. Marked in bold are the highest accuracies for the
four datasets.

In conclusion, using the properties of the frequency domain enabled us to employ
relatively simplistic CNN architectures which give good accuracy.
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5.3 Normalization Module

(a) Both the classifier-storage and the
encoder-decoder modules make accu-
rate predictions, despite the localiza-
tion noise and presence of a second
Morse letter in the signal.

(b) The frequency-domain-classifier-
storage misclassifies the letter, and
the spatial-domain-encoder-decoder
also makes a mistake. The other two
modules make accurate predictions.

Figure 5.20: Example outputs for the classifier-storage and encoder-decoder architec-
tures. The first row shows a signal sample from the TMSDL1000 dataset,
the second row shows the imprecise localization. Third row: prediction by
the NMclass−storage−fd module, fourth row: prediction by the NMencdec−fd

module, fifth row: prediction by the NMclass−storage−sd module, sixth row:
prediction by the NMencdec−sd module, last row: ground truth normalized
pattern.
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5 Signal Decomposition Modules

5.4 Iterative Module

The final signal decomposition task is the Simultaneous Localization and Nor-
malization. It is defined as:

Given only the signal, we want to extract both the localization of the interesting
pattern and, at the same time, a canonical representation of that pattern.

In this task, we are only given the input signal S and need to extract both the
localization parameter τ and the normalized pattern P for that location.

5.4.1 Alternating Normalization and Localization

Construction

Our approach to this problem is to make use of the localization modules and
normalization modules previously discussed. More specific, we alternatingly run a
normalization module and a localization module. With each iteration, the normal-
ization module will produce an improved guess of the normalized pattern, which
will be used by the localization module to produce an improved guess of the lo-
calization, which, in turn, will be used by the normalization module to produce
an improved guess of the normalized pattern, which, in turn, will be used by the
localization module to produce an improved guess of the localization, and so on.
Since we use this iterative method, this solution will be called Iterative Module
(IM). A special advantage of this iterative design is that it allows the module to be
used inside a deep CNN, where the individual iterations correspond to consecutive
layers. Algorithm 1 describes how we alternatingly run the normalization module
and the localization module.
Note that the localization module returns a single number that estimates the
ground truth translational parameter τ , rather than an array that estimates the
ground truth localization array L, so we need to define a method called makeGaus-
sian which converts the single number into a localization array. This is done be-
cause the normalization module takes a localization array as input, not a single
localization number.
At this point, it becomes obvious why we wanted our normalization module to be
robust towards localization noise: The initial localization L0 is chosen randomly, so
in the first iteration, the normalization module gets a possibly completely impre-
cise localization as input. We want the normalization module to output something
sensible even in the first iteration, which can only be achieved if the normalization
module knows how to deal with imprecise localizations.
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5.4 Iterative Module

Algorithm 1: First version of the Iterative Module.
Input : NM – a normalization module

LM – a localization module
S – input discrete signal
N – length of S
M – number of iterations

Output: ρ – estimate of the ground truth localization parameter τ
Q – estimate of the ground truth normalized pattern P

1 def makeGaussian(µ) :
2 g ← continuous Gaussian curve with mean µ and standard deviation 0.004
3 G← {g(j ·N−1)}j=0,...,N−1

4 return G

5 r ← uniform random number in the interval [0, 1]
6 L0 ← makeGaussian(r)
7 for k = 1, . . . ,M do
8 Qk ← NM(S,Lk−1)
9 ρk ← LM(S,Qk)

10 Lk ← makeGaussian(ρk)
11 end
12 ρ← ρM
13 Q← QM

14 return ρ,Q

Evaluation

We test the iterative module architecture of Algorithm 1 on the two datasets
MSD1000 and TMSD1000. Given the signal S, the IM module will produce an
output pair (ρ,Q). If the ground truth localization-normalization pair is (τ, P ),
then the error will be the pair (Closs(ρ, τ),MSEloss(Q,P )). Note that for the Two
Morse signal dataset, the IM module has to extract the localization-normalization
pair for only one of the two letters. For calculating the error, we then use the
ground truth that belongs to the letter whose ground truth translation τ is closer
to the output ρ.
Beforehand, we need to decide which of the normalization modules from Section 5.3
and which of the localization modules from Section 5.2 we want to utilize. For the
normalization module, we choose the NMencdec−fd module, because it showed the
best overall accuracy across the four datasets listed in Table 5.19. Particularly,
it was able to deal with imprecise localizations, which is important for the first
iteration where the localization is randomly chosen. Recall that it was trained
for 400 epochs using the special TMSDL∞ dataset, as described in Section 5.3.2.
For the localization module, we can choose either the LMlocal−lf−CNN module or
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5 Signal Decomposition Modules

the LMspatial−CNN because these two are the most accurate localization modules
and the only ones that are able to precisely work on the TMSD1000 dataset; we
decided to test the IM module with both of these localization modules. There are
two differently trained versions for each of these two localization modules; the sub-
script indicates the training parameters (e.g. LMlocal−lf−CNN

TMSD500 , is the LMlocal−lf−CNN

module that has been trained for 500 epochs on the TMSD∞ dataset).
We also need to pick a number M , i.e. the number of iterations. We experimentally
chose M = 10.

MSD1000 TMSD1000

Average Average Average Average
Localization Normalization Localization Normalization

error error error error

NMencdec−fd

+ 2.139 · 10−7 7.441 · 10−6 8.321 · 10−2 5.037 · 10−4

LMlocal−lf−CNN
MSD40

NMencdec−fd

+ 2.937 · 10−6 7.426 · 10−6 9.480 · 10−4 7.192 · 10−5

LMlocal−lf−CNN
TMSD500

NMencdec−fd

+ 5.782 · 10−7 7.449 · 10−6 2.402 · 10−2 6.518 · 10−5

LMspatial−CNN
MSD40

NMencdec−fd

+ 1.172 · 10−6 7.485 · 10−6 8.605 · 10−5 9.449 · 10−5

LMspatial−CNN
TMSD300

Table 5.21: Evaluation of the Iterative Module. The localization errors are the
average Closs the respective module produces on a sample of the re-
spective dataset, and the normalization errors are the average MSEloss
the respective module produces on a sample of the respective dataset.
Marked in bold are the highest accuracies for the respective columns.

Table 5.21 shows the result of this test. We can see that the normalization er-
ror seems to be almost independent from the choice of the localization module,
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5.4 Iterative Module

the reason for which being the enormous capability of the NMencdec−fd to deal
with imprecise localizations. Unsurprisingly, when using the localization mod-
ules that have been trained on the MSD∞, then the highest accuracy for the
MSD1000 dataset is achieved, but they also produce the lowest accuracy on the
TMSD1000 dataset. Comparing the local line fitting CNN architectures with the
spatial CNN architectures, we can see that they are very close in accuracy for
the MSD1000 dataset, but in the presence of a second Morse letter in each signal,
the LMspatial−CNN modules produce slightly better results than the LMlocal−lf−CNN

modules.

5.4.2 Shrinking Windows

Improvement

Figure 5.22: Errors per iteration of the Iterative Module. Shown is, for each iteration i,
the average error between the output of the i-th iteration and the ground
truth. The data comes from a run on the TMSD1000 dataset, where the
localization module is either the LMlocal−lf−CNN

TMSD500 module (green lines) or
the LMspatial−CNN

TMSD300 module (red lines).

We now try to increase the accuracy of our iterative approach on the Two Morse
signal dataset. Figure 5.22 shows how the localization error and the normalization
error develops from iteration to iteration when using the IM module. It seems
like the localization error quickly drops at first but then, it stagnates. However,
we want the errors to decrease constantly, so we improve the iterative module by
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5 Signal Decomposition Modules

adding a windowing procedure to each iteration. The goal for our windowing func-
tion is to cut away one of the two Morse letters, s.t. the normalization module and
the localization module do not have to deal with the second Morse letter. At the
beginning of the k-th iteration, the algorithm will construct a window, based on
the output localization ρk−1 and output normalized pattern Qk−1 of the previous
iteration. This window is then applied to the original input signal S, yielding Sk,
which is used by the normalization module and the localization module in the k-th
iteration instead of S. The window is basically a box function that is 1 inside the
interval [ρk−1, ρk−1+wk−1], where wk−1 is the time length of the normalized Morse
letter predicted by Qk−1 (e.g. the Morse letter “e” has width 0.03, the morse let-
ter “i” has length 0.09). If the j∗-th component of the array Qk−1 is larger than
0.5, and all components with larger indices are smaller than 0.5, then we can set
wk−1 = j∗/N , because it means that the important pattern in Qk−1 ends after the
j∗-th array index. Now, the windowed signal Sk should only contain the one Morse
letter estimated by the pair (ρk−1, Qk−1). However, this assumes Qk−1 and ρk−1

are already very precise approximations of a Morse letter in S. If they are not pre-
cise enough, then the windowing cuts off too much, and Sk does not fully contain
any of the Morse letters that were present in the original S. So, we add tolerance
intervals of length βk · wk−1 on both sides of the window, where β ∈ (0, 1) is a
window parameter. The interval for the box function now starts at ρk−1−βk ·wk−1

and ends at ρk−1 +wk−1 + βk ·wk−1. As the number of iterations increases, i.e. as
k becomes larger, βk will become smaller, so the tolerance intervals will shrink in
size, which is why we call this approach Shrinking Windows Iterative Module
(SWIM). It slowly and carefully cuts off more and more parts of S that do not
belong to the Morse letter estimated by the pair (ρk, Qk), and the normalization
module and localization module cannot constantly jump from one estimation to a
completely different estimation. Algorithm 2 describes the implementation of that
module.

Note that we account for the periodicity of the frequency domain representation by
extending the interval of the windowing function periodically (i.e. if the start of the
windowing interval, ρk−1−βk ·wk−1, is smaller than 0, then the windowing function
additionally assumes 1 on the interval [1+ρk−1−βk ·wk−1, 1], and if the end of the
windowing interval, ρk−1 + wk−1 + βk · wk−1, is larger than 1, then the windowing
function additionally assumes 1 on the interval [0, ρk−1+wk−1+βk ·wk−1−1]). Also,
we smoothed the windowing function to prevent discontinuities in the windowed
signal (e.g. locations where the signal intensity jumps from 0 to 1). The smoothing
is done using the same filter that we have already used in Equation (5.19).
Of course, in the 0-th iteration, which gets a random localization as input, we use
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5.4 Iterative Module

Algorithm 2: Shrinking Windows Iterative Module.
Input : NM – a normalization module

LM – a localization module
S – input discrete signal
N – length of S
M – number of iterations
β – window parameter

Output: ρ – estimate of the ground truth localization parameter τ
Q – estimate of the ground truth normalized pattern P

1 def makeGaussian(µ) :
2 –defined as in Algorithm 1–

3 def smooth(A) :
4 (aj is the j-th component of A)
5 for n = 0, . . . , N − 1 do

6 bn ←
1

4

 n∑
j=0

2−(n−j)aj +

N−1−n∑
j=0

2−jan+j


7 endfor
8 b← max{bn | n = 0, . . . , N − 1}
9 return {bn/b}n=0,...,N−1

10 def makeWindow(ρ,Q, k) :
11 j∗ ← max{j ∈ {0, . . . , N − 1} | pj > 0.5} (pj is the j-th component of P )
12 w ← j∗/N

13 start ← ρ− βk · w
14 end ← ρ+ (1 + βk) · w
15 v ← continuous box function

that is 1 inside the interval [max(0, start),min(1, end)] and 0 otherwise
16 if start < 0 then
17 v is also 1 in the interval [1 + start, 1]
18 if end > 1 then
19 v is also 1 in the interval [0, end− 1]

20 V̂ ← {v(l ·N−1)}l=0,...,N−1

21 V ← smooth(V̂ )
22 return V

23 r ← uniform random number in the interval [0, 1]
24 Linit ← makeGaussian(r)
25 Q0 ← NM(S,Linit), ρ0 ← LM(S,Q0), L0 ← makeGaussian(ρ0) (0-th iteration)
26 for k = 1, . . . ,M do
27 Vk ← makeWindow(ρk−1, Qk−1, k)
28 Sk ← S ◦ Vk (Sk is the windowed signal in the k-th iteration)
29 Qk ← NM(Sk, Lk−1)
30 ρk ← LM(Sk, Qk)
31 Lk ← makeGaussian(ρk)
32 end
33 ρ← ρM
34 Q← QM

35 return ρ,Q
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5 Signal Decomposition Modules

the original signal S without the application of a window. In our implementation,
for the windowing parameter β, the value 0.85 was experimentally chosen.
Figure 5.25 shows an example of how the windowing does indeed slowly cut away
one of the two Morse letters present in the Two Morse signal dataset, and in the
end, only one Morse letter is left in the windowed signal. It now becomes clear why
we partially trained the normalization modules on signals that contain one Morse
letter and only a part of another Morse letter (recall Case 3 in Section 5.3.2): the
robustness of the normalization modules in these cases now comes in handy for
using them in the SWIM module.

Evaluation

Figure 5.23: Errors per iteration of the Shrinking Windows Iterative Module. Shown is,
for each iteration i, the average error between the output of the i-th iteration
and the ground truth. The data comes from a run on the TMSD1000

dataset, where the localization module is either the LMlocal−lf−CNN
TMSD500 module

(cyan lines) or the LMspatial−CNN
TMSD300 module (magenta lines). The dotted lines

show how the errors looked like without the windowing procedure.

Figure 5.23 shows how the error develops from iteration to iteration, this time
including the windowing in each iteration. For the LMlocal−lf−CNN module, the lo-
calization accuracy does not stagnate anymore, rather it gradually becomes better.
The LMspatial−CNN module was already very accurate even without the windowing.
We tested the SWIM module on the TMSD1000 dataset. As before, the normal-
ization module is the NMencdec−fd module. For the localization module, we tested
the two alternatives LMlocal−lf−CNN

TMSD500 and LMspatial−CNN
TMSD300 . Table 5.24 shows the result
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TMSD1000

Localization Normalization
error error

NMencdec−fd

+ 8.483 · 10−6 8.068 · 10−6

LMlocal−lf−CNN
TMSD500

NMencdec−fd

+ 5.021 · 10−6 2.097 · 10−5

LMspatial−CNN
TMSD300

Table 5.24: Evaluation of the Shrinking Windows Iterative Module. The localiza-
tion errors are the average Closs the respective module produces on
a sample of the dataset, and the normalization errors are the average
MSEloss the respective module produces on the dataset. Marked in
bold are the highest accuracies for the respective columns.

of the test. Comparing it with the results of the IM module without windowing
(Table 5.21) confirms that the windowing has indeed improved the localization ac-
curacy of both architectures. However, the LMlocal−lf−CNN architecture seemingly
profited a bit more from the windowing than the LMspatial−CNN architecture, as it
was able to improve its localization error from the order of 10−4 to 10−6, while the
accuracy of the spatial CNN architecture has “only” improved from the order of
10−5 to 10−6. However, the local line fitting CNN module seems to have a better
synergy with the normalization module: the normalization error is smaller when
using the LMlocal−lf−CNN module as localizer.
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5 Signal Decomposition Modules

Figure 5.25: Shrinking windows example. It can clearly be seen how the windows (right
column) become smaller with each iteration, and how one of the two Morse
letters is slowly cut away in the windowed signal (left column).
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5.4.3 Simultaneous Extraction of Two Letters

Finally, we try to simultaneously extract both Morse letters from a TMSD1000

sample. An easy solution we found was to make use of the window function: We
simultaneously run two copies of the Shrinking Windows Iterative Module, but for
each iteration, the window function for the second module is set to be the inverse
of the window function calculated by the first module (i.e. if {vj}j=0,...,N−1 is the
window calculated by the first module, then {1− vj}j=0,...,N−1 is the window used
by the second module). This means that the two modules always see different
parts of the input signal S, and ideally, in the end, the windowed signal for the
first module contains only one Morse letter, and the windowed signal for the second
module contains exactly the other Morse letter. So, the output of the first module
should be the (localization, normalized pattern) pair for one Morse letter in the
signal, and the output of the second module should be the (localization, normalized
pattern) pair that belongs to the other Morse letter. Figure 5.27 shows an example
output where both letters were successfully extracted by this method.

Evaluation

The testing dataset was the TMSD1000. For each sample, the ground truth is given
as two pairs (τ 1, P 1) and (τ 2, P 2), and the module outputs two pairs (ρ1, Q1) and
(ρ2, Q2). The error for the first pair is defined as

Error((ρ1, Q1)) =

{
(Closs(ρ1, τ 1),MSEloss(Q1, P 1)) , if Closs(ρ1, τ 1) < Closs(ρ1, τ 2)
(Closs(ρ1, τ 2),MSEloss(Q1, P 2)) , else.

The error for the second output, Error((ρ2, Q2)), is always calculated using the
ground truth pair that has not been used by the first output. So, if both output
pairs estimate the same Morse letter, then the error cannot be small.
Table 5.26 shows the results for the simultaneous extraction of two Morse letters
using the SWIM module. It confirms that both localization-normalization pairs
can be extracted with high accuracy. Note that the errors are slightly larger than
in Table 5.24. The reason for this is that sometimes, the window V does not cut
off the entire second Morse letter, s.t. the inverse window 1 − V does not cover
the entire second Morse letter, s.t. the modules that have to deal with the signal
windowed by 1−V only get one incomplete letter in their signal input. This leads
to inaccuracies. The numbers of the normalization errors support the notion that
the combination of NMencdec−fd with LMlocal−lf−CNN produces better normalized
patterns than the combination of NMencdec−fd with LMspatial−CNN.
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TMSD1000

first letter second letter
Average Average Average Average

Localization Normalization Localization Normalization
error error error error

NMencdec−fd

+ 1.301 · 10−5 8.755 · 10−6 1.706 · 10−5 7.041 · 10−5

LMlocal−lf−CNN
TMSD500

NMencdec−fd

+ 1.054 · 10−5 2.135 · 10−5 7.433 · 10−5 1.042 · 10−4

LMspatial−CNN
TMSD300

Table 5.26: Evaluation of the simultaneous extraction of two letters. The localiza-
tion errors are the average Closs the respective module produces on a
sample of the respective letter, and the normalization errors are the
average MSEloss the respective module produces on a sample of the
respective letter. Marked in bold are the highest accuracies for the
respective columns.

Figure 5.27: Example for extracting two letters at once. The module found accurate
predictions for both localization-normalization pairs.
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Outlook

If there were more than two Morse letters in one signal, then the basic idea would
be to recursively apply the same method, e.g. in the case of three Morse letters, for
each iteration, the first SWIM module produces a window V 1 as always and uses
the signal windowed by V 1. The second module also calculates its own window V 2

according to the usual SWIM window making procedure, using its own output
from the previous iteration, and uses the signal windowed by (1− V 1) ◦ V 2. The
third SWIM module simply uses the signal windowed by (1 − V 1) ◦ (1 − V 2),
which only contains the letter that is neither covered by the first module nor
by the second. Generalization to more Morse letters is straightforward: if we
know the number of Morse letters K, then during each iteration, the k-th module
(k = 1, . . . , K) calculates the window V k and uses the signal windowed by

V k ◦
k−1∏
j=1

(1− V j)

as input for its normalization module and localization module, where the K-th
window V K can simply be set to be 1 everywhere. That way, after a large enough
number of iterations, each Morse letter is visible to exactly one module, and every
module can only see one letter.
However, this assumes that the normalization module and the localization module
can be trained to deal with signals that contain up to K letters (which we have not
tested for K > 2), and it requires the fine-tuning of both the windowing parameter
β and the number of iterations.

73





6 Extension to 2D
In this chapter, we will briefly demonstrate that our local line fitting approach is
also capable of solving the localization task for two-dimensional images.

6.1 Shifted MNIST dataset
Here, we make use of the well-known MNIST1 dataset of handwritten digits. Each
sample is a greyscale image of size 28 × 28 of one handwritten digit between
0 and 9. Recall that the localization task consists of taking an image and a
normalized version of a pattern in that image, and calculating the translation
between the two images. Since the original MNIST dataset is constructed to be
used for classification rather than image registration, we manipulate it and create
the Shifted MNIST dataset. Srivastava et al. [36] also implemented a dataset
that contains frames with randomly shifted MNIST digits, but they do not consider
sub-pixel shifts.
Let S be a 28×28 MNIST sample. A Shifted MNIST sample is constructed the
following way: First, a resolution r > 28 is chosen. The shifted MNIST sample
then contains two r× r frames: The first one is the normalized pattern P , with

Pi,j =

{
Si,j , if i, j ∈ {0, . . . , 27}
0 , else,

for all i, j ∈ {0, . . . , r − 1}

i.e. the top left 28× 28 corner area of P is equal to S and the rest is black.
The second frame is the translated pattern X. A real-valued 2D-translation
∆ = (∆y,∆x) is uniformly randomly chosen from the set [0, r − 28] × [0, r − 28],
and S is shifted inside a r × r frame by ∆ to obtain X. This ensures that the
shifted S does not exceed the borders of X and is always fully inside. Since ∆ is
real-valued, we bilinearly interpolate the pixel values of X:

Xi,j =
∑

k∈{∆int
y ,∆int

y +1}
l∈{∆int

x ,∆int
x +1}

(1− |k −∆y|)(1− |l −∆x|)Si−k,j−l, (6.1)

1http://yann.lecun.com/exdb/mnist/
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where ∆int
y ,∆int

x ∈ N ∪ {0} are the integer parts of ∆y and ∆x, respectively.
Note that if, in Equation (6.1), i − k, j − l /∈ {0, . . . , 27}, then we implicitly set
Si−k,j−l = 0.
Figure 6.1 shows some examples of the Shifted MNIST dataset.
Given X and P , the task is now to find an estimate of the ground truth translation
∆.

(a) (b)

(c) (d)

Figure 6.1: Examples for the Shifted MNIST dataset with framesize r = 128. For each
pair, the left frame is the normalized pattern P and the right frame is the
translated pattern X. Note that, for visualization, the images have been
inverted, i.e. dark colours belong to high intensity values.

6.2 Localization Modules
For this demonstration, we will take the three modules LMpc, LMlocal−lf, and
LMspatial−CNN, and transform them into 2D modules.

Phase Correlation

The very basic phase correlation image registration serves as a baseline for this
experiment. Given the translated pattern X and the normalized pattern P , we
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calculate, as before, the cross-power spectrum

CPS(X,P ) =
FFT(X) ◦ FFT(P )

|FFT(X) ◦ FFT(P )|
, (6.2)

transfer it back to the spatial domain and take its argmax pixel location

γ = argmax(IFFT(CPS(X,P ))), (6.3)

which is the output of the phase correlation module LMpc−2D. There is no differ-
ence to the one-dimensional phase correlation method, because all operations in
Equation (6.2) are componentwise, so it does not matter whether its input is 1D or
2D. Note that in the two-dimensional case, it uses the two-dimensional FFT whose
entry at position i, j gives information about how a 2D-sinusoid wave of frequency√
i2 + j2, oscillating in direction (i, j)T , contributes to the input of the FFT. The

two-dimensional FFT has the same properties as described in Section 3.3, as the
one-dimensional FFT. Figure 6.2 shows some examples of how the IFFT of the
cross-power spectrum shows one single peak, around the location of ∆.

(a) (b)

(c) (d)

Figure 6.2: Examples for the 2D phase correlation with framesize r = 128. For each
subfigure, the leftmost frame is the normalized pattern P , the middle frame
is the translated pattern X, and the rightmost frame is the phase correla-
tion IFFT(CPS(X,P )). Note that, for visualization, the images have been
inverted, i.e. dark colours belong to high intensity values.
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Local Line Fitting

Transferring the LMlocal−lf module to 2D is straightforward. We compute CPS(X,P )

according to Equation (6.2), take its phase spectrum phases(CPS(X,P )), whose
entry at position i, j will be called phasei,j, and compute the local gradients in
both x-direction and y-direction:

grady
i,j =

phasei+1,j − phasei,j
i+ 1− i

(6.4)

gradx
i,j =

phasei,j+1 − phasei,j
j + 1− j

. (6.5)

We then divide the gradients by −2π, as we did in the one-dimensional case:

ρyi,j = −
1

2π
grady

i,j (6.6)

ρxi,j = −
1

2π
gradx

i,j (6.7)

and compute weights wx
i,j and wy

i,j from the normalized amplitude spectra of X

and P :

wy
i,j = ampi+1,j + ampi,j (6.8)

wx
i,j = ampi,j+1 + ampi,j (6.9)

where

ampi,j =
amplitudei,j(FFT(X)) · amplitudei,j(FFT(P ))(

r−1∑
k,l=0

amplitudek,l(FFT(X))

)
·

(
r−1∑
k,l=0

amplitudek,l(FFT(P ))

) .

The weights are then also normalized, i.e.

ŵy
i,j =

wy
i,j

r−1∑
k,l=0

wy
k,l

(6.10)

ŵx
i,j =

wx
i,j

r−1∑
k,l=0

wx
k,l

(6.11)
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6.2 Localization Modules

and the gradients ρyi,j and ρxi,j are projected to the unit circle

ρ̂yi,j = (cos(2πρyi,j), sin(2πρ
y
i,j))

T (6.12)
ρ̂xi,j = (cos(2πρxi,j), sin(2πρxi,j))T . (6.13)

(a) (b)

(c) (d)

Figure 6.3: Local gradients projected to the unit circle in the 2D case with framesize
r = 128. In each subfigure, the left graph shows the points ρ̂yi,j that estimate
∆y and the right graph shows the points ρ̂xi,j that estimate ∆x. Marked as a
blue cross is the point where the ground truth is located. In some cases, the
local gradients are extremely densely clustered around the ground truth.

Figure 6.3 shows how those unit circle points are clustered around the ground
truth. The points are clustered very closely around the ground truth, possibly
because 2D images contain so much information that the phase part of the cross-
power spectrum is hardly disturbed by noise and aliasing. Finally, the unit circle
points are weighted:

γ̂y =
r−1∑
i,j=0

ŵy
i,j ρ̂

y
i,j (6.14)

γ̂x =
r−1∑
i,j=0

ŵx
i,j ρ̂

x
i,j. (6.15)
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6 Extension to 2D

Then, the angles angle(γ̂y), angle(γ̂x) ∈ [0.2π) are extracted, divided by 2π and
multiplied by r to get an estimate γ := (γy, γx) of ∆ = (∆y,∆x):

γy =
r

2π
angle(γ̂y) (6.16)

γx =
r

2π
angle(γ̂x). (6.17)

γ is the output of our LMlocal−lf−2D module. The only difference to the one-
dimensional module is that we have to keep track of both x-direction and y-direction.

Cross-correlation

Recall that the LMspatial−CNN module computed the cross-correlation X ? P be-
tween the inputs X and P , handed it to a CNN to compute weights and used those
to compute the weighted sum over all pixel locations. For the two-dimensional case,
we discard the CNN and use the two-dimensional cross-correlation itself to weight
the pixel locations, which saves time:

γy =

r−1∑
i,j=0

(X ? P )i,j · i

r−1∑
k,l=0

(X ? P )k,l

− 14 (6.18)

γx =

r−1∑
i,j=0

(X ? P )i,j · j

r−1∑
k,l=0

(X ? P )k,l

− 14. (6.19)

γ = (γy, γx) is the output of our spatial cross-correlation module LMcc−2D. Fig-
ure 6.4 shows some examples of how the cross-correlation X ? P points at the
region of the image where normalized pattern and the translated pattern match
best. Notice that due to our implementation, this highlighted region is centered
around the center of the digit, which is at position (∆y + 14,∆x + 14), because
the digits in the original 28 × 28 MNIST frames S are centered around (14, 14).
This explains why we subtract 14 in Equation (6.18) and Equation (6.19). It is
desirable to have the highlighted region being centered around (∆y +14,∆x +14)

instead of (∆y,∆x), because otherwise, for small ∆y or ∆x, the highlighted region
would be cut off at the border of the frame, thereby not being centered around
the global maximum peak anymore, which would cause a loss of precision when
calculating the weighted sums in Equation (6.18) and Equation (6.19).
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(a) (b)

(c) (d)

Figure 6.4: Examples for the 2D cross-correlation with framesize r = 128. For each subfigure,
the left frame is the normalized pattern P , the middle frame is the translated pattern
X, and the right frame is the cross-correlation X ? P . Note that, for visualization,
the images have been inverted, i.e. dark colours belong to high intensity values.

6.3 Evaluation

We tested our three modules on the Shifted MNIST dataset that is obtained when
applying the procedure described in Section 6.1 to the testing dataset from MNIST,
which results in 10000 samples. Each module gets as input the translated pattern
X and the normalized pattern P , both having size r×r with r = 256, and outputs
an estimate γ = (γy, γx) of the ground truth translation ∆ = (∆y,∆x). The error
is measured using the Closs:

Error(γ,∆) =

(
Closs

(
γy
r
,
∆y

r

)
,Closs

(
γx
r
,
∆x

r

))
, (6.20)

where the divisions by r are necessary because the inputs for Closs need to be in
the interval [0, 1] in order for it to output a sensible error value.
We also measured the time the modules need, this time we used an NVIDIA
GeForce RTX 2080 Ti GPU with 11 GiB of memory for the computations.

Table 6.5 shows the result of our test. In our Shifted MNIST dataset, the pixel
width is equal to 1/r = 1/256 ≈ 3.9 · 10−3, so, according to Table 5.10, a mod-
ule can be considered to have achieved sub-pixel accuracy if the Closs error is
in the order of at most 10−6. The baseline phase correlation method LMpc−2D

has, unsurprisingly, the worst accuracy because it is not made to achieve sub-
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6 Extension to 2D

Average Error Average Error Average
between between timing per
γy and ∆y γx and ∆x forward pass

LMpc−2D 5.023 · 10−5 4.953 · 10−5 1.459ms
LMlocal−lf−2D 1.245 · 10−7 9.050 · 10−8 1.358ms
LMcc−2D 1.618 · 10−6 1.563 · 10−7 7.811ms

Table 6.5: Evaluation of the 2D Localization Modules. The Errors are measured
according to Equation (6.20), split up in x- and y-direction. The time
measurements are the average time the respective module needs to per-
form a single forward pass. Marked in bold are the highest accuracies.

pixel accuracy. Both the LMcc−2D module and the LMlocal−lf−2D module achieve
sub-pixel accuracy, with the latter reaching the highest precision of all. We can
compare Table 6.5 with its counterpart in the one-dimensional case (i.e. the first
column of Table 5.11), because in both experiments, the pixel width is equal to
1/256. The comparison shows that the phase-correlation method has the same
accuracy for both 1D and 2D, which was expected because the LMpc module and
the LMpc−2D module do exactly the same. The LMcc−2D module is not as accurate
as the LMspatial−CNN module was in the one-dimensional case, because it has no
CNN that could otherwise increase the precision. Interestingly, the LMlocal−lf−2D

module is more accurate than its 1D counterpart LMlocal−lf. The reason for this
is that in the 2D case, the local gradients are much denser clustered around the
ground truth than in the 1D case, which can be seen when comparing Figure 6.3
with Figure 5.6. This difference is probably caused by the different amount of
information in 1D Morse signals compared to 2D images of handwritten digits.

Comparing the speed performances, the LMlocal−lf−2D module is the fastest of
them all, closely followed by the LMpc−2D module. This is interesting because the
phase correlation module is seemingly much less complex than the local line fitting
module. Unsurprisingly, the LMcc−2D module is the slowest because computing a
spatial cross-correlation is expensive.

All in all, the LMlocal−lf−2D module is both the fastest and the most accurate
localization module on our Shifted MNIST dataset. We did not include any CNN
module in this experiment, but our observations in the one-dimensional case sug-
gest that combining our 2D modules with CNNs would improve their accuracy and
their robustness if a second digit was present in the translated pattern frame. If
training a CNN is undesirable, then the LMlocal−lf−2D module is a good alternative.
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7 Conclusion

In this thesis, we developed and tested a variety of methods to extract semantic
information from one-dimensional Morse signals. Most notably, our suggested so-
lutions were able to detect patterns inside a signal with sub-pixel accuracy and
extract a precise, canoncial representation of that pattern, even if the signal con-
tains more than just the one pattern. The key contribution was the usage of the
frequency domain; we did not rely on state-of-the-art CNN architectures, rather
we combined more simplistic CNNs with techniques that make use of the special
properties of the frequency domain.

In the localization task, if a signal only contains a single Morse letter, then
the local line fitting CNN module, which is a frequency domain approach, was
more precise than any other method. However, in the presence of a second Morse
letter in the signal, a spatial CNN regularly outperformed that module. In the
case of very high resolution signals, running the frequency domain method was
significantly faster than using the spatial CNN. In the normalization task, our
encoder-decoder CNN that runs on the frequency domain representation showed
the best overall performance. Combining the encoder-decoder CNN with either
the local line fitting CNN or the spatial CNN localization module in an iterative
manner and adding a windowing procedure yields the Shrinking Windows Iterative
Module, which is capable of precise simultaneous localization and normalization,
even for two Morse letters in one signal at the same time.

Regarding our initial motivation, namely to resolve the insufficiency of CNNs to
efficiently deal with spatial transformations (in this case sub-pixel translations),
this thesis demonstrated how running a CNN on the frequency domain represen-
tation can produce results which are comparable to those of running the CNN
on the spatial domain representation. It is up to future work to find frequency
domain methods that can be applied to more general spatial transformations, and
to design them in a manner such that they are clearly more precise or clearly more
efficient than spatial domain methods. Our local line fitting CNN module is a first
simple example for a frequency domain method which is comparably accurate as
a purely spatial method, while being significantly more efficient if the input array
is not very small.

It also remains to be seen how well our modules perform on natural signals,
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7 Conclusion

rather than our artificial Morse signal dataset. We believe that we did not include
any methodical steps that make use of the unique characteristics of Morse code,
but particularly the limited range of signal intensity values in our dataset samples
removed an important factor of additional complexity that is present in most nat-
ural signals.

Enabling our modules to work on two-dimensional images would be a natural
extension. It should be straightforward to implement this because every compu-
tational step we used has an equivalent in 2D, and we have already demonstrated
this for the local line fitting module. Another point of extension would be the FFT
itself; for the CNN modules, we could make the parameters of the FFT learnable.
It could be interesting to investigate whether involving the FFT parameters in the
training process would result in any improvement by encoding learned statistics
of the input dataset directly in the FFT weights.
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