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Abstract

Detection and tracking of dynamic objects is a key feature for autonomous be-

havior in a continuously changing environment. With the increasing popularity

and capability of unmanned aerial vehicles (UAVs) efficient algorithms have to be

utilized to enable multi object tracking on limited hardware and data provided by

lightweight sensors. We present a novel segmentation approach based on a combi-

nation of median filters and an efficient pipeline for detection and tracking of small

objects within sparse point clouds generated by a Velodyne VLP-16 sensor. We

achieve real-time performance on a single core of our UAV’s hardware by exploit-

ing the inherent structure of the data. The approach is evaluated on simulated

and real scans of in- and outdoor environments, obtaining results comparable to

the state of the art.
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Chapter 1

Introduction

As robotics are getting more and more popular autonomous robots are utilized in a

growing variety of environments and situations. One basis for the safe deployment

of autonomous machines is a robust perception and anticipation of continuous

changes in the world. This problem is addressed by detection and tracking algo-

rithms. Detection consists of identifying or perceiving objects of interest, while

tracking is the task of monitoring the objects’ states over time. Knowledge about

their temporal history enables to anticipate future behavior.

1.1 Motivation

Recent developments in the field of lightweight light detection and ranging

(LiDAR) sensors facilitate their use on unmanned aerial vehicles (UAVs). These

UAVs are utilized in an increasing number of applications, like mapping [1], inven-

tory [2] or even health care [3]. For those, collision avoidance and dynamic path

planning ensure safety and enable the efficient usage of restricted resources with

regards to energy consumption and flight time. Detection and tracking of dynamic

objects is a key feature to solve these tasks and to interact with the environment

in general. Additionally, mapping the static part of the world can be supported

by providing knowledge about dynamic objects and their state within the map.

Another beneficiary of improvements in this field is autonomous driving. The cars

are usually equipped with powerful computers and a variety of different sensors.

UAVs, on the contrary, are constrained by their lifting capacity — hence, providing

limited computational power and allowing lightweight sensors only.

1



Chapter 1. Introduction 2

The goal of this thesis is detecting and tracking multiple objects of a limited size

— such as humans — in sparse point clouds. These point clouds are generated

by a lightweight LiDAR sensor mounted on a UAV. Due to the UAV’s hardware

limitations, efficient algorithms have to be utilized for detection and tracking to

achieve real-time performance.

1.2 Contributions

Additionally to the UAV’s hardware limitations the lightweight LiDAR sensor

provides further challenges, like sparse data and a restricted vertical field of view.

Our contribution consists of a set of efficient algorithms exploiting as much of the

sparse data as possible. We present a novel approach to segment point groups of a

specified width range. A detection method utilizing these segments and the inher-

ent structure of the data. And finally, a tracking algorithm, capable of tracking a

multitude of objects simultaneously. This pipeline is able to run in real-time on a

single CPU core of our UAV’s hardware.

Furthermore, we provide a practical application to separate the static from the

tracked dynamic part of the world in the data. This is not only useful for mapping,

but also enables an easier qualitative evaluation of our method.

1.3 Outline

In the following chapter, we will start with a thorough problem definition consisting

of the sensor setup and a description of the resulting advantages and disadvantages.

We will continue with a review of the state of the art and classify which ideas can be

applied to our problem. In the fourth chapter a detailed step-by-step description

of our proposed method is provided. This is followed by an extensive evaluation,

finished with our conclusion and prospects for future works in the last two chapters.



Chapter 2

Basis

In the following, we first want to build a knowledge base concerning the details of

the chosen sensor and point out how its advantages and disadvantages contribute

to solving the task described in detail afterwards.

2.1 Sensor Setup

The chosen sensor to detect small objects in a long range is the Velodyne VLP-16,

which is mounted underneath an unmanned aerial vehicle (UAV) shown in Figure

2.1. The VLP-16 is a multi-beam light detection and ranging (LiDAR) sensor that

measures the distance towards obstacles in its environment.

In general, this task is accomplished by emitting a laser beam and measuring the

time it takes for it to get reflected back by a surface to finally hit a detector in

the sensor. Knowing the duration (∆t) of the flight, the distance d of the sensor

to the surface can be calculated by

d =
c ·∆t

2
(2.1)

with c as the speed of light.

The Velodyne VLP-16 has 16 laser-detector pairs placed on a vertical axis and

oriented with an angle of 2° to each other resulting in a 30° vertical field of view

(Figure 2.1). This setup allows to get 16 measurements at a time. Spinning the

laser-detector pairs around the sensor’s vertical axis generates a 360° horizontal

scan of the environment (Figure 2.2).

3
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Figure 2.1: Left: A schematic drawing of the Velodyne VLP-16 visualizing
the scan distribution — adapted from [4]. Right: The Matrice 600 with a

VLP-16 mounted underneath and highlighted in yellow.

The mathematical model used to convert the distance measurements to 3D-points

in the sensor coordinate frame is the same as the one used for its predecessor

models given in [5], as: x

y

z

 =

d i
oAi cos(δi)−H i

oBi

d i
oBi cos(δi) +H i

oAi

d i
o sin(δi) + V i

o

 (2.2)

with

d i
o = siRi +Di

o, (2.3)

Ai = sin(ε) cos(βi)− cos(ε) sin(βi), (2.4)

Bi = cos(ε) cos(βi) + sin(ε) sin(βi), (2.5)

ε as the encoder angle measurement,

si as the distance scale factor,

Ri as the raw distance measurement,

Di
o as the distance offset,

δi as the vertical rotation correction,

βi as the horizontal rotation correction,

H i
o as the horizontal offset from the sensor frame origin and

V i
o as the vertical offset from the sensor frame origin

for laser i.

Additionally to the distance, the VLP-16 measures an intensity value for each

point. This intensity value corresponds to the reflectivity of the measured surface.
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Diffuse reflectors, like vegetation or humans, generate values from 0 to 100 for

reflectivities from 0% to 100%. Retroreflectors, like road signs, are represented in

the range from 101 to 255, where the latter represents an ideal reflection.

The main advantages of this sensor are the high measurement range of 100m,

the low weight of about 830g and the low power consumption of 8W. Further-

more, it has a high accuracy of ± 3 cm, a good initial calibration and is robust to

temperature changes [6].

Figure 2.2: An exemplary point cloud generated from one scan of the court-
yard of the Landesbehördenhaus in Bonn, projected into a Google satellite map

[7]. Points are colored by height.

2.2 Problem Definition

Our use case consists of real-time tracking of multiple small objects in the data

of a VLP-16 using the limited hardware on a UAV. Solving this kind of problem

is often split up into detection and tracking. Detection in general is the task of

finding target entities in the data. Tracking consists of monitoring the state of an

entity over a period of time. Both of these tasks are far from trivial and highly

dependent on the provided data — especially in cluttered real world scenarios.

Detection in itself is not feasible at every instance, due to occluded targets, faulty

scans or objects disappearing between sparse measurements. Additionally, per-

ceived objects may change their appearance in consequence of their orientation,

posture or illumination. A detection algorithm has to account for this and provide

a detection every time a target object is measured.
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Tracking comes with a different set of challenges. Trackers are provided with a se-

quence of detections from individual time steps. Their task is to estimate the true

state of an entity, even under the influence of noisy, erroneous and irregular detec-

tions. For simultaneous tracking of multiple objects, additionally the assignment

problem — deciding which detection is corresponding to which tracked object —

has to be solved. It is advantageous to handle cases of temporary occlusions, false

detections or objects entering or leaving the sensor’s field of view to prevent false

assignments.

Different sensors provide differing advantages and disadvantages with regards to

tracking. Cameras, for instance, scan the environment densely but usually only in

a directed and limited perspective. Furthermore, the images suffer heavily from

different lighting situations as can be seen in Figure 2.3. LiDAR sensors on the

contrary are mostly independent from the lighting, providing a wide field of view

but do not scan the environment densely.

Figure 2.3: Top: A part of a point cloud generated using the Velodyne VLP-16
and projected onto a camera image recorded from the airborne Matrice 600
UAV. Bottom: Points corresponding to humans — with a distance to the
sensor of 20m and 17m respectively — are colored in green while measurements

on the background are colored in red.
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We decided to use the Velodyne VLP-16 LiDAR sensor for detection and tracking,

because we want to have an overview of as much of the environment as possible at

every scan. As a result, we have to cope with smaller objects disappearing between

scan rings or being represented by only very few measurements. Hence, our detec-

tor has to trigger every time an object is perceived by the sensor. Nevertheless,

the tracker has to handle missing detections as they are an inherent problem to

that kind of data at a certain distance.





Chapter 3

Related Work

The task we want to solve is the detection and tracking of small objects in sparse 3D

laser range data. The following chapter defines both tasks and gives an overview

of related works. Since only a few works attempt to utilize the sparse data of

a Velodyne VLP-16, we also inspect approaches concentrating on denser data of

similar sensors.

3.1 Overview

Tracking in itself is the task of monitoring the state of an entity. Usually one

or several objects of interest are tracked in several consecutive measurements of a

sensor. In our case we are especially interested in tracking the positions of dynamic

objects. This task in the field of autonomous robotics has been investigated already

for a long time [8], as successful tracking enables robots to interact with moving

objects in their environment. Thus, it allows to use the knowledge of the object’s

positions for example during interactions with humans to anticipate their behavior

or in traffic to avoid other participants optimizing the robot’s trajectory to save

time and energy.

A popular tracking paradigm is tracking-by-detection. Here, the raw measure-

ments are preprocessed by a detector. The task of the detector is to find target

objects in measurements at one instant of time — for example in one image or

scan. This reduces the amount of data used for tracking drastically. The detec-

tions are passed to the tracking algorithm following them over several points in

time.

9
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There are numerous ways to design detectors. For instance, to find humans in a

video, one possibility is to build a detector particularly for this one task [9]. It

would search for characteristics solely or mostly present in humans — rather tall

than wide, two arms and so on. The particular difficulty lies in providing a precise

object description without restricting it too much in order to avoid special cases

— lying people or missing arms. This subtype of tracking is called model-based

tracking, as you need a precisely specified model of the target objects.

For other use cases, like mapping the environment, only static and fixed objects

should be present in the map while all dynamic should be discarded [10]. Thus, it

would be necessary to track all dynamic objects. It would be very difficult — if

not infeasible — to specify all possible object models. One solution would be to

provide a rather general specification of what a dynamic object could be and how

it is distinct from the static background.

Another use case could be to track an object that was marked or just indicated by

a user. Again it is hardly possible to have an exact model directly available. One

would rather try to compute discriminative features in the marked area and find

them again in the next measurement. Those are model-free approaches, as they

do not rely on a highly detailed predefined object model.

In order to trace the dynamics of several objects simultaneously we need to restore

which detection corresponds to which object at which time. This is the purpose of

Multi Object Tracking (MOT). In other words it has to combine detections from

different time steps to form tracks. This task can be subdivided in three parts.

First each new detection has to be assigned to at most one already existing track

representing the same object. Then false positive detections have to be filtered

out. Lastly the tracker has to decide about the creation and deletion of tracks.

The first case occurs when a tracked object enters the sensor’s field of view and

the latter accordingly after leaving it. It is helpful to maintain a motion model for

each object, as it allows making predictions for the future states — even in the

absence of detections — and facilitates the assignment task.

In the following, we will review related works and asses whether we can utilize them

or their basic ideas. First we will concentrate on detectors working successfully

on 3D point clouds. This is followed by a description of basic tracking approaches

that serve as the foundation for a variety of state-of-the-art trackers. After that, a

number of recent combinations of detectors and trackers is presented. The chapter

is closed by tracking methods utilizing recurrent neural networks.
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3.2 Detection

Our use case and setup create special demands on a detector. The VLP-16 LiDAR

scanner has a full 360◦ horizontal field of view and maximum measurement range

of 100m (Figure 3.1). However, the scan rings have a vertical angular resolution

of 2◦ increasing the risk for smaller objects to lie between them, especially at

larger distances. For this reason, we want to utilize as much of the sparse data as

possible to never miss a sighting of an object. Every measurement corresponding

to an object should raise a detection — even at the risk of false positives. The

detector additionally has to be computationally efficient to run in real-time on the

limited hardware of an unmanned aerial vehicle (UAV).

Figure 3.1: Exemplary scan from a Velodyne VLP-16 in a large hall of about
20m x 25m. Each of the sensor’s 16 laser-detector pairs generates a scan ring.
The rings are color coded. The hall is mostly visible to the sensor due to the

full horizontal field of view.

Spinello et al. [11] propose a model-based approach use a Velodyne HDL-64E

LiDAR scanner to detect people. The sensor scans the environment in several

scan rings similar to our sensor with the difference of providing 64 scan rings with

a higher vertical angular resolution. Each scan ring is segmented using Jump

Distance Clustering, where a new segment is created when the distance difference

between two consecutive points of a scan ring exceeds a threshold. For each
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segment a set of geometrical and statistical features is computed. These features

are utilized to create specialized AdaBoost classifiers [12] for different height levels.

The classifiers vote into a continuous space and regions with a high vote density

result in detections.

This approach has a high classification rate in a close distance of up to 10 meters.

On the downside, the classification rate decreases rapidly with larger distances due

to the sparsity of the data. Furthermore, it has a detection frequency of only 1Hz

on a point cloud limited to a 10 meter maximum range. Hence, it is not suited for

our purposes.

Maturana and Scherer [13] propose a different approach to robustly classify safe

landing zones for a helicopter in vegetated terrain by detecting small and poten-

tially obscured obstacles. First, registered scans are used to generate a volumetric

occupancy map. In this map they select a 20m × 20m × 4m volume and process it

by a trained convolutional neural network. This network returns the probabilities

of a safe landing for each 1m3 subsection of the volume.

On the one hand, the detector is robust compared to approaches based on a

Random Forest classifier [14] or Bag of Words [15]. On the other hand, this method

cannot be used for our purposes either. By creating a map from registered scans

the assumption of a static scene is made since moving objects would cause artifacts.

Further, the generation of the volumetric occupancy map and the labeling of the

patches takes up several seconds for the rather limited used volume.

Tuncer and Schulz [16] concentrate on providing a real-time segmentation method

applicable to point clouds and robust to undersegmentation. The goal is achieved

by using spatial and temporal information to discriminate close objects.

An occupancy grid is utilized to remove the ground points. Then a connected

components algorithm extracts blobs in an 8 neighborhood. A motion field algo-

rithm combined with a set of Kalman filters determines the temporal information

of the scene. The preprocession is concluded by a smoothing on the dynamic grid

cells to compensate association errors.

The extracted blobs are processed by a mean shift algorithm to find the number

of modes in each blob’s state space. Blobs containing more than one mode are

considered undersegmented. Those serve as the input to the distance dependent

Chinese Restaurant Process, which counteracts the undersegmentation. The algo-

rithm is evaluated on the KITTY data set [17] providing better results than other

versions of the approach.
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3.3 Tracking

Just as there are special demands on the detector, there are also special require-

ments for the tracker. It also has to run in real-time on a UAV and be able to

cope with the detector’s output. Hence, it should be able to track objects ro-

bustly even if they are not visible for several measurements. Additionally, it is

advantageous to filter out false positives. In the following we will present some

basic approaches that became very popular and still serve as the foundation for a

variety of state-of-the-art trackers.

3.3.1 Kalman Filter

Despite the fact that the Kalman Filter is less of a tracker than a state estimator,

it is hardly possible to give an overview of different trackers without at least

mentioning it. It is used in tracking already for decades [8, 18] and is used still [19].

In general, the Kalman filter utilizes the previous object state and a motion model

to predict the current state. This prediction is corrected using the measurement

at the current time step. The cycle of prediction and correction is repeated for

the following measurements.

Since both the motion model and the measurements are subject to a certain

amount of error or noise, these are modeled as well. For this purpose, proba-

bility distributions are utilized. In the prediction step, the Kalman filter not only

estimates the next state but also the error of this state estimation.

Similarly, the error of the sensor is taken into account during the correction step.

If the sensor has proven to be reliable, more weight is given to the measurement.

If the measurements are erroneous, we favor the estimate of the motion model.

Consequently, the new state is a weighted mean of estimate and measurement. As

a final step the estimated error of the motion model is adjusted according to this

weight and the next iteration is initialized. A more detailed description of the

Kalman filter is provided in 4.5.2.

The original Kalman filter exhibits some limitations. For one, the error is assumed

to be a zero mean Gaussian distribution which might be not expressive enough to

model the real error. For another, the motion model is linear and hence has prob-

lems to cope with complex movements or abrupt changes in direction. Extensions

of the Kalman filter address these shortcomings.
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3.3.2 Particle Filter

A more general way to state estimation is provided by the particle filter [20]. It

uses so-called particles as hypotheses of the target objects’ states. These particles

are distributed randomly in the entire search space, if no prior knowledge of the

objects’ positions is available. Each particle has a weight representing the proba-

bility of being close to an object. Detections are utilized to increase the weights

of particles in their vicinity. After that, a new set of particles is created — the

resampling. Higher weighted particles are sampled more often. This leads to ac-

cumulated particles in places where detections frequently occur. In the absence of

detections, these accumulations are prone to persist before dissolving gradually.

If the robot or sensor is moving, it is necessary to model the particles’ positions

relative to it. If we want to deal with multiple dynamic objects, it is helpful to

extend the filter. The first extension would be an assignment algorithm — for

example the Hungarian method [21] — which would assign each particle to its

corresponding object. After creating these links it is possible to use an object’s

motion model during the resampling.

The advantage of the particle filter is that it does not have the limitations of the

simple Kalman filter. However, it needs more computational resources to maintain

all particles.

3.4 Combinations of Detection and Tracking

Neither the Kalman filter nor the particle filter are providing detections or solve the

assignment problem. On one hand, this assures flexibility by combining different

detectors with various state estimators and assignment algorithms. On the other

hand, specially tailored solutions for different sensors and object classes potentially

increase development time and reduce reusability. In the following, we will present

model-free and model-based methods for detection and tracking in 3D point clouds.

Moosmann and Stiller [19] propose an approach for self-localization, mapping and

multi object tracking in 3D laser range data. This is a model-free approach creating

range images from point clouds and segmenting them using the local convexity

criterion [22] to detect object hypotheses. Tracking is split into three parts. First,

the prediction step of a Kalman filter with a constant velocity model is utilized to

update the state of each track. Then, the point clouds corresponding to tracked
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object are registered to the current scan of the environment using Iterative Closest

Points [23] to restore the movements of these objects. Finally, a classification

method based on Support Vector Machines is utilized to associate and manage

the tracks.

The method achieves good results, while including mapping inherently. On the

downside, it needs dense data. If a small object would disappear repeatedly be-

tween the scan lines, the registration step would fail and tracking would be com-

promised.

Dewan et al. [10] attempt to track all dynamic objects in 3D LiDAR scans recorded

from a moving autonomous vehicle. They use a model-free approach to detect

groups of points that move in the same direction. This is accomplished by compar-

ing two consecutive scans using Signature of Histograms of Orientations (SHOT)

[24] descriptors. The largest group of points moving in the same direction is con-

sidered to be the background while the remaining groups are assumed to be the

dynamic objects. Both are tracked utilizing a Bayesian approach.

The authors manage to surpass the results achieved by Moosmann and Stiller [19]

and are able track moving vehicles even through short occlusions. One drawback

though is that this approach has the assumption of rigid body motion. Hence, for

example people can not be tracked robustly. With regards to our problem further

drawbacks are that the objects have to move fast enough in order to be detected

and need to exceed a certain size or measurement count.

Romero-González et al. [25] present a different approach for detection and tracking

of people and a hand-labeled indoor data set the method is evaluated on. First,

a not closer defined segmentation method is utilized for background extraction

and outlier removal. This is followed by a projection of the remaining points to a

ground plane and a euclidean clustering [26]. These clusters are processed using

the global Ensemble of Shape Functions (ESF) descriptor [27] and classified by

Random Forests into the classes Person and Not person. These Random Forests

are trained on ground truth annotations.

For tracking, clusters classified as persons are matched to the closest existing hy-

potheses. Matches with a distance below 0.5m are considered valid and are used

to update the circular velocity buffer of the assigned hypotheses. Invalid clus-

ters generate new hypotheses while unassigned hypotheses are propagated using a

weighted mean of the velocities in their buffer.
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The approach is evaluated on the data set that was recorded, labeled and published

especially for this purpose. It generates promising results, but lacks an evaluation

of the run time. We utilize this data set to evaluate our method — a more detailed

description of the data is provided in 5.2.1.1.

3.5 Learning to Track

All those methods utilize handpicked combinations of algorithms for MOT. How-

ever, they are designed for rather specific use cases and come with a variety of

downsides for our task. The ability of Recurrent Neural Networks (RNNs) to

tackle these problems are investigated in recent approaches. The idea is to create

a network that continuously reads raw sensor data and outputs the tracks of all

target objects.

Milan et al. [28], for instance, utilize a combination of an RNN and a Long Short-

Term Memory (LSTM) network [29] to track multiple humans online in camera

images. The RNN is responsible for three tasks. First, learning a complex dy-

namic model for target motion prediction even in the absence of measurements.

Second, correction of the states, given target-to-measurement assignments. And

third, identifying the birth and death of tracks based on the states, measurements

and data associations. The LSTM network is utilized to generate the target-to-

measurement assignments. For this purpose a pairwise-distance matrix between

each detection and the predicted state of each target is computed and provided

to the LSTM network. The output is a vector with assignment probabilities for

each target. The networks are trained separately on synthetic data compiled by a

simple generative trajectory model. The results are competitive against the state

of the art but leave room for improvement, since the network was intended to be

comparatively simple — hence general but also efficient.

Ondruska and Posner [30] investigated the capabilities of RNNs for tracking sev-

eral objects in simulated 2D laser scans provided as occupancy grids. They used

an Encoder-Recurrent-Decoder architecture to generate another occupancy grid

representing a future state. The Encoder performs convolutional operations fol-

lowed by a sigmoid nonlinearity to convert the raw input into a hidden state. The

function of the Encoder is to analyze the data and serve as a detector. The Re-

current combines the Encoder’s hidden state and its own previous hidden state.

Thus, it serves as the tracker, combining the information from several time steps.
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The objective of the Decoder is to map the hidden state of the Recurrent back to

an occupancy grid.

The results of this network were motivating. So it was tested on real data which

required to extend the network. For this purpose the authors experimented with

different network structures [31]. They came to the conclusion that it is more

advantageous to use Gated Recurrent Units (GRU) [32] rather than just increasing

the size of their first network. Furthermore, they utilized several layers of GRUs

and dilated convolution with different strides to enable the network to encode

objects of different sizes in its memory.

Additionally, they extended their network by incorporating a Spatial Transformer

module [34]. The module’s purpose is shifting the hidden state with respect to the

sensor’s motion which the system receives from visual odometry. The results of

the network were compared to one model-free approach [35]. It outperformed that

approach especially in terms of occlusion handling and prediction performance

while staying able to process the data in real-time. Still, the method is working

on voxelized 2D data with a limited range. Hence, it is not directly applicable to

tracking grounded objects using an airborne sensor.

Farazi and Behnke [36] attempt to track and identify several robots that are visu-

ally identical. Using only camera images of one robot and the heading information

of all robots as the primary cue to distinguish the robots. The proposed method

is split into model-based detection and tracking. Detections are generated using

Histograms of Oriented Gradients (HOG) [37] features in combination with a cas-

cade classifier. After non-maximum suppression, bounding boxes for all detections

are computed and projected into egocentric world coordinates. A Support Vector

Machine multi-class classifier is utilized for heading estimation. Input to this clas-

sifier are a feature vector based on a dense HOG descriptor and the normalized

center position of the detection’s bounding box.

For tracking, a deep LSTM network is used. The input is a vector consisting of the

absolute headings broadcasted by the robots and the estimated headings, positions

and probabilities of the detections. The output is an assignment of the detections

to the targets or a false positive. The network was pre-trained on simulated data

and then fine-tuned on a small real data set. It achieved good results compared to

base line methods and was able to solve the problem of online visual tracking and

identification of visually identical robots. On the downside, the number of tracked

objects is limited and build into the network. Thus tracking a varying number of

objects is not feasible.
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Although generating promising results for their specific tasks, none of the presented

methods is directly applicable to our data and problem. An additional drawback

for methods relying on machine learning is the need for thoroughly labeled and

versatile training data, that to our knowledge does not exist yet — details in 5.2.

Thus, we propose a novel approach for multi object tracking in sparse 3D laser

range data.



Chapter 4

Approach

In the following, we are going to provide a step-by-step description of the imple-

mented Multi Object Tracking (MOT) pipeline (Figure 4.1). Starting with the

point cloud that is generated from the sensor, we preprocess the data by segment-

ing it into foreground and background. This segmented cloud is used to create

object detections that are provided to the multi object tracking algorithm. The

estimated tracks are then returned to the detector to aid the detection in following

measurements. We estimate the state of objects in a common world frame. For

this purpose, a mapping algorithm is utilized to estimate the sensors position in

the world.

The functionality is split up into ROS nodes [38]. This modular structure not

only assures the option to easily replace parts of the pipeline if necessary, but

also allows a convenient extension of the pipeline to fuse detections from several

independent sensors.

Figure 4.1: Overall concept of the detection and tracking method.

19
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4.1 Point Cloud Generation

The sensor we use to generate 3D scans of the environment is the Velodyne VLP-16.

A detailed description of the functionality can be found in chapter 2. In general,

16 scan rings — each consisting of about 1800 measurements — are generated.

The Point Cloud Library [39] is used to store and pass the data in a unified format

from node to node. Each measurement is converted into a 3D point and stored

together with the intensity value and the ring number, corresponding to the ID of

the laser-detector pair it was measured with. All points from one scan are stored

in a point cloud, containing information about the number of measurements, their

structure, time of measurement and coordinate frame.

As the segmentation method utilizes the measured distances, we adapted the sen-

sor’s driver to save those inherently existing values for each point instead of re-

computing them in a later step.

Additionally, we extended the driver with an option to generate either unorganized

point clouds containing only valid measurements — which is the original behav-

ior — or organized point clouds that preserve the grid-like structure of the scan.

Invalid measurements occur most frequently when the maximal measuring range

of the sensor is exceeded — for example in the sky — or if the laser is directed to

an absorbing surface. These measurements do not provide any valid distance or

intensity readings and are filtered for unorganized clouds to save memory. Orga-

nized clouds on the contrary store the information that an invalid measurement

occurred to retain the structure of a fixed number of scan rings, each containing

the exact same number of measurements. This grid-like setup allows to utilize an

additional set of algorithms frequently applied to structures like images.

4.2 Segmentation

The Velodyne VLP-16 generates 16 scan rings with a 360° horizontal field of view.

These scan rings are deformed by objects in the environment, resulting in grouped

measurements that are closer to the sensor than their neighboring measurements

from the background. Our goal is to find all points belonging to foreground groups

of a specified width [swmin, swmax].

Despite the high horizontal resolution of 0.2 degrees, the sensors vertical resolution

of 2° between neighboring scan rings is rather low. Thus, especially small or distant



Chapter 4. Approach 21

objects raise the risk of laying in between those rings or corresponding to only very

few measurements (Figure 4.3). Training of sophisticated object models under

these circumstances is hard if not impossible. Hence, we segment objects according

to their width, as this is the most distinct feature we can compute even for distant

targets. For this, we rely on the assumption that the sensor is scanning the

environment mostly horizontally. Due to the high vertical resolution, we process

each scan ring individually.

Our proposed method relies on a combination of two median filters to segment

objects of a specified width range. Each median filter processes a different number

of neighboring measurements depending on that range. Thus, we need to convert

the targeted object width from continuous meters into the discretized space of

point indices. We illustrate this conversion first before going into the details of

the method itself.

Figure 4.2: Segmentation Overview: The input cloud is split into the scan
rings. These are segmented independently using a combination of two median

filters and fused back to a cloud afterwards.

4.2.1 Conversion

Our goal is to segment objects of a specified width range within single scan rings.

For this purpose, we need to convert a width in meters to the number of points

approximately corresponding to an object of that size. This number does not only

depend on the object’s width w, but also on the angle α between neighboring

measurements and the distance d to the object. While the width w and the angle

α are constant, the distance to the object varies for different scans.

To assure computation in real-time, we apply a heuristic with simplified geometric

assumptions. We neglect the orientation of the object and assume that the points
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Figure 4.3: Left: Graph showing the distance of two neighboring scan rings
depending on the distance to the sensor in red. A standing human of 1.8m is
measured by at least one scan ring up to a distance of about 50m if scanned
frontally — represented by green block. Right: A scan projected onto a camera
image. Green points represent measurements on the human, while red points
correspond to the background. Even at a distance of about 12m there are only

a few measurements on the human.

form a line in the local neighborhood. Then, we compute the angle β between the

center and the edge point of a hypothetical object at a distance of d by

β = arctan

(
0.5w

d

)
. (4.1)

The resulting β is divided by the given angle α between the scan points (Figure

4.4b). As this corresponds to the approximate number of measurements on one

half only, the double yields the approximate number of points corresponding to an

object of the specified width.

4.2.2 Median Filter

In general, a median filter sorts a list of elements by a desired criterion and returns

the middle element of the sorted list. In other words, the filter alternates between

removing the minimum and maximum of the list until only one element is left. In

the following, we will refer to the size of the input list as the kernel size k.

Our segmentation method consists of two median filters with different kernel sizes

applied to the distance readings of one scan ring. The goal is to segment all

point groups of a width ω within a specified width range wmin < ω ≤ wmax. A

point group consists of neighboring measurements having a similar distance to the

sensor. The noise filter is used with a smaller kernel size kn to filter out noise and
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Figure 4.4: a) An exemplary segmentation of a target object. b) Conversion
of object width to kernel size: The specified object width and the distance to
the measurement are utilized to compute β. Using the fixed angle α between
the measurements we approximate the number of points corresponding to an

object of the specified width.

point groups with a width up to wmin. The object filter — having a kernel size of

ko with ko > kn — is applied to the original distance measurements to additionally

smooth away groups of the specified width range. Thus, the kernel sizes serve as

bounds and the results only differ for point groups of the aspired width range.

To process one measurement with index i we provide a median filter with its

distance di and the distances of the neighboring measurements with respect to the

kernel size k.

mk
i := median(di−b k

2
c, · · ·, di, · · ·, di+b k

2
c) (4.2)

The difficulty here lies in finding the correct kernel sizes for each filter. If the

kernel size of the noise filter is too large we might fail to segment some target

objects. If it is too small the false positive rate is increased. The same applies in

reverse to the object filter.

We set the kernel size kn of the noise filter to kn = 2 ∗wmin+1. This ensures that

the filter’s input consists of less group points than background points, if we are

processing a point that corresponds to a group we want to filter out. Thus, the

filter’s resulting distance will be of the background which implies that the point

is filtered out (Figure 4.5a).
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Figure 4.5: a): Example of a median filter applied on the middle point m4

using a noise kernel size kn = 2 ∗ wmin + 1 with wmin = 3. Three of the
four background points m1,m2,m6,m7 cancel out with the closer object points
m3,m4,m5 resulting in a filtered distance that is equal to one of the background
points for m4. b): Schematic example of the median filters’ results on a scan
ring. Measurements are depicted as red squares. The results of the object and
noise filters are illustrated by the dark and bright green arcs respectively. The
small object on the left is filtered out by both medians, while the target object

is segmented as it is filtered out by the object filter only.

After that, the object filter is applied with kernel size ko = 2 ∗ wmax + 1 to the

original measurements. The results are two filtered versions of one scan ring.

For each point in each ring we compute the difference between those two filtered

distances. They only differ in those points that correspond to objects with the

desired width (Figure 4.5b). In the following we will refer to this difference of

median filtered distances for a point with index i as the segmentation value ∆i

with

∆i := mko
i −mkn

i . (4.3)

4.2.3 Certainty Computation

After computing the segmentation value ∆ ∈ R we need to convert it into a prob-

ability value p, with 0 ≤ p ≤ 1, that specifies how certain we are of a measurement

corresponding to a point group in the foreground and thus belonging to a segment.

We first provide a conversion function for a general case and then present a second

conversion to segment especially small objects on the ground using an elevated

sensor.
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4.2.3.1 General Case

We only consider positive results, since the segmentation value approximately

states how many meters closer the point of a group is in comparison to the group’s

background. In addition, we avoid false positives by segmenting only those targets

that clearly stand out. This is achieved by thresholding the segmentation value up

to the fixed parameter δmin. The more the point stands out from the background,

the more certain we want to be. Thus, the probability is rising linearly depending

on the segmentation value from δmin to the second threshold δlow up to a value of

ρmax (Figure 4.6). In the general case ρmax is equal to one. The full conversion

function results in

p(∆) =


0 : if ∆ < δmin

(δmin−∆)∗ρmax

δmin−δlow
: if δmin ≤ ∆ ≤ δlow

1 : if δlow < ∆

(4.4)

with 0 ≤ δmin and δmin < δlow.

Figure 4.6: Left: General case of a function p(∆) that converts a segmenta-
tion value ∆ to a probability P defining the likelihood of a measurement cor-
responding to an object we want to segment (Eq. 4.4). Right: Special case of
the same function to account for the properties of small objects measured from
an elevated sensor depicted as the green graph (Eq. 4.5). The orange graph
visualizes the effect of incorporating an exemplary intensity segmentation value

(Eq. 4.6).

4.2.3.2 Special Case — Small Objects

The special case is an extended version of the function we have defined for the

general case. It was implemented for the 2017 Mohamed Bin Zayed International
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Robotics Challenge (MBZIRC), where one task consisted of retrieving small col-

ored discs from an asphalt paved arena using UAVs. These discs have the special

property of being slightly elevated but rather close to their background depending

on the angle of measurement. We utilize this property to filter out segments that

correspond to objects with a higher distance to their background. We do this by

decreasing the probability if the segmentation value is above the threshold δhigh

and restricting it completely if it exceeds δmax (Figure 4.6). This results in the

extended probability function

pMBZIRC(∆) =


p(∆) : if ∆ < δhigh
(δmax−∆)∗ρmax

δmax−δhigh
: if δhigh ≤ ∆ < δmax

0 : otherwise

(4.5)

with δlow < δhigh and δhigh < δmax.

Another extension can be made if the sensor provides intensities for each mea-

surement. These can be processed analogically to the distances providing another

segmentation value. This segmentation value can be seen as the difference in

intensities between objects and their background. Hence, it can be used as an-

other cue to segment only those objects that have the desired width and stand

out from the background not only by their position but also by their intensity

value. We combine both segmentation values by summing their probabilities if

the distance probability is above zero (Figure 4.6). This condition is necessary to

avoid segmenting false positives on surfaces like paintings where just the inten-

sity segmentation value generates a response. All in all the combined probability

function results in

pComb(∆
Dist,∆Intens) =

p(∆Dist) + p(∆Intens) : if 0 < p(∆Dist)

0 : otherwise
(4.6)

with ∆Dist and ∆Intens as the segmentation values using the distances and the

intensities respectively and ρDist
max + ρIntensmax = 1.
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4.2.4 Invalid Measurements

The previous description of the segmentation method states how we treat valid

measurements only. This is the case for unorganized point clouds that were fil-

tered of non-valid measurements. When using the organized point clouds, invalid

measurements are stored to keep the grid-like structure of the data intact (Section

4.1). As these measurements do not contain valid distance or intensity readings,

we have to treat them differently during the segmentation.

For airborne sensors its most likely that the majority of invalid readings are a

result of measurements into the direction of the sky or other objects that exceed

the maximal measuring range of the sensor. In general, we do not want any of

those points to be classified as a segment point. For this reason, we assign a

fixed probability value of zero and replace the invalid distance by a value that

exceeds the maximal measuring range. This way, these invalid points can still

be used by neighboring valid measurements during the median computation and

allow segmenting objects in the sky — for example other UAVs.

4.3 Mapping

For tracking objects in general, we need to know their positions in a fixed coor-

dinate frame of the world. Thus, we need to know the pose of the sensor within

this world, as all measurements are relative to the sensor’s current pose. We use

the Multi Resolution Surfel Mapping [40] to register the current scan to the pre-

vious to estimate the movement of the sensor between both scans. This mapping

algorithm was explicitly developed to work in real-time on sparse laser range data.

We declare the coordinate frame of the first scan as our world frame and consec-

utively register each following scan into this frame to generate a map. By doing

so, we simultaneously retrieve the pose of the sensor within the world during each

scan. Knowing these poses, we are able to compute the positions of the segments

in the world at each time step. In the following, all positions are relative to the

coordinate frame of the world.
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4.4 Detection

After preprocessing the scan to find segments of the specified width, we need to

group the segment points to connect those that correspond to the same object in

the world. This process is called clustering. Depending on the structure of the

data — grid-like or unorganized — one of two clustering algorithms is chosen.

Afterwards, we need to filter out clusters not fitting the description of our target

objects. For this, tracks from a tracking algorithm can be utilized to incorporate

temporal information. In the following both steps will be described in detail.

Figure 4.7: Detection Overview.

4.4.1 Clustering

Clustering in general consists of splitting up a set of data points such that the

points in each cluster are similar to each other, while the points from different

clusters are dissimilar. We will first describe the euclidean clustering [26], which

is independent of the data’s structure and can be applied to unorganized point

clouds. Additionally, we will illustrate the region growing clustering, that exploits

the internal structure of our data and is the clustering algorithm of our choice.

4.4.1.1 Euclidean Clustering

The euclidean clustering assumes points of the same cluster to be in the local

vicinity of each other while being afar from points of other clusters. To generate

this condition we first filter out measurements that do not belong to segments.

We allow a threshold to specify how certain we want to be. All points with a
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computed probability above this threshold serve as the input to the euclidean

clustering (Algorithm 1). The general functionality to find all points in a cluster

consists of an iterative search in a radius defined neighborhood (Figure 4.8).

Algorithm 1 Euclidean Clustering

1: function EuclideanClustering(Set of points P , Search radius r)
2: C : empty list of clusters
3: Q : empty queue of points to process
4: cmin : minimal number of points within valid cluster
5: for each unprocessed point pi ∈ P do
6: c : empty cluster
7: add pi to Q
8: for each unprocessed point pj in Q do
9: mark pj as processed
10: add pj to c
11: find set P n

i of unprocessed neighbors of pj in a sphere of radius r
12: add all points from P n

i to Q

13: if |c| ≥ cmin then
14: add c to C
15: return C

We would like to keep the search radius low to avoid a combination of points

from different close objects to one cluster and to reduce the computational time.

Still, the radius should be large enough to find measurements from the directly

neighboring scan rings to successively find all points belonging to one object.

Finding the best search radius is not trivial and highly dependent on the structure

of the data and the scanned environment (Figure 4.8). Nevertheless, we have

tested this approach and came to the conclusion that the disadvantages — high

computation time for required search radius and spherical search space — outweigh

the advantage of being applicable to unorganized data. Thus, we implemented a

second clustering algorithm, that utilizes the organized structure of our data.

4.4.1.2 Region Growing Clustering

This second clustering method utilizes region growing on the organized structure

of the point cloud. The region growing connects a seed point to its neighboring

segment points and those successively to their neighboring segment points. The

neighborhood is defined on the grid structure of the cloud (Figure 4.9). We classify

each point with a segmentation probability above 0.8 as a segment point. Each

segment point not belonging to an existing cluster induces the region growing

(Algorithm 2).
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Figure 4.8: Euclidean Clustering: Left: Starting with the marked green
point to the left, a radius search within the dotted ring is performed. All
points within the radius are added to the cluster and initiate a search in their
neighborhood in the next iteration. Right: The low vertical resolution of the
sensor results in a wide search radius to find measurements from the neighboring
scan rings. This raises the risk of underclustering, where several objects are

falsely combined into one cluster.

Algorithm 2 Region Growing Clustering

1: function RegionGrowingClustering(Organized grid of points P )
2: C : empty list of clusters
3: Q : empty queue of points to process
4: cmin : minimal number of points within valid cluster
5: for each not visited segment point pi ∈ P do
6: c : empty cluster
7: add pi to Q and c
8: mark pi as visited
9: while Q not empty do
10: dequeue pj from Q
11: for each direct neighbor pn of pj do
12: if pn not visited and a segment point then
13: add pn to Q and c
14: mark pn as visited

15: if |c| ≥ cmin then
16: add c to C
17: return C

We adapt this region growing clustering at two points to work more robustly on

the special structure of our data. Due to the sparsity of the data, the neighborhood

search radius in line 10 is extended to check more than just the direct neighbors

(Figure 4.10a). Additionally, at line 11 the distance of the current point to its

neighbors has to be taken into account to prevent the clustering of several distinct

but partially occluding objects (Figure 4.10b). These extensions add two param-

eters to the clustering algorithm — a search radius rrg and a distance threshold

∆rg. The search radius defines the maximal Manhattan distance of the current
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Figure 4.9: Region Growing Example: Light gray points represent seg-
ment points while dark gray points represent the remaining points not getting
clustered. a) Initializing the cluster with the marked green point, we find all
directly neighboring segment points — marked by green arrows. b) The next
iteration adds those to the cluster and checks the neighbors of the neighboring
segmented points. Points that are already in the cluster are not revisited —

gray arrow.

point to a neighbor in the 2D index space of the organized point cloud. Thus, it

scales well with the distance to the objects, as distant objects are represented by

sparser data needing a larger euclidean search radius.

Figure 4.10: Region Growing Parameters: Exemplary part of a scan of
two persons behind one another with green segment points and red background
points. a) Sensor’s Perspective: Simply connecting the direct neighbors during
region growing would result in wrong clusters. b) Shifted Perspective: Tak-
ing the distance between neighboring points into account helps to distinguish
segment points corresponding to different objects and thus prevents underclus-

tering.

One drawback of our data for this clustering method is that the start and end

of the scan might overlap. We need to handle this case explicitly by computing
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the approximate overlap, finding the clusters laying within and fusing those that

correspond to the same objects in the world. We estimate this overlap by comput-

ing the angle between the first and the last point of one scan ring in the sensor’s

coordinate system. If an overlap exists, we add 360° to the computed angle and

divide by the number of points in one scan ring to get the mean angle between

consecutive scan points within a ring. Dividing the overlap’s angle by the mean

angle results in the number of points within the overlap at each end of the scan

ring. Knowing this number, we can check which clusters are within the overlap.

We fuse those clusters whose bounding boxes intersect in the index space.

In the end we have decided to use the region growing instead of the euclidean

clustering. The results are more precise over a wider range of distances and we are

able to process the data in real-time — details in chapter 5. Furthermore, both

parameters can be set intuitively and have just a minor effect on the already lower

computation time, compared to the euclidean clustering.

4.4.2 Filtering

After clustering the segment points we need to make sure that the clusters’ prop-

erties match our simple object model. This model consists of a height range

[hmin, hmax] and a maximal width wmax. We apply both to the axis aligned bound-

ing box of each cluster. Due to the sensor’s limited vertical field of view, objects

might be scanned just partially. Consequently, we refrain from the test for a min-

imal height for those clusters containing at least one point from the first or last

scan ring. Clusters fitting this description are considered valid detections.

Additionally, a second class of detections is provided. Tracked objects that increase

their distance to the sensor are represented more and more sparsely in the data.

This raises the risk of missing a detection of these objects. We exploit the tracker’s

temporal information to detect even those targets whose cluster does not fit the

model. For this purpose, we utilize the objects’ states provided by the tracker

to loosen the thresholds for clusters in their vicinity — defined by the Euclidean

distance below the threshold Λ. Detections solely generated using the tracker’s

knowledge are marked. As marked detections implicitly correspond to existing

hypotheses, we prevent the tracker from creating new tracking hypotheses on their

basis. The set of valid and marked clusters are the output of the detection method.
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4.5 Multi Object Tracking

Multi Object Tracking (MOT) in general is the task of monitoring the states of

several objects simultaneously. For this purpose, the algorithm maintains a set of

object hypotheses. These are updated using the information from detections in

the most current scan. Hence, we need to find those detections that correspond

to currently maintained hypotheses. We utilize an assignment algorithm that

matches detections to hypotheses with respect to a similarity measure. Each

assigned hypothesis is updated using its own Kalman filter. Unassigned hypotheses

might correspond to objects that left the sensors’ field of view and thus must be

tested for validity. Unassigned detections on the contrary might be correspondent

to objects entering the field of view and thus are candidates for new hypotheses.

As a final step, close hypotheses are merged. Before assigning the detections of

the next time step, the current hypotheses’ states are projected into this time step

in the prediction. An outline of our MOT algorithm is depicted in Figure 4.11.

Figure 4.11: Multi Object Tracking Overview.

4.5.1 Object Representation

The object hypotheses are represented by an axis aligned bounding box and a

state consisting of a 3D position and velocity. Additionally, the Kalman filter

deployed for state estimation provides an error covariance indicating its’ estimation

accuracy. Detections are represented by their position and error covariance only.

The latter is dependent on the noise model of the sensor. We are using the same

hand tuned covariance for every detection.
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4.5.2 State Estimation — Kalman Filter

The Kalman filter is a computationally efficient algorithm that uses a series of

possibly noisy measurements from different time steps to estimate the state of an

entity. We utilize one Kalman filter to estimate the state of one hypothesis. The

underlying model assumes the state transition from the state xt−1 at time t− 1 to

the state xt at time t to be of the form

xt = Ftxt−1 +Btut + wt (4.7)

with Ft as the state-transition model applied to the previous state xt−1, Bt as the

control-input model applied to the control vector ut and wt as the process noise,

drawn from a zero mean multivariate Gaussian distribution with covariance Qt.

Observations zt at time t are assumed to be of the form

zt = Htxt + vt (4.8)

with Ht as the observation model applied to the current state xt under the influ-

ence of the measurement noise vt, drawn from a zero mean multivariate Gaussian

distribution with covariance Rt.

The Kalman filter alternates between the prediction of the current state and the

correction of this state depending on the current measurement.

4.5.2.1 Prediction

We use the filter to estimate the state of an object hypothesis over time, correcting

it using detections. Every time we detect an object in the current scan correspond-

ing to an already existing hypothesis, we first need to project the hypothesis’ state

xt−1 into the time step t of the current scan. This is the purpose of the Kalman

filter’s prediction step (Figure 4.12). The state xt−1 =
(
px py pz vx vy vz

)T

of a hypothesis at time t−1 consists of a three dimensional position p and velocity

v. It is projected by

x̂t = F∆txt−1 (4.9)
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to the estimated state x̂t using a constant velocity state-transition model

F∆t =



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.10)

with ∆t as the time difference to the previous prediction. We omit the control-

input model, since we have no control of the tracked objects.

Additionally, we make a prediction for the error covariance P̂t by

P̂t = F∆tPt−1F
T
∆t +Q∆t (4.11)

withQ∆t as a 6×6 identity matrix, element wise multiplied by ∆t and a parameter

q specifying the increase of the covariance per second during prediction. The error

covariance is a measure for the estimated accuracy of the state estimate. The

covariance increases during the prediction, representing the decreasing accuracy

of the state estimate. We initialize P0 as a 6× 6 identity matrix.

4.5.2.2 Correction

After predicting the current state and covariance, the Kalman filter corrects both

using the detections’ state and covariance (Figure 4.12). For this, we compute the

Kalman gain K by

K = P̂tH
T (HP̂tH

T +R)−1 (4.12)

with observation model H — in our case a 3 × 6 diagonal matrix with ones on

the main diagonal — and measurement covariance matrix R representing the

accuracy of the measurement. To indicate a high measurement accuracy, we set

R to a diagonal matrix with variances of σ2 = 0.032 on the main diagonal. The

Kalman gain symbolizes the ratio of accuracies. It indicates how much we trust

the measurements with respect to the state transition model during correction.

We utilize it to weight the vector from the estimated position p̂t = Hx̂t to the
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measurement zt. This weighted vector is added to x̂t computing the corrected

state

xt = x̂t +K(zt −Hx̂t). (4.13)

If the weights in K are equal to zero, we distrust the measurement completely

and do not correct the predicted state. If, on the contrary, all weights are one, we

solely rely on the measurement during correction and neglect the predicted state.

We compute the corrected error covariance Pt similarly depending on the Kalman

gain by

Pt = P̂t −KHP̂t. (4.14)

The error covariance decreases proportionally to the estimated accuracy of the

measurement. This concludes one iteration of prediction and correction initialized

by an assigned detection.

Figure 4.12: Prediction: The state xt−1 of the hypothesis — depicted as
the lower green ellipsis — is projected into the next time step using the state-
transition model. The accuracy of the state estimate x̂t decreases with every
prediction, indicated by a larger ellipsis. Assignment: We find a detection zt
(red ellipsis) corresponding to the hypothesis — details in 4.5.3. Correction:
We utilize this detection to correct the estimated state of the hypothesis. The
estimated accuracy of the corrected state xt is increased, due to the higher

accuracy of the detection.

4.5.2.3 Velocity Limits

Achievable velocities of dynamic objects, like humans, are usually limited. False

registration results in the mapping or wrong assignments can cause estimated
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velocities beyond these limits. An additional cause for incorrect velocity estimates

is inherent to the sparse data of the Velodyne VLP-16. Small pitch movements

of the sensor can lead to significant differences in consecutive scans. A distant,

static object for example measured at the bottom by a single scan ring can be

measured at the top in the next scan. Although being static, its detections would

have a high positional disparity inducing a high estimated velocity. To decrease

this effect we restrict the estimated velocities to a maximum of 10km
h
. Velocities

exceeding the bound are truncated.

Another effect induced by noisy data is the estimate of very small velocities for

static objects. These are usually negligible, as the Kalman filter corrects slightly

erroneous position estimates. In situations where another object starts to occlude

the already tracked static object, this correction step is missing. In such cases,

continuous predictions can cause a significant displacement of object hypotheses

that correspond to static objects. We prevent this behavior by truncating velocity

estimates of up to 1km
h

to zero.

4.5.3 Assignment — Hungarian Method

For tracking multiple objects it is essential to know which detection corresponds

to which object hypothesis. This is a classical assignment problem that we solve

in polynomial time by utilizing the Hungarian method [41]. The algorithm finds

a one-to-one assignment for a given cost matrix minimizing the total assignment

costs. Hence, we model our problem as an n× n adjacency matrix

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...

an,1 an,2 . . . an,n

 (4.15)

with ai,j as the Bhattacharyya distance BD(di,hj) between detection state

di = N (µi, Σi) and hypothesis state hj = N (µj, Σj) with position µ and po-

sitional covariance Σ. The Bhattacharyya distance is a measure of divergence

between two probability distributions defined by

DB(di,hj) =
1

8
(µi − µj)

TΣ−1(µi − µj) +
1

2
ln

 detΣ√
detΣi detΣj

 . (4.16)
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The Hungarian method finds the assignments minimizing the total distance be-

tween the detections and the hypotheses. We restrain from using the objects’

appearances as recommended in [42].

After computing the adjacency matrix we provide it to the Hungarian method

that performs the following steps to find an optimal assignment:

1. For each row: Subtract the smallest entry from all entries in the same row.

2. For each column: Subtract the smallest entry from all entries in the same

column.

3. Use a minimal number of horizontal and vertical lines to cover all zero entries

in the matrix.

4. If the number of lines is equal to the dimension n of the matrix, continue

with step 6, else proceed to Step 5, as an optimal assignment of zeros is not

yet possible.

5. Find the smallest entry not covered by any line. Subtract it from each

uncovered row and add it to each covered column. Return to Step 3.

6. Repeat until every element assigned: Save all assignments represented by

zero entries covered by the minimal number of lines, delete the corresponding

lines and block the assigned elements for future assignments.

These are the steps of the Hungarian method for the simple case, where an equal

number of detections and hypotheses are present and a full assignment is desired.

We enhanced the procedure by adding the possibility to forbid individual assign-

ments between entries with a distance of ∆correspondance or higher. Additionally,

we need to handle the case where the number of detections and hypotheses is not

equal. For this reason, we introduce a set of dummy detections and hypotheses —

one dummy detection for each real hypothesis and one dummy hypothesis for each

real detection. Every time a real-to-real assignment is impossible — for example

if a detection is too distant to all hypotheses — a dummy is assigned. For this,

we expand the possibly rectangular m × n adjacency matrix A for m detections

and n hypotheses to a quadratic (m+ n)× (m+ n) matrix

Aexpand =

[
A B

C D

]
(4.17)
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where B and C are blocks filled with the threshold ∆ and D is a block of zeros.

B enables assignments from the m detections to m dummy hypotheses, while C

enables assignments from the n hypotheses to n dummy detections. D will contain

dummy-to-dummy assignments for unused dummies. Entries in the block A with

a distance of ∆ or higher are set to a constant value exceeding ∆. This ensures

that the Hungarian method rather assigns dummy entries than making forbidden

matches.

In the end, we generate an assignment where each real detection or hypothesis

has a real match or is assigned to a dummy. Matched hypotheses are updated

using the detections in the correction step of the Kalman filter. Detections and

hypotheses assigned to dummies are treated in the following.

4.5.4 Hypotheses Generation and Deletion

We have defined how existing hypotheses are updated by assigned detections.

Now we have to decide when and how new hypotheses are initiated and invalid

hypotheses are deleted. Under the assumption that we track every object visible to

the sensor, a new hypothesis is generated every time an object enters the sensor’s

Field of View (FoV). Since this object was not tracked before, its detection should

be assigned to a dummy hypothesis. This triggers the creation of a new hypothesis.

For this, we initialize the hypothesis’ state using the detection’s position and

assume a velocity of zero. Additionally, a unique identification number is assigned.

Similar to objects entering the FoV, we have to handle the situation of tracked

objects leaving the sensor’s FoV. Here we have to differentiate between objects

leaving for good and temporarily invisible objects. The latter case could happen

due to a variety of reasons, like occlusions, movements at the border of the FoV

or distant objects disappearing between measurements of a sparse scan. For those

cases we would like to preserve the object hypothesis, project its position to the

time of the current scan and recover the track once an object is visible again.

Unassigned hypotheses’ covariances grow with each prediction step as their Kalman

filter’s accuracy of the position estimate decreases. Once a track is recovered, its

covariance decreases. We exploit this behavior by deleting those hypotheses with

a high covariance. For this we compute the eigenvalues of the covariance matrix

and test if at least one exceeds the threshold covmax.
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4.5.5 Classification

We classify hypotheses into the classes static and dynamic. Every hypothesis

is generated static. After each correction, we verify this state. A hypothesis is

classified as dynamic once its current bounding box does not intersect with the

initial bounding box at the hypothesis’ generation. This way large objects have

to move further to become dynamic.

Static objects being scanned from different perspectives by a dynamic sensor create

the effect of moving bounding boxes. To prevent a false classification, we update

the initial bounding box if it is enclosed by the current bounding box. The initial

box is defined as enclosed if at least 95% of its volume are intersected by the

current box. It is updated by the bounding box that encloses initial and current

box.

4.5.6 Merging

Merging in multi object tracking can be applied in a number of situations. On

the one hand, it is useful to model a hierarchy of objects, for example when a

tracked human gets into a tracked car and becomes invisible to the sensor. On

the other hand, it can be utilized to correct some of the pipeline’s mistakes, like

oversegmentation or falsely initiated hypotheses due to wrong assignments. In

those cases, a new hypothesis is usually initialized in the vicinity of an already

existing hypothesis. Hence, we merge object hypotheses if their euclidean distance

to one another is below a threshold ∆merge. Assuming that new hypotheses are

false positives, we delete those that were initialized later.

Summing up, we have presented our pipeline to segment, detect and track multiple

objects of a specified height and width in sparse, organized laser range data. We

have concentrated on the usage of efficient algorithms to deploy this method in

real-time on the limited hardware of an unmanned aerial vehicle.
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Evaluation

Now that we have described our Multi Object Tracking (MOT) approach we need

to evaluate its efficacy and efficiency. The following chapter is dedicated to this

purpose. We start by giving an overview of two metrics that are commonly used to

evaluate MOT algorithms against ground truth annotations. We continue by pre-

senting the data sets utilized to evaluate the pipeline and optimize its parameters.

The chapter is closed by a discussion of the achieved results.

5.1 Evaluation Metrics

MOT algorithms can be used in a variety of different situations and use cases.

Depending on these use cases, different behaviors are desired. For tracking people

in sports, for instance, the algorithm not only has to retain its tracks but also

should not mix up the identities of the players. For object avoidance however

identities might not be as important as maintaining a precise motion model to

predict the objects’ future states.

To evaluate as many facets of our algorithm as possible we apply two different

metrics each subdivided into a set of sub-metrics. Both are used by established

benchmarks [17, 43] to evaluate the performance of MOT methods.

41
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5.1.1 CLEAR MOT

The first metric we present is the CLEAR MOT metric [44]. It is based on the

classification of events, activities and relationships (CLEAR) metric, but focusing

on MOT algorithms.

For computation, we need a mapping Mt from objects ot to object hypotheses

ht for every time step t. We initialize M0 = {·} and use the procedure defined

in Algorithm 3 to update the mapping sequentially for every t. The distance

function dist() and threshold T declared in line two and three, depend not only

on the situation and use case but also on the representation of the objects and

hypotheses. It is necessary to define up to which distance a ground truth object

and a corresponding hypothesis can be counted as a valid match.

If both are represented by centroids, the euclidean distance would be an appro-

priate distance function. The authors of the CLEAR MOT metric suggest an

intuitively chosen threshold of 0.5m for visual people tracking. If a bounding box

representation is available, the intersection over union (IoU) could be utilized as

the distance function. For three dimensional bounding boxes this is defined as the

overlap’s volume divided by the union’s volume of two boxes. For this case, the

suggested threshold would be an IoU of zero.

The mapping algorithm starts by initializing the mapping Mt for the current step

t with the previous mapping Mt−1. Then, every previous match is checked for

validity in the current step t in the loop at line six. To remain valid, matched

object-hypothesis pairs must both be present at time t and have a distance below

the threshold. All matches passing this test are kept for Mt.

All remaining objects and hypotheses are used to update Mt in lines 9 to 16. For

this purpose, each remaining object has to be assigned to at most one hypothesis,

while each hypothesis can be assigned to at most one object. Additionally, the

assignment has to be of a form that the overall object-hypothesis distance is mini-

mal. The stated assignment algorithm is the Munkres’ algorithm [41], also known

as the Hungarian method described in 4.5.3. Each assignment is tested for validity

with respect to the distance. Whenever a valid assignment contradicts a match

from a previous step, we replace the previous match in Mt. In other words, we

match an object that corresponded to a specific hypothesis to another hypothesis

or vice versa. We count this identity switch as a mismatch error. Assignments

that do not contradict a previous match are added to Mt. The result is an updated

valid mapping Mt from objects to hypotheses for time t.
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Algorithm 3 CLEAR MOT Mapping

1: function ClearMotMapping(Objects ot, Object hypotheses ht at time t)
2: dist() : distance function
3: T : distance threshold
4: Mt−1 : mapping of objects to hypotheses at time t− 1
5: Mt : initialize with Mt−1

6: for each mapping (ot−1,i, ht−1,j) ∈ Mt−1 do
7: if ot−1,i and ht−1,j are present at time t ∧ dist(ot,i, ht,j) < T then
8: keep (ot,i, ht,j) for Mt

9: for all ot,i and ht,j /∈ Mt do
10: assign using Hungarian method
11: for each assignment (ot,i, ht,j) do
12: if dist(ot,i, ht,j) < T then
13: if (ot,i, ht,j) contradicts (ot−1,i, ht−1,k) then
14: replace (ot−1,i, ht−1,k) in Mt

15: else
16: add (ot,i, ht,j) to Mt

17: return Mt

Based on these mappings for each time t, we are able to compute the evaluation

metrics. We sum up the distances between all valid matches at a time t as dt to

calculate the Multi Object Tracking Precision (MOTP) by

MOTP =

∑
t dt∑
t ct

(5.1)

with ct as the number of valid matches at time t. The MOTP denotes the average

distance between valid object-hypothesis pairs. This metric is independent from

the tracker’s ability to provide consistent trajectories or distinguish valid from

non-valid detections.

For this purpose, we compute the ratios of misses m, false positives fp and mis-

matches mme as

m =

∑
t mt∑
t gt

, (5.2)

fp =

∑
t fpt∑
t gt

, (5.3)

mme =

∑
t mmet∑

t gt
(5.4)
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with mt as the number of unmatched objects, fpt as the number of unmatched

hypotheses and gt as the number of objects present at time t (Figure 5.1). The

number of mismatch errors mmet is determined in line 13 of Algorithm 3, as the

total number of contradictions.

The sum of these ratios is the total error rate Etot, while 1 − Etot results in the

Multi Object Tracking Accuracy (MOTA), equivalently defined as

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

. (5.5)

Contrary to the MOTP, the MOTA is a measure for the consistency of the gener-

ated tracks. It accounts for identity switches, missed and falsely tracked objects.

Figure 5.1: CLEAR MOT Example: Objects are depicted as manikins —
hypotheses as boxes. The white object corresponds to the green hypothesis,
while the black corresponds to the red at first. t : White object is not tracked,
increasing the misses count by one. t + 4 : Correspondences switch, resulting
in 2 mismatches. t + 6 : Green hypothesis looses track of the black object,

resulting in another miss and a false positive.

5.1.2 Coverage

Another way to evaluate the performance of an MOT algorithm is to inspect how

much of the objects tracks were covered by the hypotheses [45]. This metric is split

up into three ratios — mostly tracked (MT), partially tracked (PT) and mostly

lost (ML). An object’s trajectory is mostly tracked if at least 80% of it is covered

by hypotheses. It is mostly lost if less than 20% is covered and partially tracked

for the remaining cases. We apply the same constraints as for the CLEAR MOT

for an object to be classified as tracked.
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This metric does not account for identity switches, false positives or precision. It

can be seen as an addition to the CLEAR MOT metric, providing a more detailed

insight to the ratio of misses.

5.2 Datasets

In the following, we are going to give an overview of the data sets we utilized

for evaluation and parameter optimization. The first two data sets are used for

a quantitative evaluation against ground truth data. The third consists of scans

recorded during two flights of our UAV in a large courtyard. Due to missing

ground truth data for the latter data set, we developed a method for a qualitative

evaluation using unlabeled data.

5.2.1 Quantitative Evaluation

The following two data sets will be used for a quantitative evaluation and param-

eter optimization using the previously described metrics. For this purpose ground

truth labels are required. These could be given as bounding boxes or three dimen-

sional coordinates representing the objects’ centers. As we did not manage to find

a data set where all objects of a specified width and height are labeled, we tune

the pipeline’s simple object model to track humans and evaluate against the given

labels.

5.2.1.1 InLiDa

The Indoor LiDAR Dataset (InLiDa) [25] consists of six hand labeled sequences

captured using a Velodyne VLP-16 in an indoor environment. The sequences have

a total duration of 501 seconds and contain 4823 scans. The sensor is placed in a

fixed location in a corridor or a hall (Figure 5.2). Up to eight dynamic objects —

seven humans and one robot — are simultaneously visible and labeled at point-

level. The data set provides challenging situations with occlusions, groups of close

objects moving in the same direction, rapid velocity changes and other dynamic

objects, like doors.
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Figure 5.2: Top down views on two example sequences of the InLiDa [25] —
corridor left, hall right. The dynamic objects’ paths are colored. The robot’s

path is colored in red.

5.2.1.2 Simulated

Additionally, we simulated the Velodyne VLP-16 in a set of diverse outdoor set-

tings to generate another data set (Figure 5.3). For simulation, we used Gazebo

[46] and adapted a Velodyne VLP-16 simulator [47] to generate organized point

clouds. The data set provides sequences with a varying number of dynamic per-

sons within static environments with different amounts of clutter and distractions

(Table 5.1). Our simulated persons avoid obstacles, change their velocities —

3.5km
h

to 12.5km
h

— and pause from time to time. The environments are limited

to a distance of up to 140m to the static sensor. This implies that measurements

of target objects do get very sparse or disappear completely due to occlusions or

objects leaving the measurement range of the sensor. Ground truth labels are

provided as axis aligned bounding boxes.

ID Area Targets Duration Scans Environment

1 100m × 100m 6 98s 986 Empty field
2 100m × 100m 50 99s 995 Empty field
3 200m × 200m 6 97s 978 Empty field
4 100m × 100m 6 54s 547 Industrial
5 200m × 200m 6 92s 925 Industrial, Shops, Houses
6 100m × 150m 6 97s 974 Park

Table 5.1: Properties of simulated sequences.
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Figure 5.3: Exemplary views on environments provided in the sequences of
the simulated data set. Top Left: Empty field sequences serve as a baseline
providing easier circumstances for the pipeline. Top Right: Industrial setting
with six dynamic persons and nine static distractors in red. Bottom Left:
Mixed environment with apartments, industry and shops containing more nat-
ural distractors and occluders on a wider field. Bottom Right: A park with
buildings, fountains and a variety of trees providing numerous possibilities for

frequent short term occlusions.

5.2.2 Qualitative Evaluation

A quantitative evaluation of our pipeline on real world outdoor data sets was

not possible. Publicly available data sets using the Velodyne VLP-16, like the

L-CAS Multisensor People dataset [47] lack an exhaustive labeling, due to having

a different purpose. Other data sets like the KITTY Object Tracking data set

[17] or Spinello’s 3D Point Cloud People data set [11] provide similar but denser

scans from sensors such as the Velodyne HDL-64E. Again, both miss a complete

labeling of the data. The first provides labels only for those objects that are visible

in the camera images and additionally ignores objects at high distances, although

clearly visible in the point clouds. The second restricts the sensors maximal mea-

surement range of 120m and presents only measurements of a distance up to 20m.
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Additionally, labels are provided only for those objects that are represented by at

least 100 points and exceed 1m in height.

The last option of manually labeling our own data sets would have gone beyond

the scope of this thesis. Hence, we circumvent this problem by recording a real

world data set of several moving humans using an airborne sensor and evaluate

the performance qualitatively. We filter out the dynamic humans and generate a

map of the static part of the scene (Figure 5.4). This way it is easier to judge

the pipeline’s performance of tracking and filtering all dynamic objects fitting the

model.

For each new point cloud we utilize the Present Filter discarding every point

corresponding to an assigned detection. These filtered point clouds are saved

in the Cloud Log. Once a hypothesis turns dynamic, all its previous bounding

boxes — from the time it was static — are used in the Past Filter to remove

corresponding points from logged clouds. If a lost dynamic track gets recovered,

we provide the predicted bounding boxes from the steps in between similarly to

the Past Filter.

Figure 5.4: The Dynamic Object Filter separates measurements on tracked
dynamic objects from points corresponding to the static part of the world. The

latter are logged.

5.2.2.1 Real World Data

Our own data set was recorded during flights of a piloted UAV in the courtyard

of the Landesbehördenhaus in Bonn (Figure 5.5). In the first sequence, only the

pilot is visible to the sensor as a dynamic object. He moves in a slow pace within

an area of about 7m × 7m.
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The second sequence was recorded with four visible humans. They are walking and

running, crossing each others’ paths, changing speeds and occluding each other.

The UAV and sensor are flying with velocities of up to 20km
h
.

Figure 5.5: Google satellite map [7] of the Landesbehördenhaus in Bonn,
Germany.

5.3 Optimization

For parameter optimization we used hyperopt [48]. Hyperopt is a distributed

asynchronous hyperparameter optimization library. It utilizes the Tree of Parzen

Estimators [49] to optimize parameters in a specified search space by minimizing

a cost function depending on the given parameters.

The cost function we utilized is defined by

costs = 1−MOTA. (5.6)

The costs are minimal — equal to zero — for a perfect MOTA of 1.0 and rising

as the MOTA decreases.

Finding the true optimal parametrization for our method is infeasible, due to the

high dimensional parameter space and the unknown shape of the cost function.

Hyperopt does not make that claim. Nevertheless, it is an approved tool to find a

good parametrization in a short period of time.
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Our method’s parameters are:

Segmentation

swmin : minimal width of segment groups in meters (see 4.2)

swmax : maximal width of segment groups in meters (see 4.2)

δmin : parameter for conversion during segmentation (see 4.2.1)

δlow : parameter for conversion during segmentation (see 4.2.1)

Detection

cmin : minimal number of points for a valid cluster (see 4.4.1.2)

rrg : search radius for region growing (see 4.4.1.2)

∆rg : distance threshold for region growing (see 4.4.1.2)

hmin : minimal height of a valid cluster in meters (see 4.4.2)

hmax : maximal height of a valid cluster in meters (see 4.4.2)

wmax : maximal width of a valid cluster in meters (see 4.4.2)

Λ : maximal distance for filtering (see 4.4.2)

Tracking

∆merge : distance threshold for hypotheses merging (see 4.5.6)

∆correspondance : distance threshold for assignment (see 4.5.3)

covincrement : covariance increase rate for uncorrected hypotheses (see 4.5.4)

covmax : maximally allowed covariance (see 4.5.4)

5.4 Results

In the following we are going to present and discuss the results of the evaluation.

We start with the quantitative evaluation on the labeled data sets, continuing

with the results generated using our real world data set and closing with a run

time analysis of our pipeline. For all evaluations of our method, we use those

hypotheses only that were classified as dynamic at least once.

5.4.1 Quantitative Results

For quantitative evaluations, we start by comparing the results of our approach to

the results reported in the paper presenting the InLiDa [25]. Their multi object

tracking method is denoted as InLiDa Tracking in the following. We discuss their

evaluation approach and propose a different method usually applied to evaluate

algorithms on small data sets. Using the latter, we inspect our approach on the

InLiDa and a simulated outdoor data set we generated.
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5.4.1.1 Comparison

InLiDa Tracking concentrates on multi person tracking. It utilizes global Ensemble

of Shape Functions (ESF) descriptors [27] on extracted point clusters and classi-

fies them using random forests into the classes Person and Not person to generate

person detections. For tracking, existing hypotheses are matched to their clos-

est detections within a search radius of 0.5m and propagated utilizing a circular

velocity buffer.

The task for evaluation was to track humans only, distinguishing them from the

dynamic robot present in four of six sequences. They evaluated their approach by

training parameters on one InLiDa sequence and testing on the remaining. Each

sequence was used for training once.

For a better comparison, we asked the authors to provide us with their evaluation

script. The authors diverged from the official MOTA definition by replacing the

Hungarian method with a naive assignment approach. It successively finds the

closest hypothesis within a search radius of 0.5m around one object, assigns those

if a match was possible and removes them for the assignments of the next objects

within that time step. Unfortunately, there was a bug in their script, resulting

in an assignment of an object to the last checked hypothesis within the search

radius, instead of the closest. We contacted the authors and asked to provide us

with a corrected version of the results for their method. The corrected results are

presented and compared to our approach in table 5.2.

Additionally, we computed the total MOTA based on the provided MOTAs for

each sequence. For this we reconstructed the number of errors, knowing the MOTA

and the number of labels gt at time t, on the basis of equation 5.5 by

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

(5.7)

⇔
∑

t(mt + fpt +mmet)∑
t gt

= 1−MOTA (5.8)

⇔
∑
t

(mt + fpt +mmet) = (1−MOTA) ·
∑
t

gt. (5.9)

We compute the total MOTA by
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Test Set Sequence 1 2 3 4 5 6
T
ra
in

1 InLiDa
MOTA 0.966 -0.649 -0.180 0.490 0.703 0.484
MOTP 162mm 137mm 158mm 110mm 159mm 110mm

Ours
MOTA 0.874 0.134 0.420 0.108 -1.730 -0.289
MOTP 191mm 213mm 199mm 156mm 224mm 159mm

T
ra
in

2 InLiDa
MOTA 0.881 0.920 0.761 0.503 0.534 0.591
MOTP 156mm 136mm 146mm 121mm 135mm 94mm

Ours
MOTA 0.558 0.813 0.466 0.296 -0.912 0.084
MOTP 144mm 175mm 192mm 166mm 212mm 220mm

T
ra
in

3 InLiDa
MOTA 0.906 0.174 0.971 0.534 0.684 0.461
MOTP 155mm 142mm 180mm 111mm 158mm 112mm

Ours
MOTA 0.752 0.262 0.871 0.394 0.033 0.480
MOTP 134mm 150mm 162mm 182mm 167mm 118mm

T
ra
in

4 InLiDa
MOTA -0.797 -8.107 -1.175 0.932 -1.117 0.233
MOTP 159mm 137mm 165mm 113mm 161mm 124mm

Ours
MOTA 0.484 -0.007 -0.172 0.634 -2.408 -0.492
MOTP 70mm 98mm 93mm 93mm 105mm 78mm

T
ra
in

5 InLiDa
MOTA 0.164 -3.499 -2.081 0.558 0.943 0.579
MOTP 157mm 127mm 155mm 109mm 171mm 117mm

Ours
MOTA 0.033 0.239 -0.144 0.462 0.723 0.345
MOTP 92mm 104mm 117mm 105mm 137mm 105mm

T
ra
in

6 InLiDa
MOTA -0.033 -2.833 -1.723 0.666 0.743 0.908
MOTP 146mm 144mm 158mm 116mm 170mm 121mm

Ours
MOTA 0.775 0.367 0.529 0.454 0.193 0.725
MOTP 105mm 124mm 119mm 105mm 140mm 88mm

Table 5.2: Evaluation results on the InLiDa per sequence. MOTA and MOTP
after training on one sequence and evaluating on the remaining. We compare
the results of the InLiDa Tracking to our approach by highlighting our results

in green, where they are better and in red where they are worse.

MOTAtotal = 1−
∑

s

∑
ts
(mts + fpts +mmets)∑

s

∑
ts
gts

(5.10)

for all sequences s that were used for testing only.

In contrast to averaging the individual results, this way sequences containing more

target objects have a higher weight — as intended for the MOTA. The InLiDa

Tracking achieves a total MOTA of −0.213 — our approach a total MOTA of

0.071. The resulting MOTAs are rather low, considering that using no tracker
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at all results in a MOTA of zero. One possible reason is the utilized evaluation

procedure. Training on one sequence only increases the risk of overfitting the

parameters. Additionally, the methods have difficulties to distinguish between

the robot and humans, if there is not robot present in the training sequence.

Applying the methods to other unseen sequences, with an attendant robot, yields

bad results.

5.4.1.2 InLiDa

We evaluated our method a second time on the InLiDa. Due to the limited size

of the data set, we perform a Leave-one-out cross-validation (LOOCV). For this,

we split the data set containing n sequences into a training set of size n − 1 for

parameter optimization and a test set consisting of the left out sequence. The

test set serves the purpose of evaluating the method’s performance and ability to

generalize on unseen data. This process is successively repeated n-times, each time

leaving another sequence out. Table 5.3 presents the results of this evaluation. The

total MOTA of 0.526 is computed as described in equation 5.10. The total MOTP

of 0.108m is defined similarly based on equation 5.1 by

MOTP total =

∑
s

∑
ts
dts∑

s

∑
ts
cts

. (5.11)

Test Set Sequence 1 2 3 4 5 6

↑ MOTA on Train Set 0.698 0.667 0.600 0.749 0.690 0.696

↑ MOTA 0.624 0.515 0.632 0.397 0.086 0.699
↓ Miss Ratio 0.133 0.121 0.094 0.596 0.224 0.252
↓ False Positive Ratio 0.240 0.360 0.272 0.005 0.684 0.044
↓ Mismatch Ratio 0.003 0.004 0.003 0.003 0.008 0.006

↑ MOTP IoU 0.608 0.749 0.688 0.531 0.507 0.501
↓ MOTP Eucl. in m 0.094 0.063 0.073 0.097 0.145 0.143

Mostly Tracked 0.800 0.400 0.667 0.167 0.800 0.250
Partially Tracked 0.200 0.600 0.333 0.333 0.200 0.750
Mostly Lost 0.000 0.000 0.000 0.500 0.000 0.000

Table 5.3: Evaluation results of the presented method on the InLiDa per
sequence. Arrows indicate whether a higher value is better ↑ or a lower ↓. Best

values per metric are colored in green — worst in red.
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The worst result with respect to the MOTA is achieved when evaluating on se-

quence five. The low MOTA is mostly a result of misclassifying one static object

that is present for whole sequence as dynamic. This induces a high false positive

ratio which has a negative effect on the MOTA, despite the low miss ratio. The

bad miss ratio in sequence four however is conditioned by a group of standing

people occluding each other for a large part of the sequence.

We report the optimized parameters corresponding to the evaluation with the best

MOTA on the test set (Table 5.4).

Segmentation Detection Tracking
swmin : 0.013 cmin : 7 ∆merge : 0.672
swmax : 0.590 rrg : 4 ∆correspondance : 5.446
δmin : 0.070 ∆rg : 0.278 covincrement : 0.503
δlow : 0.872 hmin : 0.731 covmax : 1.813

hmax : 1.531
wmax : 1.339
Λ : 0.110

Table 5.4: Optimized parameters for InLiDa sequences one to five.

To get a better insight into the method’s ability to generalize to unseen data, we

plot the MOTAs {x1, . . . , xn} on the training set against the MOTAs {y1, . . . , yn}
on the test set computed during n runs of the optimization process. For each

sequence, we additionally report the Pearson correlation coefficient r defined by

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5.12)

with x̄ and ȳ as the means of the MOTAs on the training and test set, respectively

(Figure 5.7).

5.4.1.3 Simulated

For optimization using hyperopt, we need to set a range for each parameter to

define which values are valid inputs. As it is not trivial to set these borders of the

search space correctly, we optimized the parameters on the whole data set first.

After that, we increased the search space at those points where the optimized

parameters were close to its limits. We did not use any other knowledge from that

initial optimization for all subsequent parameter optimizations.
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Again we performed a LOOCV, this time on the simulated outdoor data set.

The results are presented in table 5.5. Our method achieves a total MOTA of

0.677 and a total MOTP of 0.044m on the evaluation sets. Sequence 5 poses as a

special challenge. In this sequence, a person collides with the sensor resulting in an

impulse, causing the tracking to classify some static objects as dynamic. Hence,

inducing a rise of the false positive ratio. Nevertheless, the method is able to track

the target objects robustly, indicated by a low miss ratio of 0.05 and mismatch

ratio of 0.0.

Test Set Sequence 1 2 3 4 5 6

↑ MOTA on Train Set 0.781 0.860 0.814 0.823 0.840 0.794

↑ MOTA 0.748 0.742 0.790 0.931 -0.379 0.791
↓ Miss Ratio 0.112 0.183 0.133 0.034 0.048 0.115
↓ False Positive Ratio 0.139 0.074 0.077 0.035 1.330 0.094
↓ Mismatch Ratio 0.000 0.002 0.001 0.000 0.000 0.001

↑ MOTP IoU 0.527 0.695 0.588 0.725 0.520 0.754
↓ MOTP Eucl. in m 0.097 0.046 0.013 0.067 0.010 0.038

Mostly Tracked 0.833 0.680 0.833 1.000 0.833 0.833
Partially Tracked 0.167 0.320 0.167 0.000 0.167 0.167
Mostly Lost 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.5: Evaluation results of the presented method on the simulated data
set per sequence. Arrows indicate whether a higher value is better ↑ or a lower

↓. Best values per metric are colored in green — worst in red.

We report the optimized parameters corresponding to the evaluation with the best

MOTA on the test set (Table 5.6).

Segmentation Detection Tracking
swmin : 0.027 cmin : 1 ∆merge : 1.998
swmax : 0.944 rrg : 6 ∆correspondance : 7.683
δmin : 0.299 ∆rg : 2.397 covincrement : 0.508
δlow : 0.663 hmin : 0.603 covmax : 3.372

hmax : 2.523
wmax : 1.412
Λ : 1.963

Table 5.6: Optimized parameters for simulated sequences, evaluated on se-
quence four.

To get a better insight into the method’s ability to generalize across different envi-

ronments and unseen data, we again plot the MOTAs achieved on the training set
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against the MOTAs of the test set and compute the Pearson correlation coefficient

r for each sequence (Figure 5.7).

5.4.2 Qualitative Results

For a qualitative evaluation, we filter the sequences recorded in the courtyard of

the Landesbehördenhaus as described in 5.2.2. The mapped scans are presented in

Figure 5.8. Measurements on dynamic objects and the UAV itself create artifacts.

Our method is able to filter out most points corresponding to those objects, even

for noisy mapping results present in the first sequence.

Figure 5.8: Top down views of two mapped sequences. Color encodes height
— yellow low, red high. Left: Raw measurements mapped into one coordinate
frame. Measurements on dynamic objects and UAV result in artifact visible as
red or orange lines on the yellow ground. Right: Same scans and mapping with

dynamic objects filtered out.
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5.4.3 Run Time

Finally, we inspect the real-time capability of our method by plotting the run

time per scan for three example sequences (Figure 5.9). We measured the time

for each module — Segmentation, Detection and Tracking — to process incoming

data using the chrono library provided in C++. Hence, we assume a sequential

procession of the data. In practice, all modules are able to process the data of

the next time step directly after processing the current data. The method was

executed on the hardware on a UAV consisting of a Intel Core i7-6770HQ CPU

and 32 GB of RAM.

For InLiDa and the simulated data set we chose the most demanding sequences —

a sequence in the hall with a wall close to the sensor resulting in large kernel sizes

during segmentation and the simulated sequence with 50 persons present. The final

sequence was recorded during a flight in the courtyard of the Landesbehördenhaus.

The run time of the detection module is increased for this sequence because of the

data’s transformation into the fixed world coordinate frame. This transformation

is estimated in the mapping. Hence, we need to wait for it to process the data.

We wait up to 500ms for this transformation — hence the spike in the plot. In all

other cases, our method processes the data before the next scan is available after

100ms.
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Figure 5.6: InLiDa: Plots visualizing the MOTA on the training set against
the MOTA on the test set during parameter optimization. The title of the plot
reports the sequence utilized as the test set. The Pearson correlation coefficient

r indicates our method’s ability to generalize to the unseen data.
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Figure 5.7: Simulated Data: Plots visualizing the MOTA on the training
set against the MOTA on the test set during parameter optimization. The title
of the plot reports the sequence utilized as the test set. The Pearson correlation
coefficient r indicates our method’s ability to generalize to the unseen data.
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Figure 5.9: Run time in milliseconds of method and modules per scan on
exemplary sequences.



Chapter 6

Conclusion

6.1 Summary

We implemented a method for real-time tracking of multiple small objects in the

data of a Velodyne VLP-16 using the limited hardware on a UAV. For this, we

utilized a novel segmentation approach to segment point groups of a specified width

range in single scan rings. We deploy an adapted clustering method based on region

growing on the segmented data. The resulting clusters are filtered according to

simple geometric specifications and temporal information about already tracked

objects to generate detections. These detections are provided to a multi object

tracker using one Kalman filter for each tracked object.

We evaluated our approach against another state-of-the-art method on a publicly

available indoor data set generating comparable results. Additionally, we gener-

ated a simulated outdoor data set for further quantitative evaluations. According

to two metrics that are utilized in established benchmarks [17, 43], our approach

is able to achieve even better results on the latter data set.

For qualitative evaluations, we implemented a filter to separate the static part of

the environment in the data from the dynamic part. We applied the tracking and

filtering to two real world data sets recorded by the sensor mounted on an airborne

UAV. The approach successfully filters out most of the dynamic objects.

61
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6.2 Prospects

For future work, the application of a more sophisticated but still efficient tracking

approach should be investigated. Complex movement patterns of humans can

only be tracked to a limited extent by the utilized Kalman filter. Furthermore, the

information about occlusions could help to adjust the time an occluded hypothesis

is retained.

The same information can be utilized to more robustly distinguish between static

and dynamic objects. During partial occlusions, the bounding box of the occluded

object changes its shape and size, as the object is only partially visible to the

sensor. In some instances this is interpreted as a movement of the occluded ob-

ject. Incorporating this information would counteract false classifications. Hence,

enable the approach to filter dynamic objects more precisely.

Lastly, the proposed segmentation method is efficient only if the sensor has a

certain distance to the environment. For close objects combined with a large

specified target width, the run time of the object filter is increased drastically.

Replacing the object filter by an approach that compares the measured distance

of a point to the distances of two neighboring background points could generate a

similar segmentation while being computationally more efficient.
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