
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Learning Semantic Map Refinement from
Novel-View Synthesis

Author:
Jan Nogga

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Dr. Jens Behley

Advisor:
Radu Alexandru Rosu

Date: February 25, 2023

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract

Semantic mapping yields a persistent model of the environment facilitating any
downstream task associated with purposeful environment interaction. Such mod-
els are typically obtained by fusing measurements from several sensor modalities
into a volumetric structure and filtering datapoints assigned to a common voxel.
However, the results are afflicted by artifacts caused by inaccurate sensor pose,
measurement noise, discretization errors, object mislabeling or regions of the scene
occluded in the input data. In this work, we propose a scheme for refinement of
3D semantic maps based on the proxy task of novel view synthesis using differ-
entiable volume rendering. Furthermore, we introduce a flexible and user-friendly
tool built on sl-cutscenes to generate realistic bin picking scenes, which is used as
a testbed for this work. We demonstrate that our system is capable of leveraging
a learned prior to refine and improve unseen semantic maps over a wide range of
scenes with various degrees of sensor noise.

Acknowledgments

First of all, I want to thank my supervisor Alex for helping me navigate the in-
tricacies of volumetric rendering. Without your expertise, I would certainly have
taken a wrong turn at one of countless design decisions on the road to completing
this thesis. Also, thank you Alex for providing invaluable input to the writing
process! Furthermore I would like to thank my friend and former supervisor Peer
for teaching me how to generate realistic synthetic datasets. In addition, my father
Andreas for proofreading this thesis and, together with my mother Astrid, for their
unwavering support throughout my (admittedly somewhat longer) studies. More-
over, my grandparents Hanne, Anita, Lothar and Gerd for representing an infinite
source of encouragement all this time. Finally, I want to extend my gratitude to
Professor Behnke, who has provided me with a wonderful learning environment
for many years and was instrumental in helping me find a thesis topic which com-
bined my goals to familiarize myself with volumetric rendering and simulation of
dynamic scenes.

Contents
1 Introduction 1

1.1 Semantic Mapping . 1
1.2 Renderable Semantic Maps . 2
1.3 Our Proposed Approach . 2
1.4 Contributions . 3

2 Related Work 5
2.1 Semantic Mapping . 5

2.1.1 Semantic Mapping Using Object-Class Segmentation of RGB-
D Images . 5

2.1.2 Real-Time Multi-Modal Semantic Fusion on Unmanned Aerial
Vehicles . 6

2.1.3 Recurrent-OctoMap . 6
2.2 Semantic Scene Segmentation . 6

2.2.1 3DMV . 7
2.2.2 Bidirectional Projection Network 7

2.3 Novel View Synthesis . 8
2.3.1 NeRF . 8
2.3.2 Semantic NeRF . 8
2.3.3 Direct Voxel Grid Optimization 9
2.3.4 Plenoxels . 9
2.3.5 Light Field Networks . 9
2.3.6 NeSF . 10

3 Method 11
3.1 Semantic Mapping as Voxel Grid Fusion 11
3.2 Classic Volume Rendering . 12
3.3 Differentiable Semantic Volumetric Renderer 13
3.4 Semantic Map Refinement Model 15

4 Dataset Generation 17
4.1 Binpicking Scenes . 17
4.2 Synthetic Cluttered Binpicking Scenes 18

ix

Contents

4.3 Data Augmentation for Annotated Point Clouds 19
4.3.1 Data Augmentation for Depth Measurements 19
4.3.2 Data Augmentation for Semantic Segmentation 22
4.3.3 Data Augmentation for Camera Parameters 25

4.4 Labeled RGB-D Data as Annotated Point Clouds 25

5 Experiments 27
5.1 Experiment Configuration . 27

5.1.1 Precomputed Annotated Point Clouds 27
5.2 Training . 28
5.3 Evaluation . 29
5.4 Implementation Details . 31

6 Results 33
6.1 Quantitative Results . 33

6.1.1 Novel-View Synthesis . 33
6.1.2 Backprojection to Sensor Frames 35
6.1.3 Disambiguation of Fusion Steps 37

6.2 Qualitative Results . 41
6.3 Performance . 47

7 Conclusion and Outlook 49

x

1 Introduction

1.1 Semantic Mapping
Traditionally, robots have relied on maps to permit autonomous interaction with
an environment in a goal-oriented fashion. These capabilities are supplemented by
denoting affiliation to known object classes for entities in the map, giving rise to
a semantic map.

“A semantic map for a mobile robot is a map that contains, in addition to spatial
information about the environment, assignments of mapped features to entities of
known classes.” - Andreas Nüchter [1]

A common type of semantic map is stored in 3D voxel grids (Stückler et al.,
Bultmann et al. [2, 3]). The map can be populated by probabilistically fusing in-
formation from multiple sensor measurements or multiple sensor modalities, such
as annotated RGB-D images or segmented 3D LiDAR scans into these voxels.
Maintaining such a semantic map yields a persistent representation of all sensor
data which has been collected so far. This is very desirable in robotics applications
for a multitude of reasons. In navigation and localization, moving objects can be
respected in path planning, and the robustness of the robot localization increases
given knowledge about which map entries are potentially dynamic. Furthermore,
interaction in the form of purposefully manipulating the environment is expedited
by a semantic map. Importantly, visualizing a semantic map allows humans to
appraise what an agent knows about the environment, which provides insights into
its decisions and is crucial for their interpretability.

On the flip side, there is ample potential for defects which can arise due to flawed
sensor pose estimates, sensor noise, discretization errors, inaccurate semantic labels
or occluded volumes. Here, it is difficult to attribute mapping artifacts to specific
root causes, so an explicit correction is often unfeasible. Unfortunately, traditional
machine learning techniques which could address this problem are contingent on
ground truth labeled data, which is expensive to obtain densely in 3D. Thus,
learned refinement of semantic maps is frequently not possible, either.

1

1 Introduction

1.2 Renderable Semantic Maps
Recent advances in neural rendering, particularly the advent of techniques for
novel-view synthesis involving explicit representations of radiance fields used in
conjunction with a differentiable rendering scheme (Yu et al., C. Sun et al. [4,
5]) offer exciting new possibilities in the context of semantic map refinement; if
we can interpret a semantic map not only as a persistent representation of sensor
data, but rather as an explicit form of a plenoptic function, we are able to apply
aforementioned methods to create a learning framework supervised only with 2D
images wherein novel-view synthesis serves as a proxy task targeting semantic
map refinement. The necessity of densely labeled 3D data could then be relaxed in
favor of densely annotated 2D data, which is substantially more straightforward to
obtain. This idea is not far-fetched, since the semantic label observed at a certain
point should be constant for all observable rays which terminate there. Thus, a
minimal bridge between 3D semantic map and a basic radiance field describing
such a Lambertian scene is built by infusing the semantic map with a notion of
density.

1.3 Our Proposed Approach

Figure 1.1: An overview of the core idea. Left: Fuse RGB-D measurements in a voxel
grid. Center : Refine the grid with a 3D CNN. Right: Render 2D views from
it and backprop rendering loss to 3D CNN.

We propose to explore the concept outlined throughout the previous section
in manner illustrated in Figure 1.1. A semantic map represented by a 3D voxel
grid is created by fusing one or several RGB-D sensor measurements, where the
color channels are superseded by semantic labels. Jointly with the fusion process,
density emerges proportionally to a voxels hit counter and, in conjunction with
the map, an explicit radiance field is formed. Then, a simple neural refinement
model is applied to the incomplete or flawed radiance field, producing a corrected
version which is then differentiably rendered to multiple novel sensor views. In

2

1.4 Contributions

its drive to improve upon these synthesized novel semantic views, encouraged
by following the gradient of the error between rendered and ground truth sensor
data, the refinement model must complete the given semantic map and correct
artifacts appropriately. Thereby, semantic map refinement is reformulated in terms
of novel-view synthesis, and the proxy task put forward above is implemented.
Note that both the refined as well as the input radiance field remain semantic
maps in their own right, with density corresponding to occupancy and the voxel
entries representing class distributions. In particular, the unrefined map can also
be rendered and constitutes a persistent representation of the fused sensor data.

1.4 Contributions
1. A framework for GPU-accelerated and batch-capable fusion of semantic

point clouds obtained from RGB-D sensors with known pose.

2. A volume renderer suited for rendering the semantic information fused in
the map.

3. A fast refinement module that operates on the 3D semantic map and is
trained only with the task of novel view synthesis.

4. A large synthetic dataset of binpicking scenes with realistic sensor artifacts
and semantic predictions errors.

3

2 Related Work

In this chapter we provide an overview of methods which relate to one or multiple
aspects of our proposal. Since we draw on techniques from mapping, 3D semantic
segmentation and novel-view synthesis, this chapter is subdivided accordingly.

2.1 Semantic Mapping

In robotics applications there are several ways to represent a 3D map such as
surfels, point clouds or meshes. In this work, we focus on maps which are rep-
resented as voxel grids, because their structure is efficiently processed in parallel
with convolutional networks and allows representation of continuous functions via
interpolation. This section illustrates techniques to construct and maintain voxel
maps containing semantic labels.

2.1.1 Semantic Mapping Using Object-Class Segmentation of
RGB-D Images

Stückler et al. [2] propose a Bayesian 3D semantic fusion which composes a voxel-
based map from RGB-D images. Random decision forests process the RGB chan-
nels to produce per-pixel class probabilities which can be projected to an allocentric
coordinate frame using the depth measurements and their registration in the con-
text of SLAM. The resulting grid contains a discrete distribution over class labels
at each voxel, which can be back-projected to the original camera frames to im-
prove their accuracy. In the sense that back-projection can be considered a special
case of novel-view synthesis, the input/output behavior of this method is very
similar to our proposed approach. However, once mapped, there is no mechanism
to account for 3D priors like plausible object arrangements or shapes to correct
the scene geometry.

5

2 Related Work

2.1.2 Real-Time Multi-Modal Semantic Fusion on Unmanned
Aerial Vehicles

To allow for building a comprehensive allocentric map onboard a UAV, Bultmann
et al. [3] combine RGB-D images segmented using lightweight CNNs, person de-
tections based on semantic information extracted from thermal camera data and
segmented LiDAR scans. The RGB-D and thermal data is converted to anno-
tated point clouds, which are probabilistically combined with the LiDAR scans
in a voxel grid, demonstrating 3D semantic fusion across multiple sensor modal-
ities. The resulting map improves the UAV localization system by discounting
map entries associated with dynamic classes and facilitates scene understanding
by denoting labels such as people, different vehicles, buildings or trees. Addition-
ally, the semantic segmentation of the LiDAR scans can be retrained. This takes
into account pseudo-labels sourced from the contributions of the camera to the
semantic map. The performance of the LiDAR scan segmentation component is
increased in this semi-supervised manner. Moreover, the importance of numerical
stability in the fusion step is highlighted. To prevent the collapse of map entries to
discrete delta distributions, the Bayesian filter is implemented in log space, and the
normalization step is additionally improved using a stabilized log-sum-exp trick.

2.1.3 Recurrent-OctoMap
Instead of updating the voxel state explicitly, L. Sun et al. [6] store an LSTM
state summarizing prior observations along with a high dimensional hidden state
encoding the class probabilities in each grid cell. When new observations repre-
sented by a point cloud annotated with semantic features fall into the vicinity of
a voxel, the features are pooled and mapped together with the local voxel state
by an LSTM with global weights to the novel voxel state. To convert the hidden
state to logits per object class, it must be interpreted by a further network and
finally normalized via softmax to yield a probability distribution over class labels.
This approach relaxes the Markov assumption required to justify other Bayesian
frameworks to improve the maps robustness against incorrect measurements in the
fusion step.

2.2 Semantic Scene Segmentation
In this section we present a family of methods which operate directly in 3D space
instead of fully relying on 2D images. To highlight the importance of taking into
account geometric features alongside appearance to decide a voxels class label, we

6

2.2 Semantic Scene Segmentation

focus on processes which can jointly utilize 2D and 3D data. In that sense, rather
than being treated primarily as a byproduct of fusion, 3D geometry plays a crucial
role in the following methods.

2.2.1 3DMV

3DMV (Dai et al. [7]) represents the 3D map as an occupancy grid together with
a series of posed images. They propose a joint 2D-3D approach that combines
features from both 2D images and 3D in an end-to-end manner. To extract 3D
geometry features, a series of 3D convolutions is used. It is strided over windows
bounded in the horizontal xy plane of a voxel map obtained from RGB-D scans,
thus splitting it into overlapping chunks for processing. In the map column that
the network is currently anchored to, these local features are mapped to class
probabilities per voxel. At the same time, 2D features are obtained by selecting
RGB frames which overlap the respective map chunk and encoding them using
a 2D CNN. These features are fused into the map using a differentiable neural
backprojection layer. There, they are merged using per-voxel max pooling and
further 3D convolutions to supplement the 3D geometry features. To aid the 2D
CNN in extracting features meaningful for semantic segmentation, the authors
employ a proxy loss which maps these features to class scores and then compares
these with ground truth segmentation masks. Thus, 3D and 2D ground truth is
required to train this system, which learns to predict and refine scene labels, but
not geometry. At the same time, the backprojection layer would not be suitable
for novel-view synthesis. Nevertheless, 3DMV illustrates a mechanism to and
highlights the potential of taking into account 2D data when annotating 3D maps.

2.2.2 Bidirectional Projection Network

By jointly segmenting 3D scenes and multiple 2D views in structurally symmetrical
2D and 3D U-Nets, Hu et al. [8] capitalize on the high-resolution 2D textural
information in 2D images and the 3D geometric information presented by voxelized
point clouds by treating these modalities as complementary. At each level of the
U-Net decoders, a bidirectional projection module connects the corresponding 2D
and 3D feature maps. It is realized by a link matrix using the sensor parameters to
associate eligible voxels and pixels, transporting 2D feature maps into the 3D map
and 3D features into the 2D masks. Similar to 3DMV, 2D semantic segmentation
ground truth is successfully exploited to enable learned 3D semantic segmentation.
However, this approach also relies on labeled 3D data.

7

2 Related Work

2.3 Novel View Synthesis

Another recent family of methods for representing 3D scenes was presented by
Mildenhall et al. [9], proposing to represent a 3D scene as a radiance-density field
encoded in an neural network. These methods are characterized by their ability to
learn 3D geometry from 2D supervision. In this section, we provide some context
regarding the evolution of such methods from implicit to explicit representations
as well as their ability to target 3D priors and semantic labels.

2.3.1 NeRF

Mildenhall et al. [9] represent the continuous radiance field of a scene using an
MLP, called neural radiance field (NeRF) which maps the 3D coordinate location
to a density σ and the 5D combination of coordinate location and viewing direction
to a color value c. Rays are cast into the scene and evaluated at multiple sample
points by querying the NeRF network given the sample position and ray direction.
Using a quadrature of the classic volume rendering equations, the densities and
color values along the ray are mapped to an expected color value. This result can
be compared via squared error with ground truth images of the scene, a loss which
is backpropagated to correct the outputs of the MLP. Since the density is nescient
to the camera ray viewing direction, the trained neural scene representation is
inherently multi-view consistent and can render novel views into the scene. The
network is supported by concatenating a positional encoding similar to those used
in language models to the input coordinate locations, which helps resolve high
frequency spatial detail.

2.3.2 Semantic NeRF

Semantic NeRF (Zhi et al. [10]) builds on NeRF to encode additional semantic
channels alongside geometry and appearance. Since semantics are independent
of the viewing direction, they are represented by an additional classification head
attached to the NeRF network which interprets the features that also give rise to
the density channel. Since semantic NeRF is capable of learning even when only
a subset of the RGB training data is annotated and can subsequently render to
the previously unlabeled views, the method can implicitly perform key-framing.
Moreover, the training process is robust to noisy semantic labels, which shows
that the priors learned by the network are capable of denoising semantics in a 3D
fusion process.

8

2.3 Novel View Synthesis

2.3.3 Direct Voxel Grid Optimization
By storing the density directly in a trainable voxel grid, C. Sun et al. [5] propose
a hybrid form of implicit and explicit coordinate-based neural rendering schemes.
The implicit color component is also lightweight compared to the aforementioned
NeRF, consisting of another voxel grid which stores abstract feature vectors. These
are interpolated for given 3D coordinate, and interpreted by a color MLP together
with the coordinate and a viewing direction. Overall, limiting the reliance on
implicit scene representations vastly improves the convergence time while securing
high-quality novel-view synthesis.

2.3.4 Plenoxels
Yu et al. [4] demonstrate that neural components representing the or parts of
the plenoptic function are not necessary to produce realistic novel-view synthesis.
Their system uses plenoptic voxels, a sparse grid structure which stores a density
channel and color weights in each entry. To retrieve color values, the interpolated
color weights at a location x are used in a weighted sum of spherical harmonics
evaluated at the desired viewing direction. Density is directly interpolated for
points on a ray, and used in conjunction with the color values in the same volume
rendering method used by (Mildenhall et al. [9]). This highlights the importance
of a differentiable volumetric renderer rather than intricate neural networks when
capturing 3D scene representations.

2.3.5 Light Field Networks
So far, this section has covered the spectrum from implicit to explicit coordinate-
based learned radiance fields latching onto a differentiable volume rendering for-
mula. Sitzmann et al. [11] propose to skip this step and estimate the color along
a ray in a single inference step from an MLP which interprets a 6D Plücker Vec-
tor representation of the ray. This MLP represents a light field, which describes
the flow of light in a static scene with fixed illumination. Untethered from the
beneficial constraints of classical volume rendering, the light field network cannot
be expected to produce multi-view consistent outputs of its own accord. To ad-
dress this, a meta-learning scheme is leveraged, which employs a hypernetwork to
output the weights parameterizing a light field network given a latent code which
uniquely encodes a given scene. The lightfield network then renders the training
views, and the resulting losses are used to optimize the hypernetwork. Presented
with a large amount of scenes, the hypernetwork is expected to capture a prior over
multi-view consistent light fields. When presented with a novel scene at test time,

9

2 Related Work

the hypernetwork is frozen and the error signal with respect to a single view of the
scene is passed to the latent code instead, thereby localizing the scene on a man-
ifold of multi-view consistent light fields. While the datasets trialed by Sitzmann
et al. [11] are large and unrealistic, and the performance of the method is shown
to break down for smaller numbers of training scenes, the results exhibit that it
is possible to learn priors over plausible plenoptic functions, which encourages our
attempt to learn priors over reliable semantic maps.

2.3.6 NeSF
Priors over plenoptic functions are also accessible in a setup based on classic volume
rendering and can also address semantic channels. This is shown by Vora et
al. [12]. To train the proposed system, they iterate over multiple scenes viewed
from RGB cameras with available class labels, training a NeRF on each of them.
The NeRF density component is then sampled to obtain a grid estimating scene
density. This density grid is consecutively converted by a 3D U-Net to a grid
which stores a feature vector per voxel. At a location x, the feature grid yields an
interpolated feature vector which is mapped by a scene-independent MLP to class
score vector s(x). Together with interpolated queries into the density grid, classic
volume rendering is used similarly to semantic NeRF, producing class labels. The
combination of 3D U-Net and semantic feature MLP trained in this manner is
able to generalize to processing NeRFs trained on novel scenes of similar nature,
producing 3D semantic maps which can be rendered to 2D semantic labels, on
top of the 3D geometry provided by the input NeRF. The factor limiting practical
application is the necessity of a pretrained NeRF, which requires capturing novel
scenes from several points of view for the time-consuming NeRF training process.
We intend to improve upon this aspect and increase interpretability by providing
an input semantic map obtained by fusing multiple RGB-D measurements and
utilizing only explicit representations of the density and semantic fields. On the
flip side, we require depth measurements for the fusion step, while 3D geometry is
extracted from appearance in the context of NeSF.

10

3 Method
To recapitulate, our proposed method takes as input RGB-D measurements with
semantic labels, then

• fuses them into a 3D voxel grid,

• refines the grid

• and renders from it towards 2D views.

Next, we detail each of the components of our system.

3.1 Semantic Mapping as Voxel Grid Fusion
In the context of this thesis, we assume that RGB-D data with semantic labels is
available from a sensor j for a given scene i. In the following, we treat this data
as annotated point clouds i

jX produced by projecting the semantic segmentation
using the corresponding depth image and sensor parameters. This data is inde-
pendent of its original sensor coordinate frame and thus readily combined over
multiple measurements in a common semantic map using a voxel grid iV with a
probabilistic fusion scheme as described by McCormac et al. [13]. As suggested
by Bultmann et al. [3], we utilize a logarithmic formulation to prevent numerical
instability which can occur when the prior and a new measurement are contra-
dictory but individually display a high confidence. Specifically, for the semantic
channels VY of a voxel V ∈ iV we apply

VY ← VY +
∑
l∈i

jXV

l (3.1)

for i
jXV , the set of object class distributions in the vicinity of V and consecutively

normalize using a numerically stabilized logarithm of summed exponentials

VY ← VY −

max
c

VY [c] + log

1 +
∑

c 6=argmax
c

VY [c]

eVY [c]−maxc VY [c]


 . (3.2)

11

3 Method

This yields a voxel grid in which each volume element stores a log probability per
class label. Upon initialization, these are considered to be uniformly distributed.

Since we intend to use V in a volume rendering setting, we incorporate a notion
of density by appending a channel Vµ which is updated according to

Vµ ← Vµ + Fvolume ·
∣∣ i
jXV

∣∣ (3.3)

in fusion steps. The density factor Fvolume is a manually selected hyperparameter
scaled according to the volume of each voxel, which depends on the world size and
the grid resolution. A further channel VNhits is implemented to ensure that the
number of observations which have contributed to each voxel is retained. Note
that VNhits is redundant given Fvolume, but helpful down the line when a refinement
model applied to V may uncouple Vµ from it. Overall, this process manipulates a
semantic map shaped (Nclasses+1+1)×HV×WV×DV . To summarize, HV×WV×DV

are the dimensions of the voxel grid and each voxel stores a vector with channels
corresponding to the logarithm of an object label distribution, one density channel
and one measurement hit counter channel.

3.2 Classic Volume Rendering
As stated in Section 2.3.1, techniques from classic volumetric rendering play a
central role in current methods for novel view synthesis. This is vested in their
beneficial properties; the gradients of the corresponding equations are trivially
computed and information propagates well through space along rays, which are the
focal objects in volumetric rendering scenarios. Specifically, a plenoptic function
mapping a ray r(t) = o + td passing through the scene and bounded by tn, tf
to the expected color observed along that ray is given by the well-known volume
rendering integral (Kajiya et al. [14])

C(r) =

∫ tf

tn

T (t)σ (r(t)) c (r(t), d) dt (3.4)

with

T (t) := e−
∫ t
tn

σ(r(s))ds. (3.5)

Here, the density σ (r(t)) ∈ [0,∞) can be understood as the differential probabil-
ity of the ray terminating at a point r(t) (Mildenhall et al. [9]). The transmittance
T (t) ∈ [0, 1] is thus the probability of the ray reaching r(t) without terminating

12

3.3 Differentiable Semantic Volumetric Renderer

beforehand. In particular, when the transmittance along a ray is 0, the ray passes
only zero-density space, which we consider unoccupied. Thus, the pixel location
corresponding to such a ray would be considered part of the background.

3.3 Differentiable Semantic Volumetric Renderer

Figure 3.1: An example of hierarchical sampling of points along a ray. Blue: Stratified
samples. Green: Weights calculated according to blue samples along ray
cast through down-sampled density grid Ṽµ. Red: Points resampled using
green weights as distribution. Black: Weights calculated using blue and red
samples along ray in Vµ.

Our objective of learning a prior conducive to repairing common artefacts in
voxel based semantic maps differs from the most closely related direct volume ren-
dering approaches (Yu et al., C. Sun et al. [4, 5]) in the sense that we are necessarily
concerned with more than a single scene. Training using only individual scenes one
after the other is expected not only to result in unacceptably slow training times
at scale due to inadequate GPU utilization, but also yield suboptimal estimates of
the objective function gradient. For reference, Sitzmann et al. [11] employ batch
sizes of up to 300 scenes to capture a prior over multi-view consistent plenoptic
functions. Keeping this in mind, we anticipate that the ability to render batches of
voxel grids to targets posed by batches of scenes containing dozens of sensors along
a multitude of rays is crucial to succeed in producing a viable training pipeline.
Thus, we implement a differentiable volumetric renderer by combining elementary
concepts from Mildenhall et al. [9] with explicit components inspired by C. Sun
et al. [5] while generalizing these approaches to multiple concurrent scenes.

In analogy to the previous section, we parameterize rays passing from the camera
origin through a pixel location as r = (rorigin, rdirection) with

rk := rorigin + tkrdirection. (3.6)

13

3 Method

Then, we calculate the raw class scores along a ray r using a numerical approx-
imation of 3.4 (Max [15])

CY(r) =
N∑
k=1

TkαkVexp
Y (rk) (3.7)

where the transmittance is defined as

Tk := e−
∑k−1

l=1 Vµ(rl)δl (3.8)

and the alpha values are given by

αk :=
(
1− e−Vµ(rk)δk

)
. (3.9)

Here, we use Vexp
Y , the exponential of the grid semantic channels containing log

probabilities because the query Vexp
Y (rk) of the voxel grid at location k along ray r

is implemented as trilinear interpolation. This is not an issue when querying the
corresponding density Vµ(rk). Note that we consider CY(r) a vector of raw class
scores because the weights wk := Tkαk are not inherently normalized.

Just as in (Mildenhall et al. [9]), we sample

tk ∼ U
[
tn +

k − 1

NS

(tf − tn), tn +
k

NS

(tf − tn)

]
(3.10)

where the near and far points tn, tf are hyperparameters of the renderer. In
contrast to simply using the NS bin centers placed equidistantly in [tn, tf], sam-
pling in this stratified manner treats the voxel grid representation of the scene as
continuous. In our implementation, this sampling occurs individually for each ray.

In addition, we also follow the recommendation of Mildenhall et al. [9] and
compute w̃k for these Ns sample points. Where (Mildenhall et al. [9]) employs
a coarse network, we downsample Vµ by a factor of 2 to obtain Ṽµ and query it,
yielding w̃k, which is normalized and then treated as a distribution according to
which NH additional samples are drawn using inverse transform sampling. This
ensures that the intervals along the ray which are expected to contribute most
to the resulting class scores are queried densely while using a limited amount of
samples. The samples referred to in Equation 3.7 resemble the union of these two
sample sets, with N = NS +NH and δk := tk+1− tk. An example of sample points
and weights obtained using this process are pictured in Figure 3.1. Finally, we
query Vµ(rk) before Vexp

Y (rk) as probabilities
{
Vexp
Y
∣∣Vµ(rk) = 0

}
do not contribute

to CY(r) and are safely skipped.
To access scene geometry by rendering, the distance of sample points tk along

14

3.4 Semantic Map Refinement Model

rays can be used in

CD(r) =
N∑
k=1

Tkαktk (3.11)

to estimate the expected depth of the scene along a ray.

3.4 Semantic Map Refinement Model

Figure 3.2: The semantic map refinement architecture consist of several modified stacked
hourglass blocks (Chang et al. [16]) which are drop-in replacements for 3D
CNN residual blocks. The layout of an individual block is depicted above.
Our complete model consists of 4 stacked hourglass blocks. Diagram gener-
ated using [17].

When the rendering scheme from the previous section is applied to semantic
voxel grids as described in Section 3.1, the resulting renderings are afflicted by
missing class labels from incomplete data and other inaccuracies explained by the
data augmentation applied before constructing the annotated point clouds fused
to these maps. Our core idea can now be formulated concisely; we are looking to
implement a neural refinement modelMV which repairs a given semantic map via

iV 7→MV(
iVexp) =: iVM. (3.12)

Just as for rendering, we process the class label distribution channels of the voxel
grid as probabilities rather than log probabilities. Switching to this perspective

15

3 Method

keeps the corresponding exponential out of the gradient graph at training time.
Notwithstanding, an important objective is that the nature of the voxel grids is
preserved by refinement, i.e. that i

MV entails density and semantic channels i
MVµ

and i
MVY which are suitable for use in a volume rendering setting as described

in Equation 3.7. It stands to reason that a simple 3D CNN consisting of several
residual blocks using 3 × 3 × 3 convolution layers would be a good fit for this
task. However, initial experiments seeking to overfit such a network to an indi-
vidual scene demonstrated that the performance of this architecture is unlikely to
meet our needs. This is plausibly due to the circumstance that the small kernels
employed here struggle to interpret context information unless the network is un-
reasonably deep. To address this issue without increasing the network size, we
borrow from (Chang et al. [16]) where stacked hourglass modules are used to re-
place and improve upon 3D residual CNNs in the context of disparity estimation.
Such blocks as adjusted to our use case are shown in Figure 3.2. The expectation
is that the sequence of encoder-decoder groups using strided and then transposed
convolutions can ideally aggregate context information efficiently due to the low
spatial resolution of the intermediate feature maps without requiring a deeper re-
finement network or larger kernels. At the same time, notions of spatial detail are
passed forward as residuals at full grid and also at half feature map resolutions.

Notable differences with respect to the architecture showcased by Chang et
al. [16] are that we do not use intermediate supervision to constrain the outputs
in between stacked hourglass blocks because we do not employ a preceding series
of feature extractors and because we want to omit the costly rendering operations
required to provide these terms. Furthermore, we initialize the parameters of all
transposed convolution blocks such that they represent upsampling via interpola-
tion at the beginning of training (Odena et al. [18]).

Referring back to our goal of voxel grid interpretability after refinement, we
use ReLU activation functions to constrain the density to its valid range [0,∞).
For the resulting class channels, we are compelled to treat them as class scores
in [0,∞) rather than probabilities, as their normalization could destabilize the
training process. The most self-evident alternative non-linearity is a shifted soft-
plus as proposed by Barron et al. [19], but C. Sun et al. [5] demonstrate that this
option is most effectively applied after the tri-linear interpolation step, a principle
coined post-activation. This would further loosen the ranges of values in our re-
fined voxel grid, so we forgo applying post-activation in this thesis even though it
is likely preferable in some settings, for example a single-scene semantic novel-view
synthesis problem where the interpretability of the voxel grid is less consequen-
tial. Finally, the hit counter channel VNhits can be read, but not written to by our
model.

16

4 Dataset Generation

4.1 Binpicking Scenes
Throughout this thesis, we examine semantic maps corresponding to binpicking
scenes, a scenario featuring tote boxes cluttered with a variety of objects. This
application is particularly suitable because the associated tasks, such as picking
up objects from the boxes, benefit from comprehensive knowledge about the scene,
like the objects which are presented and the poses in which they lie in the tote. In
this sense obtaining reliable semantic maps is a crucial step in scene understanding
and any subsequent manipulation task. These problems are also of considerable
practical importance, as evidenced for example by the Amazon Robotics Chal-
lenge 2017, which focused on identification and manipulation of warehouse goods.
Moreover, this scenario is particularly suitable for our method, as the scenes are
effectively constrained by the tote boxes. This allows representing semantic maps
as dense voxel grids with high resolution, an assumption which otherwise requires
finding the bounding box of occupied space in a preliminary step per scene (C. Sun
et al. [5]). Furthermore, there is a limited variety of objects which can be present
in such scenes, so strong scene priors are accessible through our learning scheme,
enabling the refinement of the semantic maps. Finally, sensor poses in these sce-
narios are usually very precise, as the sensors are mounted at fixed locations or to
robotic manipulators with accurate kinematics.

Similarly to other work concerned with scene and object priors (Sitzmann et al.,
Müller et al. [11, 20]), learning depends on large datasets specific to a particular
context. Thus, we train on synthetic binpicking scenes. For this purpose, there is a
preexisting dataset and dataset generator SynPick (Periyasamy et al. [21]), which
uses the renderer Stillleben (Schwarz et al. [22]) and physics simulation NVIDIA
PhysX1 to create synthetic binpicking scenes. However, the objects in these scenes
are dropped concurrently, which limits the amount and realism of clutter. To
address this, we make use of sl-cutscenes (Boltres et al. [23]), a framework on
top of stillleben designed to generate realistic indoor scenes. It features many

1https://developer.nvidia.com/physx-sdk

17

https://developer.nvidia.com/physx-sdk

4 Dataset Generation

helpful tools, such as the ability to generate plausibly furnished rooms, specify and
manipulate custom object sets and is flexible with regards to simulating multiple
sensors within the scenes. We utilize these to implement a binpicking scenario
generator which is inspired by SynPick and adapted to our needs.

4.2 Synthetic Cluttered Binpicking Scenes

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Examples from an annotated simulated scene created by our cluttered bin
generator. (a): RGB, (b): depth, (c): semantic segmentation, (d): object
poses, (e): bounding boxes and (f): bounding boxes shrunk to object visi-
bility.

A simulated binpicking scene iS with scene index i is initialized by setting up
an empty tote box on a table located in the center of a furnished room. The

18

4.3 Data Augmentation for Annotated Point Clouds

decoration in the room, including potential wall cabinets, shelving or chairs, the
wall and floor textures as well as the table itself are sampled from a variety of
options and arranged in a plausible fashion. Then, a random set of up to Nobjects

possible objects is sampled without replacement. The maximum total number of
object classes is referred to as Nclasses, including the object classes as well as the
box class, but not the label for the scene background. With the PhysX simulation
running, the objects are spawned and released one by one every second of simulated
time with a random orientation at a random location in the region above the box.
One simulated second after the final object is dropped, the scene is checked for
objects which are still moving or are situated outside of the bounds of the tote.
Such objects are removed and subsequently dropped again, a process which is
repeated until each object is resting within the box.

Once the scene is set up in this manner, sensors i
jC = (ijP,

i
jK) with sensor

index j are placed at uniformly sampled positions on the upper hemisphere of
an ellipsoid appropriately elongated to encompass the tote. They are oriented
towards the center of the tote and then capture the scene. The terms i

jP ∈ R4×4

and i
jK ∈ R3×3 refer to the sensor pose and intrinsics; the latter is recovered from

the projection matrix used by stillleben. The resulting synthetic measurements
i
jz = (ijI, ijY , ijD, ijW) are comprised of an RGB image i

jI, a semantic segmentation
mask i

jY denoting object, tote and background classes, a depth map i
jD and a

camera-specific surface normal map i
jW represented by | cos(θ~n,~v)| = |~n · ~v|. Here,

θ~n,~v is the angle between surface normals ~n and sensor viewing direction ~v.
Note that the decorated room in which the tote is located is masked when this

data is utilized in the context of our work. While implemented for this thesis, the
cluttered bin generator described above is designed for a wider range of applica-
tions. It is customizable with regards to object sampling set, sensor pose sampling
techniques and output (meta-)data types, amongst others, and available as a self-
contained package2. Figure 4.1 depicts examples of the available data annotation
for a simulated scene.

4.3 Data Augmentation for Annotated Point Clouds

4.3.1 Data Augmentation for Depth Measurements

In practice, depth sensors suffer from artifacts such as measurement noise, limited
sensor resolution and outright missing values. Examples of this are illustrated
using an Intel RealSense [24] in Figure 4.2 for generic scenes, while Figure 4.3

2https://git.ais.uni-bonn.de/nogga/simple-cluttered-bin-generator

19

https://git.ais.uni-bonn.de/nogga/simple-cluttered-bin-generator

4 Dataset Generation

Figure 4.2: Measurements of a generic scene using an Intel RealSense L515 (from [24]).
Missing depth measurements are visible on the tabletop and along edges.
The background displays measurement noise and quantization due to limited
sensor resolution.

compares measurements using the same sensor of a binpicking scene with its syn-
thetic counterpart from a simulated scene. Of course, these defects are specific
to the operating principle and model of the deployed depth sensor. For flexibility
in this regard, we attempt to decompose multiple flavors of errors into their root
causes to obtain a data augmentation framework that can represent a variety of
common depth sensors when appropriately parametrized. This includes the quan-
tization of depth values to Nquant bins partitioning the sensor measurement range
[Rmin, Rmax] to simulate limited sensor resolution and depth-dependent additive
Gaussian noise ∼ N (µ = 0, σ = sσ · σ(D)), where

σ(D) = (9D2 − 26.5D + 20.237)10−3 (4.1)

is noise typical for Kinect depth measurements (Mallick et al. [25]) and sσ is
a scaling factor used to control the severity of the resulting static. Furthermore,
we model the probability of dropping a measurement due to the sensor limits as
binary

prange(D) =

{
1, D ∈ [Rmin, Rmax]

0, otherwise
, (4.2)

and the probability of dropping a measurement close to significant edges in the
scene as

pedge(D) = f(||∇D||2) ∗ g(σedge), (4.3)

where f clips and normalizes the depth gradient norm image, which is then

20

4.3 Data Augmentation for Annotated Point Clouds

Figure 4.3: Left: A binpicking scene captured using an Intel RealSense L515. Right:
Simulated measurements of a similar scene.

blurred via convolution with g(σedge), an 11 × 11 Gaussian filter. Finally, the
probability of missing measurements due to small viewing angles is modeled by
applying the Fresnel equations quantifying the reflection of light as a probability
distribution

pangle(W) =


∣∣∣∣∣n1

n2
W −

√
1−

(
n1

n2

√
1−W2

)2∣∣∣∣∣∣∣∣∣∣n1

n2
W +

√
1−

(
n1

n2

√
1−W2

)2∣∣∣∣∣


2

, (4.4)

which can be tuned to a specific sensor using the correspondence

θTotal = arcsin n2

n1

(4.5)

between the angle of total reflection θTotal and the ratio of refractive indices n2

n1
.

Thus θTotal is the parameter which determines the severity of this effect, as illus-
trated in Figure 4.4. Overall, the measurement dropout probability is calculated
as

21

4 Dataset Generation

Figure 4.4: Right: Compact representation of the surface normal map relative to sensor
viewing direction. Left: Distributions of measurement dropout probability
at different viewing angles given the angle of total reflectance θTotal.

Figure 4.5: Right: Ground truth simulated depth measurement. Left: Depth map after
applying data augmentation. White pixels represent missing measurements.

pmissing(D,W) = 1− (1− prange(D))(1− pedge(D))(1− pangle(W)), (4.6)

under the assumption that the aforementioned effects occur independently. Fig-
ure 4.5 illustrates the effects of applying the aforementioned effects to simulated
depth measurements.

4.3.2 Data Augmentation for Semantic Segmentation
Naturally, we cannot expect the semantic segmentation labels Y to be flawless,
either. To simulate realistic artifacts, we train a semantic segmentation model
MY on 8000 cluttered bin scenes viewed by 5 cameras each to classify an input
image I in terms of the object and tote box classes in the foreground of the scene,
producing Nclasses-channel log probabilities per pixel location

22

4.3 Data Augmentation for Annotated Point Clouds

ŶM(I) := LogSoftmax(MY(I)). (4.7)

The dataset is generated for this purpose exclusively. Here, MY is represented
by a U-Net (Ronneberger et al. [26]) using a b1-sized feature extractor from Seg-
Former (Xie et al. [27]) which has been pretrained on ImageNet (Deng et al. [28])
but remains frozen throughout the training process on our cluttered bin data. This
way, we achieve a good tradeoff between training time and segmentation perfor-
mance. Sample predictions from the synthetic segmentation dataset validation
split are depicted in Figure 4.6.

Ironically, an undesirable consequence of this approach is that the learned seg-
mentation masks are of consistently good quality. For any data augmentation
pipeline, control over the severity of applied effects is desirable. Thus, we experi-
mented with dropout layers inserted between the decoder layers ofMY . However,
the dropout probability for low values has little effect on the output of the seg-
mentation model, but for increasing probabilities the output segmentation masks
suddenly deteriorate catastrophically. This proved too difficult to balance, so we
introduce a probability pshuffle to apply a random permutation to the semantic
channels at each spatial location in ŶM instead. On the other hand, when we do
not wish to apply any augmentation via MY to Y , we one-hot encode these class
labels, yielding Yδ and then convert to ε-soft log probability distributions

Ŷε(Yδ) :=

{
log(1− (Nclasses − 1)ε), Yδ = 1

log(ε) otherwise
. (4.8)

Setting ε � 1, this hardly detracts from the ground truth semantic mask but
ensures that the probabilistic filter used further along in our pipeline does not
collapse for these inputs. The background class is omitted and its class vectors set
arbitrarily in this step as those locations are excluded later.

Overall, the parameterized data augmentation pipeline introduced in this section
can be summarized as

i
jz = (ijI, ijY , ijD, ijW)

(Nquant,Rmin,Rmax,sσ ,σedge,θTotal,MY ,pshuffle)7−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (
i

jD̂,
i

jŶ) =: i
j ẑ (4.9)

with the understanding that any effect controlled by (Nquant, . . . , pshuffle) can be
omitted if desired.

23

4 Dataset Generation

Figure 4.6: Example predictions of our semantic segmentation modelMY for validation
data.

24

4.4 Labeled RGB-D Data as Annotated Point Clouds

4.3.3 Data Augmentation for Camera Parameters
In addition to artifacts in the sensor measurement, inaccurate estimates of the
sensor pose and intrinsic parameters can also influence the quality of semantic
maps resulting from i

j ẑ. Therefore, we also implemented the functionality

i
jC = (ijP,

i
jK)

(σrot,σpos,σf ,σc)7−−−−−−−−−→ (
i

jP̂ ,
i

jK̂) =:
i

j Ĉ, (4.10)

rotating the sensor orientation around the coordinate axes with random angles
∼ N (0, σrot) as well as incrementing the sensor position, camera focal length and
principal point offset with noise ∼ N (0, σpos,f,c) respectively. Noise concerning i

jK

is only sampled once every iS, reflecting the assumption that each scene is viewed
by the same sensor in different poses.

4.4 Labeled RGB-D Data as Annotated Point
Clouds

Before semantic mapping, it is necessary to convert the 2.5 dimensional depth maps
with their corresponding semantic label distributions (

i

jD̂,
i

jŶ) to an adequate 3D
form in an allocentric reference frame for each pixel coordinate u, v. We apply

i
jxWorld(u, v)
i
jyWorld(u, v)
i
jzWorld(u, v)

1

 =
i

jD̂[u, v]
i

jP̂

(
i

jK̂
−1 0
~0 1

)
u+ 0.5

v + 0.5

1
1

i
jD̂[u,v]

 (4.11)

to obtain world coordinate locations from Ĉ and D̂, then concatenate with Ŷ

and filter background pixels to obtain

i
jX =


 i

jxWorld(u, v)
i
jyWorld(u, v)
i
jzWorld(u, v)

⊕ i

jŶ [u, v]

∣∣∣∣∣∣ ijY [u, v] 6= cBackground

 (4.12)

an i
jNForeground× (3+Nclasses) point cloud with semantic labels per pairing of

i

j Ĉ
and i

j ẑ.

25

5 Experiments

5.1 Experiment Configuration
To train our refinement models, we use the cluttered bin generator described in 4.2
to generate 13400 binpicking scenes iS using Nobjects = 38 different object classes.
In each scene, the tote contains between 8 and 32 objects which are viewed from 32

simulated sensors i
jC at a resolution of 640× 480. This dataset is split into 12800

scenes for training, 500 for validation and 100 for testing, referred to by indices
i ∈ STrain, SVal, and STest respectively. At the same time, the sensors are split into
10 sensors for semantic fusion and 22 for novel-view synthesis. Conversely, these
splits are referred to by indices j ∈ iCMap and j ∈ iCNVS. This dataset using these
splits gives rise to all experiments described in this section.

5.1.1 Precomputed Annotated Point Clouds

Precomputed Dataset Configurations apc_
Param Nquant Rmin Rmax sσ σedge θTotal MY pshuffle σrot σpos σf σc
original 7 7 7 7 7 7 7 0% 0◦ 0◦ 0 0

moderate 150 0.25m 9m 1 5 86◦ 3 0% 1◦

3
5mm
3 0 0

heavy 75 0.25m 9m 2 8 77◦ 3 25% 4◦

3
4cm
3

1
3

0.5
3

Table 5.1: Overview of data augmentation configuration settings for our datasets.

Applying the augmentation scheme from 4.3 on the fly uses up significant GPU
resources, as it must be applied 13300 times to 10 sensors per epoch. Therefore,
we prebrake annotated point clouds using different settings to form the point
cloud datasets for use during training. Specifically, we apply depth and semantic
segmentation effects

i
jz

(Nquant,Rmin,Rmax,sσ ,σedge,θTotal,MY ,pshuffle)7−−−−−−−−−−−−−−−−−−−−−−−−−−−→ i
j ẑ (5.1)

and sensor parameter noise

27

5 Experiments

i
jC

(σrot,σpos,σf ,σc)7−−−−−−−−−→
i

j Ĉ (5.2)

and then calculate the annotated point clouds

(ij ẑ,
i

j Ĉ) 7→
i

jX̂ (5.3)

for j ∈ iCMap.
We also calculate uncorrupted point clouds i

jXGT for j ∈ iCMap ∪ iCNVS, which
are available downstream to compute pseudo-groundtruth semantic maps for vi-
sualization and evaluation purposes. Finally, we reserve i

jC and i
jz for j ∈ iCNVS

as training targets.

To showcase the interaction of our semantic map refinement with increasing
degrees of sensor errors, we create the datasets apc_original, apc_moderate and
apc_heavy as described above. Here apc abbreviates annotated point cloud and the
suffix summarizes the severity of artifacts. The corresponding settings producing
each dataset

{(
{
i

jX̂ |j ∈ iCMap}, {(ijz, ijC)|j ∈ iCNVS}, { ijXGT |j ∈ iCMap ∪ iCNVS}
)}

i∈STrain∪SVal

are detailed in Table 5.1. It should be noted that the obvious drawback to pre-
computing corrupted annotated point clouds is that the diversity of sensor defects
is thereby limited. We are nonetheless confident that 12800 scenes providing 10

separate point clouds provide a sufficient amount of training data while massively
speeding up training epochs. Note that a random subset of these point clouds is
combined in semantic mapping before refinement, contributing to map diversity
per scene, further curtailing the negative impact of precomputation.

5.2 Training
With annotated point clouds, targets and refinement model at the ready, a training
step falls into place as follows:

1. Select scene batch {i} ⊂ STrain, random subsets {j} ⊂ {i}CMap, 1 ≤ |j| ≤ 8

2. Fuse point clouds
{i}
{j}X̂ in voxel maps {i}V

3. Apply refinement model {i}VM ←MV(
{i}Vexp)

28

5.3 Evaluation

4. Sample rays {r}, Nrays each for all {i}
jC, j ∈ {i}CNVS

5. Render CY({r}), CD({r}), Ttf using {i}VM

6. Compute loss LTrain, backprop to weights of MV

Note that only a maximum of 8 out of 10 available annotated point clouds are
used in step 1. This is because we want to examine how the network responds to 9

or 10 fusion steps in evaluation, i.e. whether it generalizes to more comprehensively
mapped scenes.

In the loss term, there is an option to include a signal supervising the estimated
depth. One ablation was conducted without depth supervision, which yielded
equivalent semantic novel-view synthesis performance but about 50% increase in
losses measuring depth estimation. Therefore, we use depth supervision in all
other experiments, but it is not strictly required to do so. More precisely, the full
training loss is

LTrain = 0.5 · LCE (CY({r}),Y [ur, vr]) +

0.5 · LLS (CY({r}),Y [ur, vr]) +

LL1 (CD({r}),D[ur, vr]) +

2 · LBCE(Ttf , BG)+

5e−4 · LReg(VM,Vexp)

(5.4)

where LCE is the cross entropy loss for multi-class segmentation. The Lovász-
Softmax loss (Berman et al. [29]) LLS is also responsible for segmentation quality
and alleviates class imbalance and small object recovery errors. The term LL1

provides depth supervision and LBCE treats the rendered transmittance as a fore-
ground/background segmentation problem, encouraging correct labeling of empty
pixels. Finally, LReg is another L1-term regularizing changes in density between
Vexp and VM.

5.3 Evaluation
In contrast to training, evaluation requires rendering full images, book-keeping
the number of fusion steps contributing to voxel grids before refinement and also
rendering from the unrefined as well as the pseudo-ground-truth voxel grids to
collect baseline results. Moreover, the quality of the input data must be measured
as well.

Therefore, for each scene i ∈ STest, we:

1. Fuse pseudo ground truth annotated point iXGT clouds to voxel grids iVGT

29

5 Experiments

2. Render iVGT to all known and novel views (iYGT ,
iDGT)

3. Fuse N = 1 . . . 10 point clouds to increasingly dense semantic maps i
NV

4. Refine i
NV individually to i

NVM

5. Render i
NV to all sensors that contributed to them

(
i

MAP≤N ŶN ,
i

MAP≤ND̂N
)

6. Render i
NV to all novel views

(
i

NV SŶN ,
i

NV SD̂N
)

7. Render i
NVM to all sensors that contributed to them

(
i

MAP≤N ŶN
M,

i

MAP≤ND̂N
M

)
8. Render i

NVM to all novel views
(

i

NV SŶN
M,

i

NV SD̂N
M

)
9. Calculate metrics iMGT for (iYGT ,

iDGT)

10. Calculate unrefined backprojection metrics
i

MAPM̂
N for

(
i

MAP≤N ŶN ,
i

MAP≤ND̂N
)

11. Calculate unrefined novel-view synthesis metrics
i

NV SM̂
N for

(
i

NV SŶN ,
i

NV SD̂N
)

12. Calculate refined backprojection metrics i
MAPM

N for
(

i

MAP≤N ŶN
M,

i

MAP≤ND̂N
M

)
13. Calculate refined novel-view synthesis metrics i

NV SM
N
M for

(
i

NV SŶN
M,

i

NV SD̂N
M

)
14. Calculate input data metrics i

MAPM z for i
MAP ẑ

Note that it is inconsequential to distinguish between novel and known views
with regards to the pseudo ground truth data used in steps 2 and 9, as all available
ground truth sensor information is fused to these grids.

As metrics, we use mIoU to judge segmentation quality and mIoU Foreground
to judge segmentation quality restricted to the foreground classes. An L1 term
evaluates the estimated depth, which is always restricted to the foreground pixels.
Finally, a completeness score calculates the fraction of foreground pixels which are
present. Evaluating the results in 2D is justified because this perspective is not
susceptible to discretization issues regarding the voxel grids. By calculating scores
for rendered pseudo ground truth grids as well, we provide a baseline which relates
our refined 3D results to the complete 3D maps expected for perfect measurements
at the given grid resolution.

30

5.4 Implementation Details

5.4 Implementation Details
We train our model using 5 synchronized NVIDIA A6000 handling 6 scenes each.
GPU synchronization is implemented using DistributedDataParallel 1. Neverthe-
less, training and validation for 13300 scenes requires 40 minutes per epoch and our
experiments ran between 22 and 35 hours depending on early stopping conditions
on a high performance node. During training, instead of rendering full images,
we only cast a stochastic sample of possible rays, this is a common practice (e.g.
Nrays = 5000 (Yu et al. [4]), Nrays = 8192 (C. Sun et al. [5]), Nrays = 1024 (Zhi
et al. [10])) to speed up training. We use Nrays = 832 per scene for each of the
22 sensors available as targets. Effectively, this corresponds to a ray batch size of
Ntotal rays = 832·22·6·5 ≈ 550k during training. Allocating voxel grids with spatial
dimensions 140 × 112 × 100 covering volumes of 1m × 0.8m × 0.7m, we sample
(NS = 192)+ (NH = 48) points per ray as described in 3.3. The refinement model
processing these maps uses 4 stacked hourglass blocks.

1https://pytorch.org/docs/stable/distributed.html

31

https://pytorch.org/docs/stable/distributed.html

6 Results
This chapter interprets the results of the experiments described in the previous
chapter. All values and images presented in the following originate from the
test sets of the annotated point cloud datasets apc_original, apc_moderate and
apc_heavy, which are defined in Table 5.1 in the previous chapter. To conclude
this chapter, we describe the performance of the components of our pipeline.

6.1 Quantitative Results
In principle, our trained refinement system can be judged not only by its novel-
view synthesis performance, that is, the quality of the rendered novel views given
a refined semantic map, but also by its ability to preserve or improve the sensor
information which was used to create the semantic maps in the first place. This
second task is commonly referred to as denoising (Zhi et al. [10]), but can also be
described as backprojection (Stückler et al. [2]). We will use the term backprojec-
tion from now on. However, we first examine the novel-view synthesis performance,
since this is the primary indicator of the quality of the refined semantic maps.

6.1.1 Novel-View Synthesis

Metric mIoU↑ mIoU FG↑ L1↓ Completeness↑
Input Data 1 1 0 1
Pseudo-GT 0.7732 0.7702 0.0268 0.9997

Unrefined 0.7570 0.7496 0.0487 0.9658
Refined 0.8708 0.8727 0.0258 0.9998

Table 6.1: Test metrics for novel-view synthesis on apc_original.

First, we examine the results on the dataset apc_original, which presented chal-
lenges primarily resulting from incomplete semantic maps, as the depth and object
label distributions used to form the annotated point clouds were perfect and not
augemented with any noise. The computed novel-view synthesis metrics for ren-
dering from refined grids i

NV SM
N
M, unrefined grids

i

NV SM̂
N and pseduo ground

33

6 Results

truth grids iMGT are listed in Table 6.1 as an average over all 10 fusion steps
and 100 scenes. Naturally for this experiment, the input data cannot be outper-
formed, as it is perfect anyhow. Nevertheless, our refinement model outperforms
the pseudo ground truth renderings by a large margin, conceivably because it
as learned not only to complete the given semantic maps, but also to minimize
artefacts which arise as symptoms of grid discretization issues. While the refined
renders are not perfect, an mIoU of ∼ 0.87 is nonetheless a significant improve-
ment over the unrefined grid. The unrefined grids perform only slightly worse than
the pseudo ground truth grids because they are equivalent save for the number of
sensor measurements which are fused into them. The main difference is reflected in
the completeness scores, which alleges that the unrefined grids render to a smaller
fraction of the foreground pixels which is correctly attributed as such. The fore-
ground mIoU was included because the background class is present in many sensor
frames and represents a large percentage of the pixels in some. That there is no
significant difference between these and the normal mIoU scores means that our
model has not simply learned to solve the foreground/background segmentation
problem correctly, but actually provides adequate foreground object labels. What
stands out, however, is that the rendered depth estimates deviate significantly
from the ground-truth depth for all rendered outputs as measured by the L1-error
(units in m). We do not believe that this is a voxel grid resolution issue, as the
cells there are about 1cm3 small. Instead, it is plausible that this might be an
issue with volume rendering in general, as the weights wk along a ray determining
depth are not normalized. However, enforcing such normalization during training
destabilizes the process and would also be ill-posed when all weights along a given
ray are zero. Also rendered depth is inherently ambiguous near object edges, which
could conceivably contribute to the problem.

Metric mIoU↑ mIoU FG↑ L1↓ Completeness↑
Input Data 0.6328 0.6234 0.0067 0.9829
Pseudo-GT 0.7732 0.7707 0.0268 0.9997
Unrefined 0.5802 0.5897 0.0670 0.9678
Refined 0.8041 0.7985 0.0273 0.9994

Table 6.2: Test metrics for novel-view synthesis on apc_moderate.

When we apply a semantic segmentation model to obtain object label distribu-
tions and moderately corrupt depth measurements and camera parameters in the
dataset apc_moderate, we obtain the results depicted in Table 6.2. In this sce-
nario, the proposed refinement system shows great potential, outperforming both
baselines as before, but also improving on the input data. The achieved mIoU is

34

6.1 Quantitative Results

worse than in the previous experiment, reflecting that this dataset is more diffi-
cult than the one discussed in the previous section. Once more, foreground and
background scores are very close, which indicates that the foreground objects are
correctly learned. However, there is a large gap in between pseudo ground truth
and unrefined mIoU scores, which speaks to the degree of input data noise. Since
errors in depth and errors in semantic labels are conflated by the fusion process,
which is also clearly reflected by this score, this means that our model is inherently
at a disadvantage when comparing to the input data, which is not affected by the
corresponding depth measurement’s defects. Notably, the input data completeness
has dropped below the refined and pseudo ground truth values because of missing
depth measurements which are counted towards this metric. For the depth metric,
we again find the rendered estimates worse than the input data quality. However,
these values are very similar to those from the previous experiment, suggesting
that this issue is related to the method itself.

Metric mIoU↑ mIoU FG↑ L1↓ Completeness↑
Input Data 0.1604 0.1389 0.0134 0.9297
Pseudo-GT 0.7754 0.7748 0.0268 0.9997
Unrefined 0.0741 0.0696 0.1083 0.9536
Refined 0.7638 0.7474 0.0334 0.9985

Table 6.3: Test metrics for novel-view synthesis on apc_heavy.

With further increased levels of input data noise, we find the results for apc_heavy
summarized in Table 6.3. The input object class distributions are very unreliable
in this setup, reflected by their poor mIoU of only 0.1604. The unrefined voxel
grid performs even worse, with an mIoU of only 0.741, because it is affected by
the errors in sensor parameters and pose. Nevertheless, the refined grid renders
to predictions of semantics which are very competitive compared to the pseudo
ground truth and not much worse than the values from the previous experiment,
a strong indication that geometric features play a large role in the refinement pro-
cess. While the depth error in the input data does not seem very severe, this
score does not take into account the significant dropout of input depth measure-
ments reflected by the completeness metrics, which drops below the value for the
unrefined grids for this dataset.

6.1.2 Backprojection to Sensor Frames
Testing our system in the context of rendering back to views which contributed to
the semantic map for the dataset apc_original, we compare the unrefined back-

35

6 Results

Metric mIoU↑ mIoU FG↑ L1↓ Completeness↑
Input Data 1 1 0 1
Pseudo-GT 0.7732 0.7702 0.0268 0.9997

Unrefined 0.7949 0.7994 0.0243 0.9999
Refined 0.9014 0.9028 0.0246 0.9999

Table 6.4: Test metrics for backprojection on apc_original.

projection metrics
i

MAPM̂
N to the baselines posed by the refined backprojection

metrics i
MAPM

N , the pseudo ground truth renders and the input data. The re-
sulting scores are averaged over fusion steps and scenes and summarized in Table
6.4. Unsurprisingly, the results are better than in the novel-view synthesis problem
because scene completion is not necessary, especially when the input sensor data
is not noisy. This is also reflected by the completeness scores, which is high for
the renders from unrefined grids. The most surprising aspect is that the unrefined
grids outperform the pseudo ground truth in terms of segmentation quality. This
hints at an issue with accumulation of grid discretization errors which we will ex-
amine in a subsequent section. However, the refined renders reach a very good
mIoU of 0.9014, and since scene completion is not asked here, this confirms that
the refine model successfully diminishes the impact of the limited semantic map
resolution.

Metric mIoU↑ mIoU FG↑ L1↓ Completeness↑
Input Data 0.6328 0.6234 0.0067 0.9829
Pseudo-GT 0.7732 0.7707 0.0268 0.9997
Unrefined 0.6230 0.6496 0.0365 0.9996
Refined 0.8225 0.8166 0.0261 0.9995

Table 6.5: Test metrics for backprojection on apc_moderate.

The corresponding scores for the dataset apc_moderate are displayed in Table
6.5. As for novel-view synthesis, the refinement model can successfully improve
upon the semantic segmentation provided by a segmentation model that uses only
2D input. The scores are also better than for the previous problem because scene
completion is less difficult for sensor frames which have been fused into the scene
themselves. In contrast to the corresponding results for apc_original, the unre-
fined semantic map renders now perform much worse than than the ones for pseudo
ground truth maps. This is probably because map resolution errors are secondary
as soon as sensor noise is involved. Notably, the unrefined grids compete with
the input data in segmentation quality, even outperforming it slightly when the

36

6.1 Quantitative Results

semantic segmentation is restricted to the foreground. That the input data per-
forms slightly differently in mIoU and mIoU restricted to the foreground is because
the semantic segmentation model used to generate it only outputs labels for fore-
ground objects and takes the background class label from the ground truth. For
this reason, the input data is always at an advantage when correctly identifying
the background is also judged. Since this dataset was created with a realistic se-
mantic segmentation model, the competitive performance of the unrefined render
in this scenario demonstrates that the semantic mapping scheme developed for
this thesis does not degrade our input data under realistic circumstances and can
thus serve as a valid persistent representation of the contributing sensor data on
its own, even without refinement.

Metric mIoU↑ mIoU FG↑ L1↓ Completeness↑
Input Data 0.1604 0.1389 0.0134 0.9297
Pseudo-GT 0.7754 0.7748 0.0268 0.9997
Unrefined 0.0814 0.0812 0.0798 0.9856
Refined 0.7794 0.7623 0.0324 0.9985

Table 6.6: Test metrics for backprojection on apc_heavy.

Finally, the test results for backprojection of heavily corrupted input data are
summarized in Table 6.6. These values present much like those in the novel-view
synthesis case. The refine model in this case barely inches out on the pseudo
ground truth renders when also accounting for the background because it does
not need to perform as much scene completion as for novel-view synthesis, but
also because the pseudo ground truth renders tend to show thicker objects which
extend into the background, slightly worsening segmentation scores there.

6.1.3 Disambiguation of Fusion Steps

Of course, the metrics discussed so far are only summaries of the test set results
and hide effects which unfold over varying numbers of fusion steps. We have
previously seen signs of their existence, as for example the advantage of unrefined
grids over pseudo ground truth semantic maps when backprojecting in the context
of apc_original. Also, the unrefined completeness scores seem very high across
the board. This is quickly cleared up by examining the saturation of completeness
scores for novel view synthesis, exemplified by data from apc_original in Figure
6.1, which illustrates that semantic maps of binpicking scenes rapidly saturate and
are most often complete after around 7 fusion steps. Furthermore, this observation

37

6 Results

Figure 6.1: The completeness score as plotted against the number of fusion steps. Each
box plot summarizes the score of the 100 test scenes at a specific number of
fusion steps. A quick progression towards map saturation is evident.

justifies our use of only 10 sensor measurements for fusion, and only 32 to generate
the pseudo ground truth.

Knowing this, we can interpret the superiority of fewer fusion steps over pseudo
ground truth for backprojection experiments by looking at the relationship be-
tween fusion steps and the backprojection mIoU, depicted in Figure 6.2. On the
dataset apc_original, where unrefined and pseudo ground truth grids are related,
a convergence of the unrefined render mIoU scores towards the pseudo ground
truth baseline is implied. This confirms our suspicion that this effect is related to
the number of fused measurements. This, in turn, points to grid resolution issues
as the most likely culprit. On the other hand, we can also observe the refined
scores for this dataset remaining completely unaffected, as scene completion is not
necessary here and confirming that the refinement can address problems arising
from the map resolution. For the more noisy datasets, the performance of the
unrefined grid also decreases with increasing fusion steps. This is expected, as
a larger number of erroneous map entries will impact the rendered segmentation
negatively. However, the refinement scores remain stable for different fusion steps,
especially the final two, which were not trained for. This shows that the refinement
process responds in a stable manner to semantic map saturation and also that the
scores reported in the earlier sections were not distorted by the averaging scheme
used to summarize them.

Of course, the impact of fusion steps should also be examined for the novel-
view synthesis case, which is graphically depicted in analogy to the backprojection
problem in Figure 6.3. For novel views, there is a clear trend showing that the
refinement model benefits from increasing fusion steps, but the gain in performance

38

6.1 Quantitative Results

Figure 6.2: Backprojection mIoU plotted against fusion steps for refined and unrefined
renders. In the top row, convergence of the scores for unrefined data towards
the pseudo ground truth baseline is visible. For the other datasets, perfor-
mance for unrefined data also decreases with additional fusion steps. The
refined data does not rely heavily on additional fusion steps for this problem.
Datasets from top to bottom: apc_original, apc_moderate, apc_heavy

39

6 Results

Figure 6.3: Novel-view mIoU plotted against fusion steps for refined and unrefined ren-
ders. In this case additional fusion steps are clearly beneficial when the
data is not noisy. The map refinement exploits additional map entries for
all degrees of data corruption. Datasets from top to bottom: apc_original,
apc_moderate, apc_heavy

40

6.2 Qualitative Results

stagnates as the maps saturate. For the unrefined maps, there is also a benefit
to fusing more data, but it is only pronounced when the sensor measurements are
accurate.

6.2 Qualitative Results

Figure 6.4: Rendering a pseudo ground truth grid reveals that it suffers from voxel grid
resolution artefacts which make objects appear larger than they are. Refined
semantic maps do not suffer from this issue and produce renders which are
visually more similar to the ground truth.

It is important to relate differences in semantic map refinement quality expressed
by scores in the previous section to the perceived visual quality of the correspond-
ing outputs. Therefore, we dedicate this section to illustrating the views rendered
by our method in different data corruption scenarios. For instance, the suboptimal
segmentation scores for pseudo ground truth are corroborated visually, as depicted
in Figure 6.4.

On the following pages, we depict one novel view into one scene from each
dataset. Since the impact of the number of fusion steps into the semantic maps
before and after refinement was previously demonstrated, we encourage the reader
to take into account which objects the input data, depicted at the top of the
figures, contribute to the semantic maps. Also, we refer to the figure captions for
detailed commentary on the depicted scenes.

41

6 Results

Figure 6.5: The progression of semantic rendering of one novel view into the same scene
in apc_original over multiple fusion steps. The topmost box shows the input
data which contributed to each fusion step. The rows depict the ground
truth, the unrefined and refined render for the given view. Error maps
highlight deviation from ground truth semantic labels in the renders. The
columns show the progression of this data over multiple fusion steps. Note
how the model is able to complete the tote when receiving a very sparse
initial semantic map. The spatula in the lower right box corner is initally
incomplete, as its orientation cannot be determined until the next fusion
step. The lowermost row of error maps show how the refinement model adds
objects as they appear in the input data, even when the entity is partially
occluded. This highlights that our proposed method has learned reasonable
priors.

42

6.2 Qualitative Results

Figure 6.6: The progression of semantic rendering of one novel view into the same scene
in apc_moderate over multiple fusion steps. The topmost box shows the
input data which contributed to each fusion step. The rows depict the
ground truth, the unrefined and refined render for the given view. Error
maps highlight deviation from ground truth semantic labels in the renders.
The columns show the progression of this data over multiple fusion steps.
In the initial step, the semantic map is extremely incomplete, and an object
which is not present is added to the tote, potentially to explain the floating
blue object which actually exists. At the next fusion step, the prediction
improves as new data indicates which objects are present in the far side of
the box. At the 4th fusion step, an unobstructed view into the box is fused to
the map. Immediately, various objects are completed in a plausible manner
even though this region of the tote is cluttered.

43

6 Results

Figure 6.7: The progression of semantic rendering of one novel view into the same scene
in apc_heavy over multiple fusion steps. The topmost box shows the input
data which contributed to each fusion step. The rows depict the ground
truth, the unrefined and refined render for the given view. Error maps
highlight deviation from ground truth semantic labels in the renders. The
columns show the progression of this data over multiple fusion steps. This
scene was specifically chosen to be the same as the one depicted in Figure
6.6. Note that while the refined semantic map is still rendered to servicable
novel views, the objects are noticeably more blurry than in the previous ex-
ample. This shows how overwhelming sensor noise can impede learning of
sharp object shapes, which is also not specifically targeted by our pixel-wise
training loss function.

44

6.2 Qualitative Results

Figure 6.8: Left: The input semantic segmentation features an entire mislabeled object
and several wrong labels where the scene is cluttered. Right: When rendered
to the same view from a refined semantic map, these defects are corrected.

The backprojection task is interesting to visualize as well. Figure 6.8 shows an
example of an input semantic segmentation which contains many mislabeled pixels
in a cluttered tote and an object which has been completely misidentified. After
semantic map fusion, a refinement step and rendering to the original view, the
semantic segmentation is corrected.

For a more comprehensive set of examples in the backprojection setting, Figure
6.9 illustrates an extremely difficult case from apc_heavy featuring multiple small
objects and very damaged input data. The backprojection for multiple input
frames which are successively fused to the scene’s semantic map is depicted for
the unrefined and refined semantic maps. Also, the input semantic maps are
compared to the ground truth frames to illustrate their noisy labels and how they
are corrected.

45

6 Results

Figure 6.9: Backprojection to cumulatively fused input sensor frames performed for a
scene in apc_heavy. The unrefined semantic maps are barely comprehensi-
ble, but refinement nonetheless brings forth plausible object arrangements
and denoises the input semantic segmentation labels. These are depicted
alongside their own error maps in the rows marked by the yellow box.

46

6.3 Performance

6.3 Performance

Op Fuse Refine Render Backprop
Inference Step (640 x 480) 0.00278s 0.31104s 0.11411s 7

Train Step (22 x 832 Rays) 0.00268s 0.31025s 0.01090s 0.26501s

Table 6.7: Performance.

The performance of the individual operations in our pipeline is presented in
Table 6.7. At inference time, our system can render novel views at an interactive
∼ 9 fps on an NVIDIA RTX3090. The fusion step in particular is very efficient
because it relies almost exclusively on highly optimized sparse update operations.
When an annotated point cloud corresponding to one sensor measurement is fused,
∼ 20million points per second can be processed. However, as for ray casting, the
performance increases drastically if batched processing is considered. When all
32 measurements corresponding to an individual scene are fused, for example to
obtain the pseudo ground truth voxel grids, the number of fused points per second
increases to ∼ 120million per second per scene in the batch. However, refinement
is quite slow at only ∼ 3 fps. Together, this suggests that a performant practical
implementation would attempt to fuse at high frequency but refine much less
often than new observations arrive. This could easily be realized by, in addition
to a refined semantic map, maintaining an unrefined voxel grid on the side which
fuses all incoming measurements. When a specified time span or amount of novel
observations have been collected, the refinement model can be called to overwrite
the current refined map. Also, there is no requirement to render the semantic map
in the same manner as done here doing training. If batched processing is no longer
important, sparse grid structures could be initialized from the semantic map in
the single-scene setting, a strategy employed by Yu et al. [4].

47

7 Conclusion and Outlook

Throughout this thesis, we introduce a 3D semantic map fusion and refinement
pipeline which is supervised by 2D semantic segmentation and optionally depth
measurements. We demonstrate the viability of our approach in a synthetic bin-
picking scenario with realistic problems such as complex object clutter, flawed
sensor poses, inaccurate semantic segmentation and incomplete depth measure-
ments.

To explain our method, we first examine related work in the domains of se-
mantic mapping, semantic scene segmentation and novel-view synthesis. Taking
into account the advantages of the reviewed semantic mapping techniques, we im-
plement a highly optimized fusion process for point clouds annotated with object
class distributions into voxel grids, which henceforth serve as our semantic maps.
Using examples from the field of semantic scene segmentation, we explore the joint
processing of 3D geometry and 2D semantics. However, we eliminate the require-
ment of 3D annotated ground truth by drawing from a plethora of techniques
originating in novel-view synthesis. In this regard, we proceed with recent explicit
formulations which offer efficiency, but most importantly, also interpretability. By
integrating a simple notion of density into our semantic maps, we are immediately
able to render them, bridging the gap between 3D and 2D.

In the following, we detail the exact steps necessary to represent these semantic
maps, to fuse multiple sensor measurements to, and then finally render them. We
propose a suitable neural refinement model and briefly justify its architecture.
Next, we motivate using synthetic binpicking scenes to trial this pipeline and set
up a flexible simulator to produce a variety of output data. To increase realism,
we propose several avenues of data augmentation for depth measurements, train a
semantic segmentation model and apply noise to sensor parameters. Overall, this
results in input data meant to closely resemble the difficult sensory challenges a
binpicking robot might encounter.

Next, we detail our experiments and describe the extensive testing process de-
signed to evaluate the performance of our proposed method while relating it to
the completeness of the input semantic maps. We touch on the inner workings of
our implementation and describe the compute resources required to run our large
scale experiments.

49

7 Conclusion and Outlook

Finally, we provide a quantitative comparison of our results with a strong base-
line of rendering from a pseudo ground truth semantic map and additionally mea-
sure the improvement versus the quality of the input data and the unrefined seman-
tic maps. We follow up on these scores and show visualizations that corroborate
the metrics well. Then, we briefly discuss the performance of different components
in the pipeline.

Overall, our end result is a semantic map refinement system which is successfully
trained to leverage 3D priors without using 3D ground truth. It easily outperforms
the weak baseline of an unrefined semantic map, improves upon the challenging
baseline of realistic input semantic segmentation and even surpasses or is at mini-
mum competitive when compared to rendering from pseudo ground truth semantic
maps, which were originally expected to represent an unsurpassable upper bound
on performance.

In future work, we wish to examine whether these results can be extended
to real world binpicking scenarios. While training on synthetic data often does
not generalize well to real settings, we are more confident in this case because we
expect much of the complexity of the real world to be masked when using semantic
segmentation instead of RGB images, for example. Perhaps, such steps depend
mainly on the realism of the depth augmentation, which hasn’t been examined in
detail because we did not commit this framework to replicating the defects of a
specific sensor. Also, the utility of the refined semantic maps in downstream tasks
such as pose estimation could be examined. In the synthetic setting, our cluttered
bin generator in its current state could already generate the required training data.

Ultimately, we are excited about the future progress in this field and, of course,
are hopeful to participate in it.

50

List of Figures

1.1 An overview of the core idea. Left: Fuse RGB-D measurements in a
voxel grid. Center : Refine the grid with a 3D CNN. Right: Render
2D views from it and backprop rendering loss to 3D CNN. 2

3.1 An example of hierarchical sampling of points along a ray. Blue:
Stratified samples. Green: Weights calculated according to blue
samples along ray cast through down-sampled density grid Ṽµ. Red:
Points resampled using green weights as distribution. Black: Weights
calculated using blue and red samples along ray in Vµ. 13

3.2 The semantic map refinement architecture consist of several modi-
fied stacked hourglass blocks (Chang et al. [16]) which are drop-in
replacements for 3D CNN residual blocks. The layout of an indi-
vidual block is depicted above. Our complete model consists of 4
stacked hourglass blocks. Diagram generated using [17]. 15

4.1 Examples from an annotated simulated scene created by our clut-
tered bin generator. (a): RGB, (b): depth, (c): semantic segmen-
tation, (d): object poses, (e): bounding boxes and (f): bounding
boxes shrunk to object visibility. 18

4.2 Measurements of a generic scene using an Intel RealSense L515
(from [24]). Missing depth measurements are visible on the tabletop
and along edges. The background displays measurement noise and
quantization due to limited sensor resolution. 20

4.3 Left: A binpicking scene captured using an Intel RealSense L515.
Right: Simulated measurements of a similar scene. 21

4.4 Right: Compact representation of the surface normal map relative
to sensor viewing direction. Left: Distributions of measurement
dropout probability at different viewing angles given the angle of
total reflectance θTotal. 22

4.5 Right: Ground truth simulated depth measurement. Left: Depth
map after applying data augmentation. White pixels represent
missing measurements. 22

51

List of Figures

4.6 Example predictions of our semantic segmentation model MY for
validation data. 24

6.1 The completeness score as plotted against the number of fusion
steps. Each box plot summarizes the score of the 100 test scenes
at a specific number of fusion steps. A quick progression towards
map saturation is evident. 38

6.2 Backprojection mIoU plotted against fusion steps for refined and
unrefined renders. In the top row, convergence of the scores for
unrefined data towards the pseudo ground truth baseline is visi-
ble. For the other datasets, performance for unrefined data also
decreases with additional fusion steps. The refined data does not
rely heavily on additional fusion steps for this problem. Datasets
from top to bottom: apc_original, apc_moderate, apc_heavy 39

6.3 Novel-view mIoU plotted against fusion steps for refined and unre-
fined renders. In this case additional fusion steps are clearly ben-
eficial when the data is not noisy. The map refinement exploits
additional map entries for all degrees of data corruption. Datasets
from top to bottom: apc_original, apc_moderate, apc_heavy 40

6.4 Rendering a pseudo ground truth grid reveals that it suffers from
voxel grid resolution artefacts which make objects appear larger
than they are. Refined semantic maps do not suffer from this issue
and produce renders which are visually more similar to the ground
truth. 41

6.5 The progression of semantic rendering of one novel view into the
same scene in apc_original over multiple fusion steps. The top-
most box shows the input data which contributed to each fusion
step. The rows depict the ground truth, the unrefined and refined
render for the given view. Error maps highlight deviation from
ground truth semantic labels in the renders. The columns show
the progression of this data over multiple fusion steps. Note how
the model is able to complete the tote when receiving a very sparse
initial semantic map. The spatula in the lower right box corner is
initally incomplete, as its orientation cannot be determined until
the next fusion step. The lowermost row of error maps show how
the refinement model adds objects as they appear in the input data,
even when the entity is partially occluded. This highlights that our
proposed method has learned reasonable priors. 42

52

List of Figures

6.6 The progression of semantic rendering of one novel view into the
same scene in apc_moderate over multiple fusion steps. The top-
most box shows the input data which contributed to each fusion
step. The rows depict the ground truth, the unrefined and refined
render for the given view. Error maps highlight deviation from
ground truth semantic labels in the renders. The columns show
the progression of this data over multiple fusion steps. In the ini-
tial step, the semantic map is extremely incomplete, and an object
which is not present is added to the tote, potentially to explain
the floating blue object which actually exists. At the next fusion
step, the prediction improves as new data indicates which objects
are present in the far side of the box. At the 4th fusion step, an
unobstructed view into the box is fused to the map. Immediately,
various objects are completed in a plausible manner even though
this region of the tote is cluttered. 43

6.7 The progression of semantic rendering of one novel view into the
same scene in apc_heavy over multiple fusion steps. The topmost
box shows the input data which contributed to each fusion step.
The rows depict the ground truth, the unrefined and refined render
for the given view. Error maps highlight deviation from ground
truth semantic labels in the renders. The columns show the pro-
gression of this data over multiple fusion steps. This scene was
specifically chosen to be the same as the one depicted in Figure
6.6. Note that while the refined semantic map is still rendered
to servicable novel views, the objects are noticeably more blurry
than in the previous example. This shows how overwhelming sen-
sor noise can impede learning of sharp object shapes, which is also
not specifically targeted by our pixel-wise training loss function. . 44

6.8 Left: The input semantic segmentation features an entire misla-
beled object and several wrong labels where the scene is cluttered.
Right: When rendered to the same view from a refined semantic
map, these defects are corrected. 45

6.9 Backprojection to cumulatively fused input sensor frames performed
for a scene in apc_heavy. The unrefined semantic maps are barely
comprehensible, but refinement nonetheless brings forth plausible
object arrangements and denoises the input semantic segmentation
labels. These are depicted alongside their own error maps in the
rows marked by the yellow box. 46

53

List of Tables

5.1 Overview of data augmentation configuration settings for our datasets.
. 27

6.1 Test metrics for novel-view synthesis on apc_original. 33
6.2 Test metrics for novel-view synthesis on apc_moderate. 34
6.3 Test metrics for novel-view synthesis on apc_heavy. 35
6.4 Test metrics for backprojection on apc_original. 36
6.5 Test metrics for backprojection on apc_moderate. 36
6.6 Test metrics for backprojection on apc_heavy. 37
6.7 Performance. 47

55

Bibliography
[1] A. Nüchter and J. Hertzberg. “Towards semantic maps for mobile robots.”

In: Robotics auton. syst. 56 (2008), pp. 915–926.
[2] J. Stückler, N. Biresev, and S. Behnke. “Semantic mapping using object-class

segmentation of RGB-D images.” In: 2012 ieee/rsj international conference
on intelligent robots and systems. 2012, pp. 3005–3010.

[3] S. Bultmann, J. Quenzel, and S. Behnke. “Real-time multi-modal semantic
fusion on unmanned aerial vehicles with label propagation for cross-domain
adaptation.” In: Robotics and autonomous systems 159 (2023), p. 104286.
issn: 0921-8890. url: https://www.sciencedirect.com/science/article/
pii/S0921889022001750.

[4] A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa.
“Plenoxels: Radiance Fields without Neural Networks.” In: Corr abs/2112.05131
(2021). arXiv: 2112.05131. url: https://arxiv.org/abs/2112.05131.

[5] C. Sun, M. Sun, and H. Chen. “Direct Voxel Grid Optimization: Super-fast
Convergence for Radiance Fields Reconstruction.” In: Corr abs/2111.11215
(2021). arXiv: 2111.11215. url: https://arxiv.org/abs/2111.11215.

[6] L. Sun, Z. Yan, A. Zaganidis, C. Zhao, and T. Duckett. “Recurrent-OctoMap:
Learning State-based Map Refinement for Long-Term Semantic Mapping
with 3D-Lidar Data.” In: Corr abs/1807.00925 (2018). arXiv: 1807.00925.
url: http://arxiv.org/abs/1807.00925.

[7] A. Dai and M. Nießner. “3DMV: Joint 3D-Multi-View Prediction for 3D Se-
mantic Scene Segmentation.” In: Corr abs/1803.10409 (2018). arXiv: 1803.
10409. url: http://arxiv.org/abs/1803.10409.

[8] W. Hu, H. Zhao, L. Jiang, J. Jia, and T. Wong. “Bidirectional Projection
Network for Cross Dimension Scene Understanding.” In: Corr abs/2103.14326
(2021). arXiv: 2103.14326. url: https://arxiv.org/abs/2103.14326.

[9] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng. “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis.” In: Corr abs/2003.08934 (2020). arXiv: 2003.08934. url:
https://arxiv.org/abs/2003.08934.

57

https://www.sciencedirect.com/science/article/pii/S0921889022001750
https://www.sciencedirect.com/science/article/pii/S0921889022001750
https://arxiv.org/abs/2112.05131
https://arxiv.org/abs/2112.05131
https://arxiv.org/abs/2111.11215
https://arxiv.org/abs/2111.11215
https://arxiv.org/abs/1807.00925
http://arxiv.org/abs/1807.00925
https://arxiv.org/abs/1803.10409
https://arxiv.org/abs/1803.10409
http://arxiv.org/abs/1803.10409
https://arxiv.org/abs/2103.14326
https://arxiv.org/abs/2103.14326
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934

Bibliography

[10] S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison. “In-Place Scene La-
belling and Understanding with Implicit Scene Representation.” In: Corr
abs/2103.15875 (2021). arXiv: 2103.15875. url: https://arxiv.org/
abs/2103.15875.

[11] V. Sitzmann, S. Rezchikov, W. T. Freeman, J. B. Tenenbaum, and F. Du-
rand. “Light Field Networks: Neural Scene Representations with Single-
Evaluation Rendering.” In: Corr abs/2106.02634 (2021). arXiv: 2106.02634.
url: https://arxiv.org/abs/2106.02634.

[12] S. Vora, N. Radwan, K. Greff, H. Meyer, K. Genova, M. S. M. Sajjadi, E. Pot,
A. Tagliasacchi, and D. Duckworth. “NeSF: Neural Semantic Fields for Gen-
eralizable Semantic Segmentation of 3D Scenes.” In: Corr abs/2111.13260
(2021). arXiv: 2111.13260. url: https://arxiv.org/abs/2111.13260.

[13] J. McCormac, A. Handa, A. J. Davison, and S. Leutenegger. “SemanticFu-
sion: Dense 3D Semantic Mapping with Convolutional Neural Networks.” In:
Corr abs/1609.05130 (2016). arXiv: 1609.05130. url: http://arxiv.org/
abs/1609.05130.

[14] J. T. Kajiya and B. P. Von Herzen. “Ray Tracing Volume Densities.” In:
Proceedings of the 11th annual conference on computer graphics and inter-
active techniques. SIGGRAPH ’84. New York, NY, USA: Association for
Computing Machinery, 1984, pp. 165–174. isbn: 0897911385. url: https:
//doi.org/10.1145/800031.808594.

[15] N. Max. “Optical models for direct volume rendering.” In: Ieee transactions
on visualization and computer graphics 1.2 (1995), pp. 99–108.

[16] J. Chang and Y. Chen. “Pyramid Stereo Matching Network.” In: Corr abs/1803.08669
(2018). arXiv: 1803.08669. url: http://arxiv.org/abs/1803.08669.

[17] H. Iqbal. PlotNeuralNet.
[18] A. Odena, V. Dumoulin, and C. Olah. “Deconvolution and Checkerboard

Artifacts.” In: Distill (2016). url: http://distill.pub/2016/deconv-
checkerboard.

[19] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla,
and P. P. Srinivasan. “Mip-NeRF: A Multiscale Representation for Anti-
Aliasing Neural Radiance Fields.” In: Corr abs/2103.13415 (2021). arXiv:
2103.13415. url: https://arxiv.org/abs/2103.13415.

[20] N. Müller, Y. Siddiqui, L. Porzi, S. R. Bulò, P. Kontschieder, and M. Nießner.
DiffRF: Rendering-Guided 3D Radiance Field Diffusion. 2022. url: https:
//arxiv.org/abs/2212.01206.

[21] A. S. Periyasamy, M. Schwarz, and S. Behnke. “SynPick: A Dataset for Dy-
namic Bin Picking Scene Understanding.” In: Corr abs/2107.04852 (2021).
arXiv: 2107.04852. url: https://arxiv.org/abs/2107.04852.

58

https://arxiv.org/abs/2103.15875
https://arxiv.org/abs/2103.15875
https://arxiv.org/abs/2103.15875
https://arxiv.org/abs/2106.02634
https://arxiv.org/abs/2106.02634
https://arxiv.org/abs/2111.13260
https://arxiv.org/abs/2111.13260
https://arxiv.org/abs/1609.05130
http://arxiv.org/abs/1609.05130
http://arxiv.org/abs/1609.05130
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/800031.808594
https://arxiv.org/abs/1803.08669
http://arxiv.org/abs/1803.08669
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://arxiv.org/abs/2103.13415
https://arxiv.org/abs/2103.13415
https://arxiv.org/abs/2212.01206
https://arxiv.org/abs/2212.01206
https://arxiv.org/abs/2107.04852
https://arxiv.org/abs/2107.04852

Bibliography

[22] M. Schwarz and S. Behnke. “Stillleben: Realistic Scene Synthesis for Deep
Learning in Robotics.” In: Corr abs/2005.05659 (2020). arXiv: 2005.05659.
url: https://arxiv.org/abs/2005.05659.

[23] A. Boltres, A. Villar-Corrales, J. Nogga, and P. Schütt. sl-cutscenes.
[24] Intel Realsense LiDAR Camera L515. https://www.intelrealsense.com/

lidar-camera-l515/. Accessed: 21-02-2023.
[25] T. Mallick, P. P. Das, and A. K. Majumdar. “Characterizations of Noise

in Kinect Depth Images: A Review.” In: Ieee sensors journal 14.6 (2014),
pp. 1731–1740.

[26] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation.” In: Corr abs/1505.04597 (2015). arXiv:
1505.04597. url: http://arxiv.org/abs/1505.04597.

[27] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo. “Seg-
Former: Simple and Efficient Design for Semantic Segmentation with Trans-
formers.” In: Corr abs/2105.15203 (2021). arXiv: 2105.15203. url: https:
//arxiv.org/abs/2105.15203.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet:
A large-scale hierarchical image database.” In: 2009 ieee conference on com-
puter vision and pattern recognition. 2009, pp. 248–255.

[29] M. Berman and M. B. Blaschko. “Optimization of the Jaccard index for
image segmentation with the Lovász hinge.” In: Corr abs/1705.08790 (2017).
arXiv: 1705.08790. url: http://arxiv.org/abs/1705.08790.

59

https://arxiv.org/abs/2005.05659
https://arxiv.org/abs/2005.05659
https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/1705.08790
http://arxiv.org/abs/1705.08790

	Introduction
	Semantic Mapping
	Renderable Semantic Maps
	Our Proposed Approach
	Contributions

	Related Work
	Semantic Mapping
	Semantic Mapping Using Object-Class Segmentation of RGB-D Images
	Real-Time Multi-Modal Semantic Fusion on Unmanned Aerial Vehicles
	Recurrent-OctoMap

	Semantic Scene Segmentation
	3DMV
	Bidirectional Projection Network

	Novel View Synthesis
	NeRF
	Semantic NeRF
	Direct Voxel Grid Optimization
	Plenoxels
	Light Field Networks
	NeSF

	Method
	Semantic Mapping as Voxel Grid Fusion
	Classic Volume Rendering
	Differentiable Semantic Volumetric Renderer
	Semantic Map Refinement Model

	Dataset Generation
	Binpicking Scenes
	Synthetic Cluttered Binpicking Scenes
	Data Augmentation for Annotated Point Clouds
	Data Augmentation for Depth Measurements
	Data Augmentation for Semantic Segmentation
	Data Augmentation for Camera Parameters

	Labeled RGB-D Data as Annotated Point Clouds

	Experiments
	Experiment Configuration
	Precomputed Annotated Point Clouds

	Training
	Evaluation
	Implementation Details

	Results
	Quantitative Results
	Novel-View Synthesis
	Backprojection to Sensor Frames
	Disambiguation of Fusion Steps

	Qualitative Results
	Performance

	Conclusion and Outlook

