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Abstract

Magnet Resonance Imaging (MRI) can be used to depict plant root architecture

through opaque soil without the use of invasive markers. To automatically extract

the root architecture reliably from the sampled MRI images the resolution and the

signal-to-noise ratio have to be enhanced. This is a super resolution (SR) problem.

Increasing the signal-to-noise-ratio can be done by image segmentation. Both

problems can be solved using convolutional neural networks. This thesis applies

shallow convolutional neural networks, trained on synthetic plant root data, to the

problem of 3D image segmentation and the joint problem of image segmentation

and super resolution for plant root MRI. These networks are analyzed based on

the used architecture and their parameter and guidelines for these parameters are

extracted.
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1 Introduction

1.1 Motivation

Plant root architecture is a crucial part of soil exploration. To analyze the root

architecture without altering or destroying it, non-invasive imaging methods are

needed. Magnet Resonance Imaging (MRI) is one such imaging method. MRI

creates a volumetric image of the scanned area by primarily measuring water

content.

Root architecture has to be extracted from the scan. This is mostly done by

hand, utilizing a thresholded MRI scan. The thresholding is done to reduce most

of the background noise. Doing so is time-consuming and can result in losing root

tips or thinner roots due to the threshold being to great, see e.g. Figure 1.1 .

An algorithm to automatically extract the root architecture from MRI scans has

already been developed (Schulz et al., 2013). The performance of this algorithm

depends heavily on scan resolution and signal-to-noise ratio (SNR). Limited reso-

lution may also lead to voxels being larger than thinner roots loosing these details.

Scans with insufficient resolution and low SNR loose large portions of structure in

reconstruction.

To allow for scans with low resolution or low SNR to be used, software post-

processing may be applied.

This thesis seeks to explore the application of simpler convolutional neural net-

works to increase the resolution and SNR of 3D plant root MRIs. The problem is

therefore split into:

1. Increase SNR by decreasing intensity of noise voxels while retaining or

increasing intensity of root voxels. This can be understood as Image Seg-

mentation problem.

2. Increase scan resolution while trying to recapture details not captured

in the original scan due to low resolution. This is the problem of Super

Resolution.
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1 Introduction

(a) Dataset: lupine small. Voxel with in-
tensity 127 or higher are depicted. This
reduces noise to some extend.

(b) Dataset: lupine 22. Voxel with inten-
sity 45 or higher are depicted. This reduces
noise and also looses a lot of thinner roots
which creates disconnected branches.

Figure 1.1: 3D visualization of thresholded plant root MRI
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1.2 Structure and Contribution

1.2 Structure and Contribution

Chapter 2 will describe the problems of image segmentation and super resolution

together with related work on these two subjects. Theoretical background used in

this thesis is described in chapter 3. This thesis contains the following contributions

1. A set of shallow 3D convolutional neural network architectures to be applied

to the problem of plant root MRI scan segmentation.

2. Shallow convolutional neural networks used for scan segmentation and scan

super resolution. Both are described in Chapter 5.

3. Described in Chapter 6 the evaluation of the proposed networks on the arti-

ficially created plant root datasets.

4. Application of trained networks on real plant root MRI scans at the end of

chapter 6.

Chapter 7 will give an outlook on possible further work on this topic.
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2 Problems

2.1 Image Segmentation

Increasing the signal-to-noise ratio of given plant root MRI scan necessitates the

increase of signal intensity (root voxels) while decreasing the intensity of noise

voxels. Therefore a way of identifying root or soil is needed. The voxel intensity

should then be adjusted accordingly.

This can be understood as an object classification task. More specific dense

voxel-wise classification is of interest. The problem of dense object classification

is known as semantic segmentation which is part of image segmentation.

Image segmentation describes the problem of decomposing an image into dis-

junct sets or classes. The objective is to change the representation of the image

while retaining its structural relation. Of interest for plant root MRI image seg-

mentation are the classes root and soil.

Problem

Formally the problem of image segmentation for 3D plant root MRI can be defined

as:

Let I ∈ RX,Y,Z be a 3D plant root MRI. The function intI(x, y, z) ∈ [0.0, 1.0]

denotes the voxel intensity at position x, y, z in I and vI(x, y, z) denotes the po-

sition itself with 0 ≤ x < X ∈ N, 0 ≤ y < Y ∈ N and 0 ≤ z < Z ∈ N. Create a

representation Iseg mapping each position vI(x, y, z) ∈ I onto the modified intesity

intIseg(x, y, z), with

intIseg(x, y, z) =

{
1, vI(x, y, z) ∈ R
0, vI(x, y, z) ∈ S

With R denoting the set of voxels in I containing root signal and S denoting the

voxels containing soil/noise. Therefore a transformation function fseg has to be

found with fseg(I) = Iseg.

A classifier set for R and S can be employed to map each voxel onto these

classes. As only two disjunct classes are of interest this is a binary classification
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2 Problems

problem. This allows describing the classes R and S as R and −R. Therefore

only one classifier is needed. Classifiers for semantic segmentation usually return

a confidence value instead of a binary value. This return value for a root classifier

cR describes the conditional likelihood P (vI(x, y, z) ∈ R | cR) of a voxel to carry

root signal. To enhance the accuracy of the segmentation instead of a binary value

for Iseg(x, y, z) this confidence value is used as intensity value intIseg(x, y, z).

Related Work

Deep learning based models are state-of-the art for image classification (Simonyan

and Zisserman, (2014), He et al., (2016)) and semantic segmentation for 2D images

(G. Lin, Shen, et al., 2016, Girshick et al., (2014)).

Long et al., (2015) uses a fully convolutional network for image segmentation.

This approach allows for the input image to be of arbitrary size. Their approach

uses convolution followed by pooling to reduce the image size while broadening

the network. Then deconvolution with stride larger 1 is applied to upsample the

image up to the original resolution.

By using pooling layers followed by upsampling, finer details in the image seg-

mentation can be lost. G. Lin, Milan, et al., (2017) address this issue by using

RefineNet blocks (He et al., 2016) to create different resolution feature maps.

Lower resolution maps are then upsampled to the highest resolution and fused

by summation. This multi-scale approach utilizes both low level features from

the high resolution feature maps and high level features in the upsampled low

resolution maps.

MRI segmentation is researched primarily in the context of medical imaging and

has often been applied for brain region segmentation (Heckemann et al., (2006),

Colliot et al., (2006), Despotović et al., (2015)). This includes methods for auto-

matic MRI segmentation from simple thresholding algorithms for classification of

different tissue classes based on thresholds recovered from scan histograms (Despo-

tović et al., 2015) to utilizing handcrafted maps of the brain (atlases) for brain

segmentation (Makropoulos et al., (2014), Despotović et al., (2015)).

Recently deep learning based methods have been developed for MRI image seg-

mentation. Milletari et al., (2016) applied deep fully convolutional networks on

prostate MRI. They constructed a fully convolutional end-to-end pipeline utiliz-

ing 3D convolution. To address the problem of class imbalance between fore- and

background they proposed dice loss instead of re-weighting, outperforming the

latter.

Kamnitsas et al., (2017) employ multi scale 3D convolutional networks followed

by 3D Conditional Random Field layers Krähenbühl and Koltun, (2011) for final
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2.2 Super Resolution

classification while retaining the ability to input scans of arbitrary size. To ad-

dress problems of computation time and memory requirements, scan bigger than a

certain predefined size are computed in segments and each segment gets treated as

full input, therefore increasing batchsize while keeping memory and computational

requirements low.

2.2 Super Resolution

Increasing the resolution of given 3D plant root MRI while also increasing the

amount of information entails the reconstruction of details lost in the low resolution

scan. Doubling the resolution in each dimension of an MRI scan increases the

number of voxels by 8. In the low resolution scan, these 8 values are fused together

by some metric. Therefore a pipeline which is capable of inferring the missing

details from the low resolution scans is needed. This problem is known as super

resolution. More specifically single image or scan super resolution as only one scan

is used as input to create one corresponding high resolution output.

As this problem occurs due to information fusion during the sampling during

image acquisition, the super resolution problem can be described as the inverse

problem of the image formation process. This is naturally ill posed as there are

multiple different high resolution patches that can correspond to given low resolu-

tion patch. The problem of single scan super resolution can be described as:

Problem

Let I be a 3D plant root MRI scan as defined in Section 2.1. To solve the super

resolution problem for upsample factor λups, a representation Isr is needed which

maps each vI(x, y, z) ∈ I onto the voxel group VIsr(x, y, z) with

VIsr(x, y, z) = {vIsr(xsr, ysr, zsr)|xsr ∈ Coorλups(x), ysr ∈ Coorλups(y), zsr ∈ Coorλz(z)}

and

Coorλups(n) = {nsr ∈ N|λups · n ≤ nsr < λups · (n+ 1)}

This mapping is done using a function fsr with fsr(I) = Isr.

In particular fsr has to map each voxel vI(x, y, z) ∈ I onto the group {intIsr(vIsr)|vIsr ∈
VIsr(x, y, z)}. The low resolution value intI(x, y, z) gets generated by some func-

tion gsr with

gsr(VIsr(x, y, z)) = intI(x, y, z)

which usually is the mean intensity value of all elements of VIsr(x, y, z). Simply
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inversing this function is not possible because gsr usually maps multiple different

voxel groups onto the same value.

Related Work

Solutions for the super resolution problem can be divided into multi image and

single image super resolution. The first approach uses multiple images of the

same scene preferable offset by subpixel steps. These are then fused into one high

resolution image.

This thesis looks at single image super resolution for plant root MRI. Therefore

the details missing in low resolution have to be inferred from one single input.

This can be done using an example based method which either uses self similarities

within the image (Cui et al., 2014) or learns a mapping function from low to high

resolution.

State of the art single image super resolution utilizes deep convolutional neural

networks (Dong et al., (2016)). These usually learn an end-to-end mapping from

linearly upsampled low resolution image (Kim et al., 2016a) to high resolution or

directly from original low resolution to high resolution by upsampling the image

after stages of feature extraction.

Kim et al., (2016b) use a deep recursive architecture to first extract features

and reassembling them in higher resolution. Therefore a feed forward net extracts

features from the input. By feeding these feature maps into a convolutional re-

cursive stage, step by step larger image context is taken into account. In a last

step, the feature maps created by recursion are sent into a reconstruction stage to

create the high resolution output.

Instead of upsampling the low resolution image before inputting it into the

network, Lai et al., (2017) employ a combination of feature extraction on low reso-

lution images followed by a transposed convolution layer upsampling the image by

a factor of 2. This is then combined with an output of another transposed convo-

lution. For upsample factors larger then 2, multiple such networks are combined.

Ledig et al., (2017) use generative adversarial networks (Goodfellow, Pouget-

Abadie, et al., 2014) for single image super resolution. Therefore the high reso-

lution image is estimated by a generator network consisting of multiple residual

blocks. A discriminator network is trained to discriminate between real data and

generator output. This feedback is then used to train the generator.

Lately, deep convolutional neural networks have also been applied to single image

super resolution for medical MRI (Pham, Ducournau, et al., 2017). Pham, Fablet,

et al., (2017) examine multiple parameters and their impact on performance for

brain MRI super resolution. Therefore deep convolutional neural networks with
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2.3 Class Imbalance

residual connections are applied.

2.3 Class Imbalance

A problem often encountered in machine learning is the problem of class imbalance.

Given a classification problem with 2 classes, the problem occurs if the datapoints

corresponding to one class far outnumber the datapoint corresponding to the other.

Training a classifier on such a dataset, using the amount of errors as metric,

may lead to a significant fraction of the smaller class to be classified wrongly. This

is due to any number of wrong classification for one class are compared to the

number of wrong classification for the other. Given a difference of e.g. 1:1000 this

would mean classifying 50% of the smaller class incorrectly, has as much of an

impact on the learner as classifying 0.05% of the larger class incorrectly.

In the used plant root scans the number of soil voxels outnumbers the number of

root voxels by a large amount.A learned classifier tries to minimize the loss over all

datapoints, which leads to classifying 10% of soil correctly being more influential

than classifying 10% of root correctly.

For full structure extraction classifying root correctly is most important, as

voxels falsely classified as soil are also lost in the extracted structure. Soil voxels

classified as root can more easily be interpreted as such if they are not part of

connected structures. Therefore it may be preferable to accept a number of false

positives for a smaller decrease in false negatives.

There are several approaches to address the problem of class imbalance for train-

ing artificial neural networks. Zhou and Liu, (2006) look into the effects of multiple

different methods. The first being oversampling. This method samples a dispro-

portionate amount of examples from the small class so that the effect of it on the

overall training is equal to the bigger class. Opposite to this is undersampling.

Therefore the number of bigger class examples is reduced. A third method dis-

cussed is threshold moving. Each class gets assigned a value dependent on the

actual output class. During testing, the output values are multiplied by these val-

ues therefor shifting the thresholds between classes. The last method discussed is

ensemble learning. Therefore multiple classifiers are trained with different kinds of

resampling or threshold moving. The multiple classifications are then combined.

T.-Y. Lin et al., (2018) propose a focal loss for the problem of one-stage object

detection. Focal loss is based on cross entropy and applies a dynamic loss scaling

based on a confidence measure during training. This is done by reducing the

loss the smaller it already is, therefor reducing the impact of datapoints that are

already close to being correctly classified.
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3 Theoretical Background

3.1 Convolutional Neural Networks

Convolutional neural networks are a specialized type of artificial neural networks

primarily employed on data carrying a known grid like structure (Goodfellow, Ben-

gio, et al., 2016) for example signal processing along time (1D structure) or image

processing (2D structure). This type of network is inspired by the structure of the

visual cortex. A convolutional neural network contains one or more convolutional

layers.

3.1.1 Convolution

Convolution is a mathematical operation taking two functions as input and com-

bining these into an output function. On two real valued functions convolution is

defined as:

(f ∗ g)(t) =

∫ ∞
−∞

f(λ)g(t− λ)dλ (3.1)

This operation is commutative. Convolution is defined for every function pair for

which this integral is defined.

As computer usually work on segmented data, e.g. pixel in an image, the input

parameter t can be restricted to integer values. Therefore 3.1 can be rewritten to:

(f ∗ g)(t) =
∞∑

λ=−∞

f(λ)g(t− λ) (3.2)

In the context of convolutional neural networks f is referred to as input I and g

as kernel K.

Image or MRI scans have topological relationships along 2 and 3 axis respec-

tively. Therefore convolution along multiple axis is of interest. Specifically con-

volution for inputs with 3 dimensions with input size X, Y, Z can be defined as:

(K ∗ I)(x, y, z) =
X−1∑
m=0

Y−1∑
n=0

Z−1∑
o=0

I(x−m, y − n, z − o)K(m,n, o) (3.3)
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Figure 3.1: Convolution operation applying two 2D kernel K0, K1 onto a 2D
input I

Usually the kernel is a very sparse matrix with the non-zero values accumulated

in a small area around the input position x, y, z. This is due to the convolution

kernel being much smaller than the input. By limiting the kernel size only a

local neighborhood of the input is convolved. Figure 3.1 shows the application of

convolution along two axis on a 2D input. Goodfellow, Bengio, et al., 2016.

3.1.2 Convolutional Layer

The convolutional layer l applies the convolution operation in the context of ar-

tificial neural networks. Therefore the kernel as well as a bias is trained together

with the rest of the network. The output is also called feature map.

Given an input with sizeinp = x and an output with sizeout = y: A fully

connected layer uses matrix multiplication to transform an input into output.

Therefore a x · y weight matrix is needed with O(x · y) operations. This means

that every input unit interacts with every output unit.

Compared to fully connected layers convolutional layers operate on a different

set of ideas. By using a small convolutional kernel with sizeK = k << x each

input unit only interacts with a small amount of output units. This is called

sparse interaction. Using this principle only k parameters are needed and only

k · y operations.

Due to all outputs being computed using the same kernel weights the same

feature is extracted at all positions in the input. Therefore the whole input is

computed for a learned local structure. This also leads to one small kernel being

trained over the whole input. The low number of parameters also reduces the

12



3.1 Convolutional Neural Networks

Figure 3.2: 1D Receptive field growing through 2 convolutional layers l0, l1 with
kernel size 3, applied onto a 1D input I

Figure 3.3: Applying the convolutional layer l0 with kernel size 3 onto input I
with sizeinp = 7 reduces the sizeout to 5

amount of memory needed for parameter storing by a large amount given that k

is a lot smaller than sizeinp.

The receptive field of a convolution is the area of input units that affect a

given output unit. For a single convolutional layer this is the same as its kernel

size. With each layer of convolution with a kernel size bigger than 1 the receptive

field increases. Figure 3.2 shows the growing amount of input units affecting each

output unit when using two convolutions with a kernel of size three. In the context

of a convolutional neural network the receptive field is described by the receptive

field of the output layer in context of the network input.

When applying convolutions with a kernel size larger then 1 not all positions

within the input can be evaluated without the kernel leaving the bounds of the

input. As can be seen in Figure 3.3 this leads to the output decreasing in size. This

is known as valid padding. By adding zeros to the outside of the input the size

can temporarily be increased. This allows to compute an output of the same size

as the input. This can lead to unwanted effects along the borders in the output

13
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parameters of the convolutional layer are the convolution kernels K l

0, K
l
1 and K l

2.

as zero-padding introduces further structure to the input.

It is useful to extract more than one feature from given input. Therefore multiple

channels per layer are employed. Each channel has its own weight kernel and

bias which gets applied onto the input. This increases the dimensionality of the

input. This multi channel output can be computed by further convolutional layers.

Therefore for each output channel a distinct kernel is applied to each input channel.

This necessitates chin · chout · k weights. All activations are summed up.

The output vector vO ∈ Rchout at position t with given input vI ∈ Rchin·sizeK of

a convolutional layer with non linearity f(), kernels K0,0, ..., Kchin,chout and bias b

can be defined as:

vO = f(

chin−1∑
i=0

vI [i] ∗Ki + bi)

To allow a generic number of channels per layer most frameworks code inputs

for convolutional layers as [chinp, chout, input]. See Figure 3.4 for an example of a

convolution onto multiple input channels.

Convolution is a linear operation. This limits a network only using convolution

with bias to only learning linear functions. To address this a non-linearity is

applied element-wise on the output of each convolution. The non-linearities used

in this thesis are:

• ReLU:

ReLU(x) = max(0, x)

14



3.2 Batch Normalization

• Sigmoid:

Sigmoid(x) =
1

1− e−x

• TanH:

TanH(x) =
ex − e−x

ex + e−x

As the kernel size and therefore the amount of network parameters is indepen-

dent of the input size, a fully convolutional neural network can handle inputs of

different sizes without the need for retraining.

A basic convolutional layer can be described by the following parameters: chin,

chout, sizeK and non-linearity.

3.2 Batch Normalization

Batch normalization (Ioffe and Szegedy, 2015) is a method to normalize the input

of a neural layer to speed up training. This method seeks to reduce the internal

covariate shift of network layers. Internal covariate shift describes the change in

distribution of network layer activation occurring during training.

This normalization is done by subtracting the activation mean for given channel

and by dividing this output by the activation standard deviation:

x̂ =
x− E[x]√
V ar[x] + e

(3.4)

(Ioffe and Szegedy, 2015). E[x] and V ar[x] are computed independently for every

training iteration.

By doing this normalization the representational power of the network is re-

duced. To address this issue batch normalization adds two learnable parameters

β, γ for each channel. These parameters are updated during normal training. To

increase representational power of given network the parameters are applied as

follows:

y = γ · x̂+ β (3.5)

This operation can revers the normalization given that: γ =
√
V ar[x] + e and

β = E[x] if useful for the trained task.

In the case of a fully connected layer each output value gets its own set of

normalization parameters. Therefore to compute meaningful mean and deviation

minibatches with size > 1 are needed. For convolutional layers mean and standard

deviation are computed per full channel. This allows to employ batch normaliza-
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3 Theoretical Background

tion on fully convolutional networks with a minibatch size of one.

Normalizing the output allows for the use of higher learning rates. Due to the

normalization the scale of the output is unaffected by parameter scale. This also

reduces the impact of exploding and vanishing gradients by for example stopping

small parameter changes to accumulate and getting stuck in saturated areas of

nonlinearities.
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4 Plant Root Data

4.1 Real Root MRI scans

At the time of this thesis three types of real plant root MRI scans are available:

1. lupine small: This scan contains one large, thick main branch from which

multiple smaller ones protrude.

2. lupine 22 august: This scan contains a large amount of thin roots.

3. gtk: This scan contains multiple vertical small roots which are disjointed

and not fully connected.

Figure 4.1 shows 2D slices of these real MRI scans showing the root structure as

well as the noise present in these scans.

The root structure of these scans was manually extracted. Each root structure

is encoded as tree with each branch being parametrized by root radius and end

point. Figure 4.2 shows the 3D reconstruction of lupine small and lupine 22.

These reconstructions are not perfect. Not all angles especially on small roots

are completely correct. Also as only the radius is given, insufficient information

is given for roots not having a circular profile. As voxel wise classification is of

interest these small differences lead to the manual reconstruction being ill suited

as ground truth for the real MRI scans.

(a) (b) (c)

Figure 4.1: Real plant root MRI scans: (a) lupine small, (b) lupine 22, (c) gtk

17



4 Plant Root Data

(a) (b)

Figure 4.2: 3D reconstructed root from lupine small and lupine 22. As the voxels
in the original scan are not cubic the 3D image is upsampled by a factor of 2 along
the z-axis. As this is not fully correct the reconstruction in this figure looks
compressed along the z-axis.

4.2 Synthetic Plant Root MRI

Artificial neural networks need large amount of accurately labeled training data

to train and later generalize well. As the three real datasets are insufficient and

no usable voxel accurate ground truth for these is available, the data for training

has to be synthesized.

The baseline for creating artificial data are the manual reconstructed roots. A

tree structure is taken from the manual reconstruction file. Therefore splines are

fitted onto the tree from the manual reconstruction. Then the radius is used to

fit tubular structures over the splines. To increase variability in the dataset and

increase the ability of trained networks to generalize well, the radius is iterated

with four factors: 0.34, 0.71, 1.00 and 1.41. Also the structures are rotated by 60◦

and 120◦.

To transform the reconstructed structures into usable input, 3D grids of different

resolutions are imposed onto these structures. For each voxels in these grids the

occupancy is computed. This is done by taking the percentage of reconstructed

root within each voxel. The resolution used are dependent on the real MRI data,

also see Table 4.1.

To further increase variability the reconstructed occupancy grid is flipped along

the x-axis, along the y-axis and x and y coordinates are swapped. This creates a

total of 96 ground truth files per root type per resolution.

This ground truth is then used to create data for training. Therefore the noise
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4.2 Synthetic Plant Root MRI

Root Type Natural resolution Super resolution

lupine small 256x256x128 512x512x256
lupine 22 august 256x256x120 512x512x240

gtk 183x183x613 366x366x1226

Table 4.1: Datasize of reconstructed plant root MRI

structure of the available real data is used as blueprint for noising these recon-

structed ground truth.

Training data is created by applying a contrast reduction on the reconstructed

occupancy grid. This is then offset by a small value. Doing so creates a background

value bigger 0. Then a noise mask is added onto this data. In a last step the values

are then cut off at 0 and 1.

The first scan to be analyzed is lupine small. There seem to be 3 main types of

structure in the lupine small noise:

1. Large connected areas of solid noise. Dividing the scan into high and low

intensity areas. See Figure 4.3c.

2. Small spots of connected intensity shifts. See Figure 4.3d.

3. Random salt-and-pepper noise primarily in areas of already high noise inte-

sity. See Figure 4.3d.

To allow for the networks trained on synthetic data to work on real data, the

reconstructed data has to be close to the data distribution the real scans are

sampled from.

This noise distribution is approximated by combining three types of noise:

1. Perlin noise (Perlin, 2004) was selected to model the large connected areas

of background noise.

2. A large number of small 3D gaussian blobs is then added

3. Uniformly distributed noise guided by the already existing noise intensity is

added.

From these steps a noise mask of the same shape as the reconstructed occupancy

grid is created.

The Perlin noise generates large connected patches of higher intensity noise. In

practice 3 iterations with an initial number of 3D grid cells of 4x4x2 for lupine small

(size: 256x256x128 voxel) are applied. The intensity of the perlin noise is sampled
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4 Plant Root Data

(a) Intensity is inverted (b) Blue: Testing tube, Green: Pot

(c) Blue: Root (not pixel accurate),
Green: Intensity larger 55

(d) Red: Areas with intensity larger
109, Green: Intensity smaller 70

Figure 4.3: 2D Slice from lupine small (slice 75 along z-axis). Intensity refers to
the intensity of the original scan scaled between 0 and 255. These intensity values
are inverted for visualization.
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4.2 Synthetic Plant Root MRI

(a) (b)

(c) (d)

Figure 4.4: 2D Slice taken from a randomly generated noise mask. The figure
only shows a quarter of the original slice. a) shows Perlin noise generated using 3
iterations with starting frequency 4,4,2. b) shows the added small gaussian blobs.
c) shows the guided uniform noise. d) shows the complete noise mask.
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4 Plant Root Data

uniformly once per scan from the interval [0.25, 0.4]. The sampled value serves as

upper bound and its inverse as lower bound for the perlin noise therefore keeping

it zero-mean. Each iteration after the first doubles the number of grid cells along

all axis and halves the intensity. See Figure 4.4a for a 2D split of this perlin noise

3D Gaussian blobs simulate small connected intensity shifts. To keep these shifts

zero-mean the mean value of each blob is uniformly sampled from the interval

[−0.15, 0.15]. A standard deviation is sampled from [1, 3] voxels. Overall 2 · 106

to 2.5 · 106 are added to each synthetic scan. Figure 4.4b shows a 2D slice of a

volume filled with these parameters.

As areas with high intensity background noise in the real lupine small scan also

hold more seemingly independent noise voxel-wise noise is not applied uniformly

to the whole volume. Instead the already generated noise consisting of perlin and

gaussian blobs is used as guide. Therefore the maximum intmax and minimum

intmin noise intensity values in the current noise mask are determined. For each

voxel a value n ∈ [−0.3, 0.3] is uniformly drawn. This value is then scaled by√
(int(x, y, z)− intmin)/(intmax − intmin). In doing so the noise added to areas

with low background intensity have low intensity while areas with high background

intensity create high frequency noise.

4.3 Employed Datasets

Three more types of noise masks are generated to further increase variability in

the training set. The noise types used for training and testing are d and g Also

structures simulating the plant pot and testing tube (Figure 4.3b) are added. This

is beyond the scope of this thesis. For each root type, ground truth and noise type

a total of five training sets with different signal-to-noise ratio is produced. Creating

a total of 5760 synthetic plant root MRI scans. These scans are saved with 1 byte

per voxel.

Of the four noise types two are used for training. This is due the forth noise type

combining the approaches of two others. Figure 4.5 shows the different kinds of

synthetic noise generated and added to the lupine small and lupine 22 reconstruc-

tions. This leaves a dataset of 2880 synthetic scans for training and evaluation

purposes. 480 scans are randomly selected as validation set. These datapoints are

not used for training. The remaining 2400 scans are available as training data.
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4.3 Employed Datasets

(a) Noise type d, which is based on the
noise found in lupine small, applied to the
lupine small reconstruction

(b) Noise type g, based on the lupine 22
noise, applied to the lupine small recon-
struction

(c) Noise type h, based on the smaller noise
blobs in lupine, applied to the lupine 22 re-
construction

(d) Noise type l, which has been discussed
in this thesis, applied to the lupine 22 re-
construction

Figure 4.5: The 4 different noise types d, g, h, i generated as training data. As
it can be seen no pot is generated for the lupine 22 reconstruction. This is due to
the reconstruction not allowing a cylindric pot to be added without loosing root
information.
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5 Networks and Training

5.1 Network Architectures

In this thesis fully convolutional neural networks are applied to the problem of

image or scan segmentation and super resolution of plant root MRI. Each convo-

lutional layer consists of a 3D-convolution stage followed by an activation function.

The 3D-convolution is described by kernel size, number of input channels and

number of output channels, compare also Section 3.1.2. The number of input

channels is dependent on the number of output channels of the previous layer and

therefore this parameter is set. Optionally batch-normalization can be applied to

the input of each channel and skip-connections carrying information from layer

earlier in the network can be added.

Therefore each convolutional layer is defined by:

• kernel size sizeK ∈ {3, 5, 7}

• number of output channels chout ∈ {4, 8, 16}

• activation function ∈ {ReLU, Sigmoid, TanH}

• apply batch normalization

The number of input channels chin is defined by the previous layer and the num-

ber of input channel for the first layer is one. A 3D-convolutional layer therefore

has numweights = sizeK
3 · chin · chout and numbiases = chout. If batch normalization

should be applied 2 · chin parameters are added.

Unless otherwise stated the activation function applied to all layer besides the

output is ReLU. The last layer always has the sigmoid activation function. All

layers but the input layer apply batch normalization on there input.

5.1.1 Image Segmentation Networks

As described in Section 2.1 an image segmentation network seeks to solve the

problem of 3D image segmentation for the 3D scan I. Therefore a mapping fseg(I)

has to be found which maps each vI(x, y, z) onto the likelihood of given voxel
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5 Networks and Training

carrying root signal. The assumption is made that local voxel wise context is

sufficient to solve this problem on a per voxel basis.

As discussed in Section 3.1 this assumption is fulfilled by convolutional layers, by

mapping the weighted sum of local context onto a value. In the output layer this

value is then scaled between 0 and 1 using the sigmoid function and can therefore

be interpreted as a likelihood.

To keep the networks simple only 2 and 3-layer fully convolutional neural net-

works are evaluated for image segmentation. See also Figure 5.1 (a) and (b).

5.1.2 Super Resolution Networks

The problem of super resolution described in Section 2.2 is solved by creating

a higher resolution representation Isr of an input scan I. As the ground truth

generated is an upsampled, clean reconstruction without noise, the super resolution

networks seeks to combine an image segmentation stage with a super resolution

stage.

An upsampling factor of 2 along each axis increases the amount of voxel and

memory requirements by a factor of 8. Due to the already comparatively large

input data, GPU memory is a major bottleneck for super resolution networks.

Therefore the image segmentation stage keeps the network in the original resolu-

tion. The segmentation stage consists of 3 convolutional layers.

The results generated by the segmentation stage is then upsampled with a factor

of 2 along each axis using nearest neighbor interpolation. To recapture missing

details representable in the new resolution, the upsampled scans are sent through

1 or 2 further convolutional layers. The output layer applies the sigmoid function

allowing the output to be interpreted as probability. See Figure 5.1 (c) and (d).

5.2 Training Environment

ADAM optimization (Kingma and Ba, 2014) is a training method for neural net-

works based on stochastic gradient descent. Ruder, (2016) suggests that ADAM

might be the best optimizer to use. The parameters used are β1 = 0.9, β2 = 0.999

and ε = 10−8.

Of the 2400 scans for training a set amount is randomly drawn. Per epoch this

training-subset is shuffled and then fed into the network as input, ground truth

pair. After each input the loss is scaled by 100
sizesubset

. As the minimum sizesubset
used is 240 this scale is always smaller than 1. Therefore the scale of the loss and

corresponding training adjustments is independent of the drawn subset. Therefore

increasing the size of the training-subset can be used to increase the accuracy while
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(a) The smallest image segmentation network tested is a 2 convolutional layer
network with one multichannel convolutional layer l0 and one single channel
output layer l1.
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(b) The 3-layer image segmentation network has two multichannel convolu-
tional layers l0 and l1 and one single channel output layer l2.
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Image Segmentation Super Resolution

(c) The smallest super resolution network tested is a 4 convolutional layer
network. It consists of a 3 layer image segmentation stage with the 3 multi
channel convolutional layers l0, l1 and l2 followed by a multichannel upsampling
layer and a single channel convolutional output layer l3.
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Image Segmentation Super Resolution

(d) The 5 layer super resolution network consists of the same image segmen-
tation stage as the 4 layer variant. The super resolution stage consists of the
upsampling layer followed by a multichannel convolutional layer l3 and a single
channel convolutional layer l4 generating the output O.

Figure 5.1
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5 Networks and Training

increasing training time. This subset size is dependent on the time a networks

needs for training. Subset sizes used are 310, 620, 1240 and 240.

5.3 Loss

As the problem is a binary classification problem the loss function used is binary

cross-entropy loss:

−(y · log(p)) + (1− y) log(1− p) (5.1)

with y being the ground truth label for either root (1) or soil (0) and p being the

prediction.

As discussed in Section 2.3 the amount of soil voxels heavily outnumbers the

number of root voxels. More exactly: In lupine 22 0.648% of all voxels are root and

in lupine small 0.445% of voxels are root. Therefore a network can achieve a low

per voxel error rate by classifying every voxel as soil. Also the network prioritizes

a small mean soil error to a small mean root error.

To address this issue two kinds of loss reweighting during training are applied:

1. Multiplying a set weight wroot > 1 to the root loss troughout the whole

training.

2. Changing weighting over training from small weighting for soil voxels to no

weighting being applied.

For set weigthing Equation (5.1) is modified during training with the set weight-

ing wroot to:

wroot · −(y · log(p)) + (1− y) log(1− p) (5.2)

wroot is a hyper parameter and does not change during training.

The changing weighting approach uses two gates gstr and gend. These are defined

over training epochs. While the current training epoch e < gstr holds, the loss is

computed as:

−(y · log(p)) + wsoil(1− y) log(1− p) (5.3)

wsoil =
numroot

numsoil

(5.4)

with numroot and numsoil being the number of roots and soil voxels in the ground

truth.

While gstr < egend the wsoil is scaled by e−gstr
gend−gstr

. When e = gstr the soil

weighting therefore is 1. For further epochs no more weighting is applied.
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5.4 Data Splitting

5.4 Data Splitting

Due to the large size of the input data the memory requirements, especially for

super resolution networks, exceeds the available modern hardware. Also the used

framework is unstable for training on 3D data with size > 250 along one or more

axes.

To address these issues the input data has to be split into a number of sub-

volumes with a size that can be handled by hard- and software. As mentioned

in Section 3.1.1 areas around the edges of the volume cannot be evaluated. This

leads to problems if the input data is splitted naively as shown in Figure 5.2a. The

reconstructed output is missing the information between the subvolumes.

While the information lost on the scan edges cannot simply be retrieved the

information between the subvolumes are part of the scan. Therefor to evaluate

the input scan completely the input should be split depending on the output. As

can be seen in Figure 5.2b the input is split into overlapping subvolumes. This

allows to reconstruct a complete output scan from the created subvolume outputs.

The amount of computations needed per layer run are dependent on the output

size. As the output of the split data has the same size as the output generated by

unsplit data the number of computations does not change. However loading data

into the graphics card takes time depending on the number of volumes. Therefore

splitting the data increases the time needed per network run dependent on the

number of subvolumes. Also the split operations as such increases computation

time.

To minimize this overhead the amount of splits should be kept as small as

possible. This is done by maximizing the volume per split. As the software

frameworks seems to be the limiting factor for the size of single dimensions the

ideal subvolume size is 250x250x250.

5.5 Implementation

The framework is implemented in the popular neural network framework PyTorch

version 0.4 using Python 3. The GPUs employed are Nvidia Titan X with 12 GB

of memory.
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(a) An input I with size 5x10x1 is split into two 5x5x1 subvolumes Isp0 and Isp1 .
These subvolumes are convolved with kernel K with sizeK = 3. This results
in two 3x3 outputs Osp

0 and Osp
1 which when set back together leave a 2x3 gap

between the subvolumes. The grayed areas in O are the missing voxels.
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(b) The split edges in the output are restored by computing the area along the
edge twice. Once in Isp0 and once in Isp1 . The outer border cannot be computed
without padding I.

Figure 5.2
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6.1 Evaluation Framework

There are four metrics of interest to compare networks with different parameters:

1. Training Loss

2. Validation Loss

3. F1-Score

4. Training Time

6.1.1 Training Loss

The training loss is the mean cross-entropy loss between ground truth and network

output. As discussed in Section 2.3 the number of soil voxels has a great influence

on this value while the root signal is of more interest generally. Therefor not only

the mean overall loss is computed but also the mean loss for root voxels and the

mean value for soil voxels. Both of these values are computed before any weighting

is applied.

As the training is done without any input padding the amount of voxels in the

output depends on the amount of convolutions and their respective kernel size.

The overall loss varies depending on any weighting applied. All this makes the

train loss unsuitable to use as metric for comparing results, but it is useful to look

into the behavior during training itself.

6.1.2 Validation Loss

As discussed in Section 4.3 the validation set contains 480 scans. Just like with

the training loss the validation loss is the mean cross entropy loss between network

output and corresponding ground truth. Also mean root loss and mean soil loss

are computed.
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To make the values comparable the validation is done with input padding.

Therefore the amount of voxels that are compared per scan are independent of

any loss of scan size during convolution.

Due to the amount of scans in the validation set, the validation is not done at

every training epoch.

6.1.3 F1-Score

It is of interest how much of the root is recovered as well as how accurate these

predictions are. The F1-Score is a metric describing this. The F1-Score is defined

as:

F1 =
2

1
recall

+ 1
precision

Let E be a set of examples. Let E+ ⊂ E be the subset of examples of the class of

interest and let C+ ⊂ E be the set of all examples that have been classified as the

class of interest. Recall is defined as the ratio of correct as member of a given class

identified examples, of the overall amount of correct examples, therefore giving the

fraction of all correct examples identified. Recall can therefore be defined as:

recall =
|E+ ∩ C+|
|E+|

The precision is defined as the ratio of correct as member of given class identified

examples, of the amount of all examples that have been classified as given class.

Therefore precision can be defined as:

precision =
|E+ ∩ C+|
|C+|

Let O be a 3D scan. A voxel vO(x, y, z) is classified as root if its value is larger

than 0.5. Therefore C+ is defined as C+ = {vO(x, y, z)|x, y, z ∈ O, intO(x, y, z) ≥
0.5}. Using this threshold the scan is binariest and then computed for recall and

precision.

6.2 Image Segmentation

6.2.1 Training

Figure 6.1 shows the training loss value during training for multiple networks. It

can be observed that the larger networks have sudden local increases in training
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Figure 6.1: Training loss of three 3-layer networks with different kernel sizes
sizeK or chout. The left column shows training loss, root loss and soil loss during
training for a network with sizeK =5 5 3 and chout =4 4 1. The middle column
shows the same for a network with sizeK =3 3 3 and chout =4 4 1. The right
column shows the three losses for a network with sizeK =3 3 3 and chout =4 8 1.
The black plot is the mean loss per epoch, while the gray plot is the mean loss
computed every 1% of an epoch. The learning rate used for all is 0.0003

Figure 6.2: 3-layer image segmentation network with sizeK =5 5 5 and chout =
8 8 1 trained with dynamic loss weighting. From epoch 0-5 the full weighting is
applied. From epoch 5-10 wsoil increases linearly to reach 1 at epoch 10+

33
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Figure 6.3: Best F1-score with corresponding recall and precision as well as the
best validation loss for 3-layer networks with different kernel sizes and number of
channels. Shown is the best F1-score achieved per network and the corresponding
recall and precision values. The upper row of each label shows the kernel sizes and
the lower row the number of channel per layer.

loss. This is probably the cause of the learning rate being too high. This may

also impact the network performance considering validation loss and F1-score, as

addressed in Section 6.2.3 with regards to the performance of the smallest network.

As the soil is the largest part of the loss, it is the first of the two loss parts that

gets reduced, while the root loss increases. After the soil loss reaches a low value

only small changes happen. Most of the changes in error now happen for the root

loss. Therefore most of the training time is needed to reduce the root loss and

increase recall.

The networks seem very volatile with respect to learning rate. Therefor further

research in this area may be advised.
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(a) The bars show the mean runtime per
scan during training for layers with 8x8x1
channels. The numbers indicate the kernel
size per layer.

Networks Training time
l0 l1 l2

8 8 1 4.7s
4 8 1 3.2s
16 4 1 7.9s
8 4 1 4.7s
8 2 1 4.5s
4 2 1 2.6s

(b) This table shows the runtime for train-
ing of 3-layer networks with kernel sizes
5,7,5. The number indicate the channels
per layer

Figure 6.4: Training runtime for multiple 3 layer networks depending on kernel
size or channels. Training runtime is measured using the mean runtime per scan
when running the training framework.

6.2.2 Kernel Size

Changing the kernel size sizeK for the 3D convolutions seems to have little effect

on the validation error or the F1-score on its own. As can be seen in Figure 6.3.

This might be due to the smallest kernel K with sizeK = 3, already having 33 = 27

parameters, while larger kernels have a lot more parameters (sizeK = 5 has 125

parameters, sizeK = 7 has 343) increasing the search space.

A concern with using large kernels is runtime. As can be seen in Figure 6.4a the

runtime of 3-layer networks using kernels with sizeK = 3 and sizeK = 5 is very

close, while the runtime with a single kernel with sizeK = 7 increases massively

during training. As the inference times are comparatively close the difference has

to be in the backpropagation through the large kernel. Figure 6.4b shows that

this effect is heavily dependent on the number of input channels into the layer and

to a lesser extend the number of output channels. As discussed in Section 6.2.3

networks with larger amounts of channels usually perform better than narrower

networks. As this effect is larger than the advantages of large kernels, sizeK > 5

is not advised.

A concern about only using small convolutions is that the receptive field of

the network becomes to small and cannot access nearby information vital for the

task. To test this, 2-layer networks with growing receptive field have been tested

to see if there is a minimum receptive field below which performance reduces

sharply. As can be seen in Figure 6.5 the smallest network with a receptive field
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Figure 6.5: F1-score and validation loss for 4 2-layer image segmentation net-
works. The numbers correspond to the kernel sizes. There seems to be no order
based on receptive field size besides the 3 3 network being worse than its counter-
parts.

of 5x5x5 achieves worse results than networks with larger receptive field. While

not conclusive it may be advised to construct networks with a receptive field of at

least 7x7x7.

Larger kernels need lower learning rates to converge properly as they have more

parameters. This effect is noticable between networks with sizeK = 3 towards

sizeK = 5. Figure 6.1 shows two 3-layer networks trained with the same learning

rate. The network utilizing kernels with sizeK = 5 has sudden drastic rises during

training while the network with sizeK = 3 converges better and without sudden

increases in loss value. See also Section 6.2.1.

Given these reasons smaller kernels of sizeK = 3 or sizeK = 5 are preferable for

smaller networks while sizeK = 3 is the best choice for deeper networks. sizeK > 5

is not advised, as the possible increase in performance is offset by long runtime

per scan and the necessity for lower a learning rate both increasing the training

time.
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Networks Mean memory cached Runtime per training scan

4 4 1 2850MiB 2.1s
8 8 1 4240MiB 2.4s

16 16 1 4900MiB 4.2s

Table 6.1: 3-layer networks with different amounts of channels and there respec-
tive cached memory. The memory amount is read using PyTorch’s cuda module
while training. The values are not completely accurate as reading the amount of
memory occupied by a network during training seems to not be exact all the time
therefor the mean memory cached is used.

6.2.3 Number of Channels

As mentioned in Section 6.2.2 the number of channels and therefore extracted

features seems to have a large impact on F1-score performance and validation

error. As can be seen in Figure 6.3 networks with a larger number of channels

in later layers outperform networks with more channel in the early layers. This

also holds for the data in Figure 6.6. The 4x4x1 network seems to overperform by

having a low soil loss and high precision coupled with low recall while also being

less impacted by higher learning rates. While chout seems more impactful on later

layers, missing capacity in early layers have an adverse effect as well. It therefore is

advised to increase chout by starting with later channels and then moving towards

the input layers.

A problem with increasing the numbers of channels is that the amount of mem-

ory needed increases, see Table 6.1. This is due to the network saving intermediate

feature maps. While this does not pose problems for image segmentation networks,

it can be problematic for super resolution networks, see also Section 6.3.

The main advantages of increasing the amount of channels instead of increasing

kernel size is that the runtime gets less impacted, as can be seen by comparing

Table 6.1 to Figure 6.4b. Increasing chout has an impact on training behaviour

as can be seen in Figure 6.1, again the network with more channels is prone to

sudden local peaks in training loss.
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Figure 6.6: Best F1-score with corresponding recall and precision as well as the
best validation loss for 3-layer networks with different numbers of channels. The
kernel sizes in each network is sizeK = 5 besides the 16x16x1 network were the
kernels have sizeK = 3. Shown is the best F1-score achieved per network and
the corresponding recall and precision values. The numbers show the number of
output channels per layer.
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Figure 6.7: F1-score and validation loss for 4 3-layer image segmentation networks
with sizeK =5 5 5 and chout =8 8 1. The numbers correspond to the set weight
applied to root loss.

6.2.4 Loss Reweighting

The goal of loss reweighting is to increase the amount of recovered root. This

should increase recall while reducing precision.

As can be seen in Figure 6.7 increasing the root loss does lead to an increase

in recall but a larger decrease in precision, therefore reducing F1-score. Using a

weighting of larger wroot = 5 seems to not further increase recall and seems to

have the adverse effect. As the root loss for the network with wroot = 10 is the

lowest, the lower recall might be due to the network trying to minimize on voxels

which already have been classified as root as even small errors on root can have

high impact using such weighting. This may be addressed by reshaping the loss

function. Further testing on this is needed.

For now using a weighing wroot < 5 is advised. Loss reweighting if applied in

this manner is an efficient way of increasing the recall.
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6 Evaluation

Figure 6.8: F1-score and validation loss for different super resolution networks. 4-
layer means the network only has 4-layers. ch means the network has a decreased
channel size chout = 8 8 4 4 1. All remaining networks have chout =8 8 4 8 1.
sK means that the networks have this kernel size for the whole network. w=2
is a network trained with a root loss reweighing of 2 and sizeK =5 5 5 5 5. ac
sig means that the last layer of the image segmentation stage has the sigmoid
activation function.

6.3 Super Resolution

6.3.1 Performance

Due to the large amount of time super resolution networks need to train coupled

with hardware and software problems (Section 6.3.2) the amount of networks tested

is limited.

Figure 6.8 shows the performance of some super resolution models. Loss reweight-

ing (w=2) for super resolution seems to increase the F1-score due to a much higher

recall while the precision is only marginally affected. Changing the activation func-

tion while generating a good recall value has an adverse effect on validation loss.

As expected the networks with the lowest capacity have the lowest F1-score but

not the lowest validation loss.

The best performing network is again the one with the smallest kernel size and

larger channel number. This may be because the network has an easier time

converging when trained with higher learning rate. To get the other models,

primarily the one with larger kernel size, to the same or better performance more

training with more carefully selected learning rate is needed.
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6.4 Outputs

Number of splits Runtime per scan

1 2.2s
2 2.7s
4 3s
8 3.2s

Table 6.2: Effect of data splitting on trainng runtime per scan. The network used
is a 3-layer network with sizeK =5 5 5 and chout =8 8 1

6.3.2 Hardware and Software Limitations

One major problem regarding the super resolution problem and to a smaller extend

image segmentation, are problems originating from the used hard- and software.

As briefly alluded to in Section 5.4 the input scans are very large. Upsampling

these large input scans using super resolution, the resulting feature maps and

outputs take a large amount of memory. This heavily limits the amount of channels

per layer and the number of layers as such unless the data is split into a lot of

subvolumes increasing training time, see Table 6.2.

The upsampling layer also takes a large amount of memory. This leads to

networks running out of memory if the number of channels upsampled is to large.

Therefore chout of the last layer of the image segmentation stage is limited to 4.

There are some problems arising from the used framework, mainly due to Py-

Torch not being optimized for large 3D data:

1. Memory management is hard, as the only information provided by PyTorch

is the amount of cached data or the amount of allocated data after execution

and memory clean-up.

2. Some object hold large amounts of data. E.g. the computed loss value holds

a large amount of data about gradients and feature maps.

3. The learning algorithm cannot handle 3D data with a single dimension larger

around 250.

These problems have been dealt with using data splitting and manual memory

management, ensuring that all objects on the GPU that are no longer needed are

deleted and the memory freed.

6.4 Outputs
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6 Evaluation

Figure 6.9: Output of the best performing super resolution network sK=3. Input
is the real lupine small scan. The upper picture shows a 3D model of the output
thresholded at 0.5. Lower left is a 2D slice generated by taking the maximum
values along the X axis for 51 slices. The lower right is the maximum accumulated
along the Y Axis for 79 slices.
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6.4 Outputs

Figure 6.10: Output of the best performing super resolution network sK=3.
Input is the real lupine 22 scan. The upper picture shows a 3D model of the output
thresholded at 0.5. Lower left is a 2D slice generated by taking the maximum values
along the X axis for 119 slices. The lower right is the maximum accumulated along
the Y Axis for 119 slices.
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7 Conclusion

In this thesis multiple different network architectures to solve the problem of image

segmentation and the joint problem of image segmentation and super resoltion for

3D plant root MRI have been presented. This is in the form of shallow convolu-

tional networks using 3D convolutions.

These networks are analyzed and evaluated by looking at the effect of different

parameters on the F1-score and validation loss. Specifically the effect of kernel

size, number of channels and loss reweighting have been looked into and guidelines

for these have been extracted.

Also a way of synthesizing noise based on lupine small has been shown. While

this method is no longer in use, the sections shows the way of how the underlying

data was analyzed to create synthetic data.

Further work can be done with respect to optimizing the learning rate more, as

some larger networks may have underperformed due to the learning rate being to

high. Also some more information on the super resolution problem is of interest.

While most hard- and software problems have been resolved a more accurate learn-

ing rate might yield better results here. Also different ways for upsampling can

be looked into. Further methods of output post processing can be explored e.g.

connecting paths. Overall the usage of more complicated and deeper networks is of

interest to fully solve the problem of 3D image segmentation and super resolution

for plant root MRI.
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Despotović, I., B. Goossens, and W. Philips (2015). “MRI segmentation of the
human brain: challenges, methods, and applications”. In: Computational and
mathematical methods in medicine 2015 (cit. on p. 6).

Dong, C., C. C. Loy, K. He, and X. Tang (2016). “Image super-resolution using
deep convolutional networks”. In: IEEE transactions on pattern analysis and
machine intelligence 38.2, pp. 295–307 (cit. on p. 8).

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2014). “Rich feature hierarchies
for accurate object detection and semantic segmentation”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 580–587
(cit. on p. 6).

Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio (2016). Deep learning.
Vol. 1. MIT press Cambridge (cit. on pp. 11, 12).

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio (2014). “Generative adversarial nets”. In: Advances
in neural information processing systems, pp. 2672–2680 (cit. on p. 8).

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778 (cit. on p. 6).

Heckemann, R. A., J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers (2006).
“Automatic anatomical brain MRI segmentation combining label propagation
and decision fusion”. In: NeuroImage 33.1, pp. 115–126 (cit. on p. 6).

Ioffe, S. and C. Szegedy (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(cit. on p. 15).

Kamnitsas, K., C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane, D. K.
Menon, D. Rueckert, and B. Glocker (2017). “Efficient multi-scale 3D CNN
with fully connected CRF for accurate brain lesion segmentation”. In: Medical
image analysis 36, pp. 61–78 (cit. on p. 6).

47



Bibliography

Kim, J., J. Kwon Lee, and K. Mu Lee (2016a). “Accurate image super-resolution
using very deep convolutional networks”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 1646–1654 (cit. on p. 8).

— (2016b). “Deeply-recursive convolutional network for image super-resolution”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 1637–1645 (cit. on p. 8).

Kingma, D. P. and J. Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (cit. on p. 26).
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