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Abstract

Video prediction is commonly referred to as the task of forecasting future frames
of a video sequence provided several past frames thereof. It remains a challenging
domain as visual scenes evolve according to complex underlying dynamics, such
as the egocentric motion of the camera or the distinct motility per individual ob-
ject viewed. These are largely hidden from the observer and manifest as often
highly non-linear transformations between consecutive video frames. Therefore,
video prediction is of interest not only in terms of anticipating visual changes in
the real world but has, above all, emerged as an unsupervised learning rule tar-
geting the formation and dynamics of the observed environment. Consequently,
state of the art approaches tend to either separate the image transformations from
their causes, efficiently exploiting redundancies in changes of the video sequence
but also limiting analysis to an explicit variety of global transformations, or rely
on careful model design such that internal representations correspond to the hid-
den dynamics of the visual scene. To bridge this gap, we propose a flexible and
content-independent local observation transform model inspired by the Frequency
Domain Transformer Network architecture. We derive the relevant mathematical
foundations and showcase results on synthetic as well as real data.
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1. Introduction

1.1. Video Prediction
Video prediction can be described as the task of forecasting future frames of a video
sequence provided several past frames thereof. Naturally, this involves developing
an intimate appreciation of the underlying scene, which is generally composed of
distinct entities interacting according to interdependent dynamics.

Figure 1.1: The dynamics of predicting video frames. Depicted scene from (Stone [1]).

This process is exemplified in Figure 1.1. Bert presents Ernie with an image of
a little girl swinging. Intent on testing Ernie’s ability to understand the pictured
activity, he requests a description of what a drawing produced a short time later
could depict. Ernie theorizes that, while the child is playing, her parents find
they have run out of peanut butter. This is likely the girl’s favorite spread, and
thus Ernie concludes that her disappointment at dinner will be immeasurable.
Only a second later, the viewer observes Bert’s jaw dropped in disbelief as Ernie
suffers a mental breakdown; the discrepancy between the child’s current joy and
her foreboding frustration has convinced him that all happiness is inevitably finite.
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1. Introduction

The wit of this sketch is that Ernie has turned the tables on Bert by producing
an unpredictable outcome to his innocent prediction game. The transition between
the jolly initial situation, referred to here as xt, and the catastrophic conclusion
in xt+1 is unexpected to muppet and human intelligence alike. The changes be-
tween the camera images zt and zt+1 are minimal and, due to redundancies, can be
encoded in the differences between only a small portion of the pixel values. The
corresponding image-to-image mapping O(zt), however, is but an ostensible mani-
festation of F (xt), the dynamics of the underlying scene. These are dominated by
Ernie’s eccentric character.

Of course, understanding absurd dynamics is not the intended use case of video
prediction, but we can readily envision good predictions in other scenarios. For
example, if we played Bert’s game, we would notice that the girl’s legs are tucked
in and her upper body is pulled towards her knees. Thus, she is still on the
upswing, and a consecutive frame would show the seat and the girl oriented by
a slightly larger angle relative to the resting state of the swing, and accordingly,
further above the ground. Taking into account some understanding of the use of
swings, and provided the reference image, we can imagine exactly what the next
drawing should look like just from a single shot. An artificial intelligent system
with similar capabilities is the goal of video prediction, and since it is intuitive to
judge its performance based on the faithfulness of the predicted frames, we can
also interpret the process of predicting video sequence frames as a learning rule
targeting comprehension of the underlying scene.

1.2. Related Work
This example illustrates that the output of a video prediction system can be eval-
uated based on the unlabeled frames, which are partially structured by their se-
quential arrangement. In this sense, learning to predict video is an example of
semi-supervised learning, more specifically, of the self-supervised type (Engelen et
al. [2]). On the other hand, it is clear that the ability to forecast future frames is
limited by comprehension of the structure and dynamics of the underlying scene.
If a trained predictive model is able to output accurate predictions, it must have
formed some representations thereof (Lotter et al. [3]).

1.2.1. Video Ladder Networks
Video Ladder Networks (VLN) (Cricri et al. [4]) learn to model the hidden under-
lying state space by adding recurrent lateral connections to ladder networks. This
is diagrammed in Figure 1.2. Specifically, lateral recurrent connections capture the
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1.2. Related Work

Figure 1.2: The video ladder network architecture (Cricri et al. [4]).

temporal dynamics of the scene at each level of abstraction, while lateral feedfor-
ward connections relieve upper layers from having to model low-level properties,
most importantly spacial detail in the lowest layer. The authors demonstrate the
ability of VLNs to predict subsequent frames on the Moving MNIST dataset (Sri-
vastava et al. [5]). While the good performance shows that the model has an
understanding of the hidden dynamics, these encoded representations cannot be
accessed at all, thus the model suffers from a lack of interpretability.

1.2.2. Predictive Gating Pyramid

Figure 1.3: The relational autoencoder in the predictive gating pyramid (Michalski et
al. [6]).

The predictive gating pyramid (PGP) (Michalski et al. [6]) uses a bi-linear model
to encode the transformation between two observed frames. The hidden layer
of mapping units in a gated autoencoder as shown in Figure 1.3 represents the
transformation, which can directly be used to predict the next frame. This assumes
that the transformation between xt−1 and xt is linear, and remains constant toward
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1. Introduction

Figure 1.4: Representation of higher order derivatives in PGP (Michalski et al. [6]).

frame xt+1. Higher order derivatives of the transformations are represented in an
hierarchical manner, depicted in Figure 1.4. Here, the derivatives are regarded as
transformations between two transformations observed from the lower layers. In
stark contrast to VLNs, this deals with video prediction purely at the level of the
image transformation, which themselves are restricted to linear transformations.

1.2.3. Local Transformation-Based Prediction
Another technique in which video prediction is reduced to the image transforma-
tion between consecutive frames is introduced by Amersfoort et al. [7]. Here, in a
sliding window manner, small local cells are extracted from two consecutive frames.
Between two local cells, an affine transformation is estimated, which is represented
by six parameters and smoothed by multiple convolutional layers. The result can
be applied to the latter of the two local cells, and finally all transformed local
frames are used to construct the predicted next frame. Like in Reference (Michal-
ski et al. [6]), the prediction model is small because it estimates the transformation
towards the next frame instead of directly constructing the pixel values of the next
frames. This also means that the structure of the scene cannot be addressed by
these models. While the locally affine transformation model is more flexible than a
global linear model, higher order derivatives of the image transformations cannot
be represented directly.

1.2.4. Predictive Coding Networks
Both the lack of interpretability inherent to models with multiple layers of abstrac-
tion as well as the restrictive nature of assumptions made to justify transform-
based prediction are adressed in Predictive Coding Networks (PredNet) (Lotter
et al. [3]). In this network architecture, local predictions are compared to the
input at that layer and only the deviation is passed upwards to higher layers. The
connection between subsequent layers is sketched in Figure 1.5. At each layer l, a
generative model of the convolutional layer Al is learned by Rl. The prediction Âl

is then compared to the true input from Al and the resulting error El is passed into
the next layer Al+1, but also used to update Rl in the next time step. Addition-
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Figure 1.5: Two layers of the PredNet architecture (Lotter et al. [3]).

ally, Rl receives its previous output and an appropriately up-sampled version of
the current output of Rl+1, one layer above. In the context of video prediction, the
bottom-most layer would be presented the current frame as the input which is then
compared to the video prediction Â0. Higher layers then learn to represent latent
parameters of the observed scene and objects present in the scene. For example,
the authors train this model on a car-cam dataset, and demonstrate that the in-
ternal representations can be mapped to the approximate steering angle of the car
using one fully connected layer. Additionally, the model trained on sequences of
rendered 3D faces rotating with two degrees of freedom produces internal repre-
sentations that enable a higher classification accuracy using less training samples
for static faces than comparable ladder networks or autoencoders. In these exam-
ples, video prediction is used as a proxy task similar to the description by Jiang
et al. [8], as the true purpose of training is learning representations of scene param-
eters useful to objectives such as steering angle estimation or orientation-invariant
face classification.
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1. Introduction

Figure 1.6: The FDTN architecture (Farazi et al. [9]).

1.2.5. Frequency Domain Transformer Networks
Frequency Domain Transformer Networks (FDTN) (Farazi et al. [9]) transform the
video frames to frequency domain and estimate the transformation between the
signals as the difference between their phases. The phase difference can be applied
by an element-wise product to each bin of the frequency domain representation of
the current frame. Subsequent inverse Fourier Transform of the result then yields
the prediction of the next frame. Figure 1.6 shows the complete architecture,
which is end-to-end trainable. The transform model adjusts the prediction for
physics of the observed scene, for example digits bouncing off walls in Moving
MNIST sequences. Finally, the refine model corrects slight image defects resulting
from the prediction step. In a demonstration that this type of motion model can
facilitate learning about scene structure in an interpretable manner, this concept
has been augmented in recent work (Farazi et al. [10]) for segmenting moving
objects from a static background. Purely self-supervised updates minimizing the
prediction error are used for all components of the model.

1.3. Local Phase Difference

1.3.1. Motivation
The result of FDTN-based approaches are encouraging and illustrate the benefits of
an explicit transform model at the core of an architecture learning to comprehend
the underlying video scene. It allows light-weight models which are able to reason
on the probable composition of the observed environment. However, the transform
model using a global phase-add prediction is ultimately confined to describing the
observed changes with one translation per identified layer.
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To address this limitation, we take one step back from motion segmentation and
re-examine the transformation model. Using a sliding window approach similar to
the procedure in Reference (Amersfoort et al. [7]), we describe the transformation
between video frames as local translational image movement measured by phase
difference between local cells in the observed images.

This will remain differentiable, allowing its use at the base of models that can
comprehend scene parameters. Unlike the affine tranformations estimated in the
spatial domain used in (Amersfoort et al. [7]), this approach can be extended
to represent higher order derivatives similar the results by Michalski et al. [6] as
differences of differences described in Reference (Farazi et al. [9]) for the global
case.

1.3.2. Contributions
We contribute a fully differentiable, GPU-accelerated pipeline implementing video
prediction based on local phase differences. We also derive the mathematical foun-
dations for local phase difference estimation and the synthesis operations required
for reconstructing a global prediction from a set of local predictions. Finally, we
list all caveats of this method and propose solutions for diminishing their negative
effects.
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2. Local Phase Differences

2.1. Phase Difference
For a sequence of frames {xi} of shape U × V , assume that xt results from a
circular shift of xt−1. Then

xt[k, l] = xt−1[(k +∆k) mod U, (l +∆l) mod V ]. (2.1)

For their Fourier partners {Xi}, given by the discrete Fourier Transform (DFT)

Xt[ω1, ω2] =
U−1∑
k=0

V−1∑
l=0

xt[k, l]e
−j2π(

ω1k
U

+
ω2l
V

) (2.2)

the shift theorem yields

Xt[ω1, ω2] = Xt−1[ω1, ω2]e
2πj(

ω1∆k
U

+
ω2∆l
V

). (2.3)

Now we can define the element-wise phase difference as

PD[ω1, ω2] :=
XtXt−1

|XtXt−1|
=
Xt−1Xt−1e

2πj[
ω1∆k

U
+

ω2∆l
V

]

|Xt−1Xt−1e
2πj[

ω1∆k
U

+
ω∆l

V
]|
= e2πj[

ω1∆k
U

+
ω2∆l
V

] (2.4)

where Xi is implicitly indexed by [ω1, ω2]. This is omitted for convenience of
notation.

The inverse DFT of the phase difference yields the cross correlation matrix
pd[u, v]. For perfect circular shifts, this turns out to be

pd[k, l] = δ[k +∆k, l +∆l] (2.5)

a Kronecker delta function, its peak corresponding to the shift between xt−1

and xt. Analysis of circular shifts by this method is also referred to as Phase-Only
Correlation (Takita et al. [11]). Variants that use coordinate transforms to extract
scale or rotation in a phase-based manner have also been described, e.g. by Reddy
et al. [12].
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2. Local Phase Differences

Figure 2.1: An example image x0 (top-left), image with translated contents x1 (top-
right), along with their corresponding Fourier partners X0 (bottom-left) and
X1 (bottom-right).

Note that in practice, the fast Fourier Transform (FFT) (Cooley et al. [13]) is
used to compute the DFT. In the scope of this thesis, both terms are considered
interchangeable.

A basic example is presented in Figure 2.1. An image xt portraying a square
at the center is shifted towards the bottom-right to produce xt+1. A visualization
of the Fourier-transformed frames Xt, Xt+1 shows that the power spectra encoded
by the intensity I ∝ log(|Xi|) are equivalent for both Fourier partners. The phase
is mapped to an angle via Xi[ω1, ω2] = a + bj → atan2(b, a) and visualized by an
associated hue. This illustrates the effect predicted by equation (2.3). Next, Figure
2.2 illustrates the real part of the resulting phase difference PD alongside pd. As
expected, the latter corresponds to an impulse located at the index of the shift,
highlighted by a red circle. It should be stressed that the white static background
of the square renders the transformation indistinguishable from a circular shift. In
more realistic cases, we expect the results to be noisy.
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2.2. Local Analysis

Figure 2.2: The real part of the phase difference PD extracted for a circular shift (left)
and the corresponding cross-correlation pd (right). Here, pd is a perfect
impulse, its peak highlighted by the red circle.

2.2. Local Analysis

2.2.1. Valid Extraction of Local Cells
We can now move to apply the same analysis to small overlapping cells covering
an image on a regular grid. We begin by formalizing the extraction of these local
cells, using notation which is borrowed from (Sharpe, Li [14, 15]). While it might
seem pedantic here, the discussion in the subsequent chapter will benefit from this
approach.

Consider an image x covered by overlapping, square cells of size N × N . N

is called the window size. In general, the window dimensions do not have to
be square, but we see no obvious advantage in introducing this imbalance. The
overlap between the cells along the coordinate axes is N −H, we call H ≤ N the
hopsize. In the context of convolutional neural networks, this would correspond
exactly to the stride of a kernel. H is also the distance between the centers of
each cell to the adjacent cells centers along the coordinate axes. Restricting the
hopsize in this manner means that each pixel in x is contained in at least one
cell. Additionally, we impose the constraint that the first local cell should always
be extracted around the top left pixel, which corresponds to the index (0, 0) in
the image coordinate system. The final cell that is extracted must be centered on
the right-most pixel in the bottom row of the image. For this extraction to make
sense, the image is padded with bN

2
c constant values. Since the extraction grid

is regular, this constrains the hop sizes producing a valid extraction to divisors
of U − 1, and V − 1, as the images are represented by zero-indexed arrays. This
ensures that the final rows and columns of pixels are never lost, which would
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2. Local Phase Differences

prevent reconstruction. In practice, we often crop the image data to U = 2n + 1,
V = 2m + 1 to ensure that many options for H exist over several magnitudes of
sparsity. Overall, Ly :=

U−1
H

+ 1 and Lx := V−1
H

+ 1 cells are extracted along each
axis, with L := LyLx representing the total number of local cells.

Formally, we can describe the contents of a given cell by shifting the coordinate
system of x such that the new origin is aligned with the cell and then regarding
only N elements along each axis

xu,v = {x[n+ u ·H,m+ v ·H]|n,m ∈ {0 . . . N − 1}} . (2.6)

For more convenient notation, we could also extract xu,v by defining a window
w of size N ×N , shifting it to cover exactly xu,v, and then multiplying it with x

xu,v[n,m] = x[n,m] · w[n− u ·H,m− v ·H]. (2.7)

For absolute clarity, w is defined on

{(n,m)|n,m ∈ {0 . . . N − 1}}. (2.8)

Therefore, to extend x, xu,v and w to Z×Z to allow for products like above, we
consider the image, the cells and the windows infinitely zero-padded. In practice,
we of course only work with the supports of terms at hand.

2.2.2. Local Fourier Transform
Following the cell extraction step, the corresponding local DFTs are given by

Xu,v[ω1, ω2] =
uH+N−1∑
n=uH

vH+N−1∑
m=vH

xu,v[n,m]e−j 2π
N

(ω1(n−uH)+ω2(m−vH)) (2.9)

=
uH+N−1∑
n=uH

vH+N−1∑
m=vH

x[n,m]w[n− uH,m− vH]e−j 2π
N

(ω1(n−uH)+ω2(m−vH)) (2.10)

=
N−1∑
n=0

N−1∑
m=0

x[n+ uH,m+ vH]w[n,m]e−j 2π
N

(ω1n+ω2m) (2.11)

In tandem with the previous step, this defines a two-dimensional version of the
Short-Time Fourier Transform (STFT) (Bracewell [16]). Since it is a self-evident
extension of the STFT, renaming would not be warranted, but the indices of
individual images are spatial rather than temporal, so this is not a fitting denom-
ination. In the following, we refer to this process as a Local Fourier Transform

12
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(LFT). It should be noted that a texture feature of that name exists (Feng Zhou
et al. [17]). This work is unrelated, and the risk of confusion is low.

Given Xt−1,u,v and Xt,u,v, the LFTs of two consecutive frames xt−1 and xt, the
local phase difference is then defined element-wise as

PDu,v :=
Xt,u,vXt−1,u,v

|Xt,u,vXt−1,u,v|
. (2.12)

2.2.3. Caveats

Figure 2.3: From left to right: a local view on frame x0 with rectangle windowing, the
view at the same spatial index on x1, the noisy phase difference extracted
between them and the resulting ambiguous cross-correlation.

Globally as well as locally, the extraction of PDu,v assumes a transformation
in the form of a circular shift between consecutive views. While the description
of image transforms as locally linear shifts is not restrictive, the assumption of
circular cell boundaries is, as the DFT also assumes input of a periodic signal.
Figure 2.3 shows the consequences of relaxing this assumption without further
consideration. Noise in the phase difference produces a local cross correlation that
is not a Delta function, but instead quite distinctly ambiguous.

We can attenuate this shortcoming by weighting each local cell with a window
function that smoothly tapers the intensity values towards the edge of the cell.
In this section, we utilize a family of confined Gaussian windows described in
Reference (Starosielec et al. [18]). To adapt these for use on two-dimensional cells,
we use a radial mapping that places the peak of the window function values in
the center of the cell and computes the other values based on the distance from
the center. This family of windows is depicted in Figure 2.4. In Figure 2.5, the
effect of applying the window to the problematic cell is demonstrated. The phase
difference is less noisy and, in turn, the ambiguity in the cross correlation matrix
is largely resolved.

This way, shift estimation is quite robust, as long as the shifting information
content remains within the local cell. This is showcased in Figure 2.7. In Figure
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2. Local Phase Differences

Figure 2.4: From left to right: an overview of the family of confined Gaussian windows,
the cross-section of a window for σ = 0.17 and N = 11, and its 2D plot.

Figure 2.5: From left to right: a local view on frame x0 tapered by a confined Gaus-
sian window, the tapered view at the same spatial index on x1, the phase
difference extracted between them and the resulting cross-correlation.

2.7, a large structure is shifted to the outside of the cell, which causes a misinter-
pretation of the local shift. Nevertheless the energy in the cross correlation matrix
at the index of the true shift is also elevated.

2.2.4. Vector Field Interpretation
As indicated by the previous examples, a qualitative evaluation of the results
during the local shift estimation entails examination of the cross-correlation in the
spatial domain. There, we can verify that it is indeed peaked around the index
of the true shift. If we extracted the arguments corresponding to the peak, this
would yield the relative shift at the pixel location in the original image that the
corresponding cell was centered on. Assembled over the whole image, a vector
field describing the image translation is accrued. After calculating PDu,v and
transforming these to the cross-correlation matrices pdu,v, local relative shifts are
given by

(∆y,∆x)u,v = argmax
(y,x)∈Ind

pd[y, x]u,v. (2.13)
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Figure 2.6: From left to right: a local view on frame x0, the same view at frame x1, and
the corresponding cross-correlation pd, showcasing robust extraction of the
local shift.

Figure 2.7: From left to right: a local view on frame x0, the same view at frame x1, and
the corresponding cross-correlation pd, showcasing a misjudgment of local
shift resulting from cell contents leaving the local view.

In Figure 2.8, we present this type of visualization. 3 digits are shifted, rotated
and scaled, respectively. In the manner described above, the descriptive vector
field is extracted and superimposed on the seed image. Vectors describing zero
shifts are omitted. The drawback in this naïve approach is clearly the loss of sub-
pixel accuracy inherent to the phase-based encoding of the shifts. To preserve this
property, we use a soft argmax (Sutton et al., Goodfellow et al. [19, 20]) instead

softargmaxτ (pdu,v) :=
∑

(y,x)∈Ind

(y, x)
e

pdu,v [y,x]
τ∑

(ỹ,x̃)

e
pdu,v [ỹ,x̃]

τ

. (2.14)

The parameter τ is called the computational temperature and steers the bias of
the result towards the argmax of pdu,v. For τ → 0, the result is the argmax, and for
τ →∞, the result is pulled towards the zero shift index pair (0, 0) corresponding
to the center of the cell. To produce valid relative shifts, the index set Ind of
pdu,v is offset by bN

2
c. The added benefit of such an extraction is that it is fully

differentiable, also with respect to τ . These relative shifts can thus be used within
any training procedure that uses backpropagation, and τ can be automatically
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2. Local Phase Differences

Figure 2.8: An image x0 and its transformed version xt+1 (left and center). The blue grid
is superimposed to clarify the transformation. A vector field visualization of
the local shift extraction (right).

Figure 2.9: The optical flow color map proposed by Baker et al. [21] and application of
this encoding to estimated local shifts.

adjusted as a further learnable parameter.
We experiment with a color coding for the relative shift as suggested in Refer-

ence (Baker et al. [21]). Figure 2.9 describes the corresponding color map and the
result of sparsely applying the local relative shift estimation on video data of a
person moving different objects in front of a camera. Another example is presented
in Figure 2.10, where a skier is filmed while jumping off a ramp. Both sequences
are taken from object tracking benchmark data provided by Wu et al. [22]. The
relative shifts not only show the person flying forwards, but also display the pro-
jection of the egocentric motion of the camera following the skier onto the textured
background of the scene.

Nevertheless, it would not be justified to equate the shifts encoded in the phase
difference to faithful representations of optical flow. This is partially relaxed in
work by Reyes et al. [23]. Here, an LFT variant without tapering and utilizing the
argmax generates candidate vectors for further iterative optical flow refinement.
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2.3. Validity of Local Phase

(a) ski flow

Figure 2.10: From left to right: image of person skiing at time t, image of the same scene
at time t+ 1, and the color coded local shifts between the frames.

Figure 2.11: Two examples of local shift misjudgments in monochrome image regions for
small window sizes.

However, cases as pictured in Figure 2.11 highlight that pdu,v does not encode
correct pixel velocity when there are monochrome regions wider than N . The
video sequence is provided by Fleischer et al. [24]. In phase-based methods directly
targeting optical flow (Fleet et al. [25]) and specifically in Reference (Fleet et
al. [26]), a more involved procedure is employed to evaluate space-time surfaces
of constant phase. The pixel velocity is then calculated based on these contours.
This requires extensive numerical optimization. However, we are concerned with
image prediction, and monochrome image regions only need to be transformed at
their edges. Furthermore, exploring the avenue of predictions via the DFTs of cross
correlation matrices constructed according to pixel velocities gained from optical
flow algorithms is not within the scope of this thesis, even though it might yield
improved shift extraction at the price of heavy computational effort. In conclusion
to this section, we stress that the relative shifts are a useful tool to visually evaluate
intermediate results of the prediction, but should not be mistaken for optical flow.

2.3. Validity of Local Phase
In this chapter so far, we have introduced a method to extract the local phase
difference between two frames. This was motivated by the necessity of a flexible
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2. Local Phase Differences

Figure 2.12: Visualization of local shifts resulting from a global affine transformation
featuring translation, rotation and scale.

transform model for video prediction. Before we move on to the prediction step,
we believe that it is important to verify the validity of the procedure so far. This is
accomplished by ensuring that PDu,v is interpretable in the sense that it provides
a meaningful description of the true image transform. For example, looking at
Figure 2.12, it is not obvious that the displayed vector field results from an affine
transform that rotates the digit by −7◦, shrinks it by 5% and shifts it along
both axes, so it is natural to ask whether this is information is preserved by our
preprocessing.

2.3.1. Experiment Design

Figure 2.13: Setup of the experiment.

18



2.3. Validity of Local Phase

Therefore, we design the dataset depicted in Figure 2.13. Each sample is gener-
ated by randomly selecting 1 out of 10 different MNIST digits (LeCun et al. [27]).
The digit is then oriented randomly to produce the seed frame x0. Next, an affine
transformation T with random rotation, scale and shifts is applied to the seed
frame, yielding x1. The tuple (x0, x1, T ) is then appended to the dataset.

Figure 2.14: Overview of the training process.

To train a model to estimate T , the LFT is applied to x0 and x1. From the re-
sults, PDu,v is calculated and then mapped to local translation by softargmax(pdu,v) =

(∆y,∆x). The network is then presented exclusively with (∆y,∆x) and predicts
the entries of the 2 × 6 matrix T . Since the matrix entries for rotation, scale
and shifts have very different effects, simply calculating the mean square error
between the ground truth transformation and the predicted one is problematic,
even though this is applied in a different context by Amersfoort et al. [7]. Instead,
we create a test point set consisting of the first nine points at the edges of the
rectangles commonly used to approximate the golden spiral, as they are placed
at diverse distances from the center of rotation and scale at the coordinate sys-
tem origin. These are mapped by both the network output transformation and
the ground truth transformation. The MSE between the two resulting point sets
is then used to adjust the network weights via backpropagation. This training
process is summarized in Figure 2.14.

Some results are shown in Figure 2.15, with one example above, near and below
the average validation loss of ≈ 1.1. Here, the estimated affine transformation
is applied to the seed image to visualize how close the predicted transformation
is to the ground truth. It is noteworthy that the MSE between the entries of
the predicted affine transformation and the ground truth affine transformation
decreases as intended along with the training loss, even though the training loss
does not directly target these values.
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2. Local Phase Differences

Figure 2.15: From top to bottom: an affine transformation estimate of average, high and
low quality from the validation set (by comparison to the average validation
loss).
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3. Synthesis

3.1. Prediction by Local Phase Addition
In the previous chapter, we covered the extraction of the local phase differences
PDt,u,v between two frames xt−1 and xt under the assumption that xt is the result
of local circular shifts applied to xt−1.

If the transformation from xt to xt+1 remains constant, applying equation (2.3)
yields that the Fourier partners of the local views on xt+1, can be calculated by
the element-wise product

Xt+1,u,v = Xt,u,v · PDt,u,v. (3.1)

This corresponds to adding the phase differences in PDt,u,v to the phases in
each frequency bin in Xt,u,v. Therefore, we refer to this operation as local phase
addition. In practice, zero-padding of xt,u,v with a padding size pS prevents wrap-
around effects that can occur at this stage, as proposed by Allen [28]. It is safely
pruned further down the line, but until then, the cells feature a side length of
N ′ := N + 2pS.

Utilizing the inverse FFT (iFFT), cells covering xt+1 are recovered as

x̃t+1,u,v[n,m] =
1

N2

N−1∑
ω1

N−1∑
ω2

Xt+1,u,v[ω1, ω2]e
j 2π
N

(ω1(n−uH)+ω2(m−vH)) (3.2)

uH ≤ n ≤ uH +N − 1 (3.3)
vH ≤ m ≤ vH +N − 1 (3.4)

.
Note that we do not refer to these local predictions as xt+1,u,v. Our intention

is to highlight that the description of the image transformation relies on idealized
conditions. Presupposing geotemporal permanence of the local circular shifts can
be described by

(∆yGT ,∆xGT )t+1,u,v ≈ (∆y,∆x)t,u,v (3.5)
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3. Synthesis

where GT refers to the true local image shifts. In reality, objects in the scene
experience innate motility, and the corresponding local transformations can move
along with them. This is more in line with

(∆yGT ,∆xGT )t+1,u+∆Hy,v+∆Hx ≈ (∆y,∆x)t,u,v (3.6)

notwithstanding higher order derivatives of the image transformation and the
fact that PDt,u,v is generally noisy. The discrepancy between equations (3.5) and
(3.6) emerges as the most severe source of prediction errors, and is treated in its
own chapter.

3.2. From Local to Global Prediction
Calculating x̃t+1,u,v yields local predictions, but they are modified by the extraction
window w, rendering the recovery of the global prediction xt+1 non-trivial. Perfect
reconstruction of xt+1 given x̃t+1,u,v and w is therefore the primary objective of
this chapter. Considering x̃t+1,u,v is the result of the inverse DFT of Xt+1,u,v the
process of perfect reconstruction is equivalent to inverting the LFT.

3.2.1. Overlap-Add Equations
In analogy to the 1D case (Sharpe, Li [14, 15]), regard to this end

∞∑
u=−∞

∞∑
v=−∞

x̃t+1,u,v[n,m]wa[n− uH,m− vH]

= xt+1[n,m]
∞∑

u=−∞

∞∑
v=−∞

wa+1[n− uH,m− vH].

The derivation is shown in appendix A. Rearranging the first and the last terms
yields

xt+1[n,m] =

∞∑
u=−∞

∞∑
v=−∞

x̃t+1,u,v[n,m]wa[n− uH,m− vH]

∞∑
u=−∞

∞∑
v=−∞

wa+1[n− uH,m− vH]
(3.7)

the overlap-add equation for the LFT at the core of the inverse Local Fourier
Transfrom (iLFT). In our implementation, we set a = 1 to avoid having to interpret
potential terms including 00 in the numerator of equation (3.7). In the context
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3.2. From Local to Global Prediction

of the STFT, a = 1 also yields an optimal reconstruction in a least squares sense
(Griffin et al. [29]), but we have not confirmed that this holds for the LFT. In
practice, the overlap-add equation is implemented by transforming the supports of
the addends to a common coordinate system and adding them to a two dimensional
buffer with adequate overlap determined by the hop size. Taking into account the
extraction described in 2.2.1, the padding of size bN

2
c must be cropped. Special

care is necessary to preserve gradients through this step. Since the local cells can
be added to the buffer independently, the overlap add computation was optimized
via vectorization.

3.2.2. Window Function Constraints

In analogy to the 1D case and with regards to the denominator in (3.7), we con-
strain for w and all n, m one of

∞∑
u=−∞

∞∑
v=−∞

w2[n− uH,m− vH] = 1(Strong COLA) (3.8)

=⇒
∞∑

u=−∞

∞∑
v=−∞

w2[n− uH,m− vH] = C(COLA) (3.9)

=⇒
∞∑

u=−∞

∞∑
v=−∞

w2[n− uH,m− vH] 6= 0(NOLA) (3.10)

Here, only the Nonzero Overlap Add (NOLA) constraint is a necessary condition.
However, there is a common misunderstanding that Constant Overlap Add

(COLA) is a necessary condition. As evident by the derivation above, this is in fact
untrue. This misconception is indeed puzzling, as Reference (Griffin et al. [29]) was
published in 1984 and presents the same inversion rule as Reference (Röbel [30])
and above for the case a = 1. Nevertheless, SciPy offers a check_COLA function
(Scipy [31]) that was used to assert correct inversion of the STFT until Sharpe [14]
resulted in replacing this by check_NOLA. Moreover, there are examples of this
in the literature, for example in Reference (Smith [32]) even strong COLA is de-
manded to hold for the window functions used. This of course greatly simplifies
the inversion rule, at the cost of restricting the range of possible windows to use.

For the LFT, we cannot afford to demand COLA, as it restricts the available
window functions to exclusively the rectangle window. This is because 2D COLA
is much more restrictive than COLA in 1D.

This is depicted in Figure 3.1, where individual windows are drawn in dashed
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3. Synthesis

Figure 3.1: Various examples of 1D COLA. The triangle window at 50% overlap (top-left,
strong COLA holds), the triangle window at 75% overlap (top-right, COLA
does not hold), the Hann window at 75% overlap (bottom-left, COLA holds),
the Hann window at 50% overlap (bottom-right, strong COLA holds).

gray, and their sum in red. In the top left, strong COLA holds, as the values of
the triangle windows sum up to exactly unity when the windows are placed apart
to have an overlap of 50%. It is important to note that this is a property of the
window function together with the selected overlap. Regard the triangle window at
75% overlap in the top right, where COLA does not hold. Other window functions
satisfy COLA at several different overlaps (Heinzel et al. [33]). In the case of the
Hann window, COLA is satisfied at an overlap of 75%, as seen in the bottom left
and 50% as shown in the bottom right. A full discussion of the COLA constraint
for many different commonly used 1D windows can be found in Reference (Heinzel
et al. [33]), where it is referred to as amplitude flatness.

In the 2D case, the peaks of window functions covering a certain cell are not
located at an equal distance to the peaks of windows covering adjacent, overlapping
cells. This is because the neighboring cells in the diagonal direction are located
further away by a factor of

√
2 than neighboring cells in axis-parallel directions.

On the other hand, the value of the window function depends only on the distance
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3.2. From Local to Global Prediction

Figure 3.2: 2D Hann windows at 50% overlap. Unlike in the 1D case, COLA does not
hold.

from the center of the corresponding cell, as the 2D windows are radialized 1D
windows. This results in a repeating, bumpy pattern in the amplitude of the sum
over all windows for all but the rectangle window function. As an example, the 2D
Hann window is plotted in Figure 3.2 arranged on a 3× 3 grid of with an overlap
of 50%. It is evident that the sum over these windows does not satisfy COLA.

Unfortunately, my initial assessment was that the perfect reconstruction of an
LFT is impossible due to this strict constraint. We developed an alternative recon-
struction method by arranging the predicted local cells in a grid and convolving
this grid with a dilated kernel. The kernel has nonzero entries only where the
entries of neighboring cells are located relative to the pixel that the kernel is an-
chored on. As long as the kernel entries are normalized, this convolution computes
a weighted average for an individual pixel in xt+1 over all contributions for that
pixel in xt+1,u,v. This does not account for the windowing function and thus, a
high error incurs, thus we discard this approach.

For the reconstruction using (3.7), after extracting cells along the border of the
image in the LFT as per 2.2.1, we only need to respect NOLA, and this only within
the confines of the image, not the padding added for valid cell extraction. This
way, only pathological windows with minuscule support subordinate to the hop
size prevent the inverse LFT using the overlap add equation. As long as NOLA
holds, the error for consecutive LFT and iLFT on an image is in the same order of
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3. Synthesis

magnitude as for an FFT and iFFT pair, independently of hop size and window
used.

3.3. Overview of Previous Steps
To provide an overview of the discussion so far, we concentrate the most important
steps of the prediction process.

Algorithm 1: Local Fourier Transform - LFT
Data: batch of images x, shaped B × U × V ,
window function w, shaped N ×N
Parameters: hop size H, padding size pS
Result: batch of LFT results Xu,v, shaped B × L×N ′ ×N ′ × 2
xu,v ←extract_local_windows(x, N , H)
xu,v ←xu,v · w
xu,v ←zero_pad(xu,v, pS)
Xu,v ←FFT(xu,v)
return Xu,v

Algorithm 2: get_phase_differences
Data: batch of LFT results Xt−1,u,v, shaped B × L×N ′ ×N ′ × 2,
batch of LFT results Xt,u,v, shaped B × L×N ′ ×N ′ × 2
Parameters: stabilizer for weak denominator ε
Result: batch of phase differences PDt,u,v, shaped B × L×N ′ ×N ′ × 2

PDt,u,v ← Xt,u,vXt−1,u,v

|Xt,u,vXt−1,u,v |+ε

return PDt,u,v

Algorithm 1 describes the calculation of the LFT and algorithm 2 the extraction
of local phase differences given two LFTs, thereby summarizing chapter 2.

Algorithm 3: phase_add
Data: batch of LFT results Xt,u,v, shaped B × L×N ′ ×N ′ × 2,
batch of phase differences PDt,u,v, shaped B × L×N ′ ×N ′ × 2
Result: batch of LFT results Xt+1,u,v, shaped B × L×N ′ ×N ′ × 2
Xt+1,u,v ←Xt,u,v · PDt,u,v

return Xt+1,u,v

Algorithm 3 and 4 recapitulate sections 3.1 and 3.2.1, whilst algorithm 5 com-
bines all subtasks, defining the complete prediction process.
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3.4. Greedy multi-step Prediction

Algorithm 4: inverse Local Fourier Transform - iLFT
Data: batch of LFT results Xu,v, shaped B × L×N ′ ×N ′ × 2,
window function w, shaped N ×N
Parameters: hop size H, padding size pS
Result: batch of images x, shaped B × U × V
x̃u,v ←iFFT(Xu,v)
x̃u,v ←crop(x̃u,v, pS)
x̃u,v ←x̃u,v · w
num ←overlap_add(x̃u,v, H)
denom ←overlap_add(w2, H)
x ← num

denom

x ←crop(x, bN
2
c)

return x

Algorithm 5: predict_next_frame
Data: batch of images xt−1, shaped B × U × V
batch of images xt, shaped B × U × V ,
window function w, shaped N ×N
Parameters: hop size H, padding size pS
Result: batch of images xt+1, shaped B × U × V
Xt−1,u,v ←LFT(xt−1, w)
Xt,u,v ←LFT(xt, w)
PDt,u,v ←get_phase_differences(Xt,u,v, Xt−1,u,v)
Xt+1,u,v ←phase_add(Xt,u,v, PDt,u,v)
xt+1 ←iLFT(Xt+1,u,v, w)
return xt+1

3.4. Greedy multi-step Prediction

Up to now, we described a process to predict video frames one time step into the
future. Of course, we are interested in predictions over a further time horizon.

This is not straight-forward, because the movement estimation is local and thus
only valid while it is located within the receptive field of the corresponding cell.
This is shown in Figure 3.3, where the local shifts at time t are superimposed
on the position of the digit at time t + 4, revealing violations of the geotemporal
permanence assumption introduced in section 3.1.

The consequence of applying a prediction in this manner is showcased in Figure
3.4. The prediction of the transformation is incorrect, and the error accumulates
to an extent that the digit dissolves.

This issue is not as pronounced when the windows are large, and in the extreme
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Figure 3.3: The frame xt along with the transformation towards xt+1 superimposed in
red (left). The frame at a later time xt+4, showing that the local predic-
tions are no longer valid, a clear violation of the assumption of geotemporal
permanence (right).

Figure 3.4: A digit dissolving over several prediction steps due to unaddressed violations
of geotemporal permanence at a small window size (7 × 7). From top to
bottom: ground truth sequence of length 10, 2 seedframes and 8 predictions,
difference images.

case of windows covering the whole image, shown in Figure 3.5, does not cause
prediction to fail. On the other hand, we cannot adequately resolve more complex
global transformations using large windows, so increasing the cell sizes to alleviate
this problem is contrary to our goals.

One alternative is to predict next frames in a greedy manner. We iterate pre-
dicting the next frame, calculating a new transformation based on the most recent
prediction, and using that to update the prediction to the next time step. This
process is diagrammed in Figure 3.6.

In practice, transformations predicted in this manner will decelerate while the
moving object experiences a characteristic drain of image intensity starting on the
side opposite to the direction of movement, as evident in Figure 3.7. The process is
clearly not stable, and susceptible to accumulating errors. However, the structure
of moving objects remains intact, and the defects in the resulting prediction appear
systematic, implying that refinement is possible.
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3.4. Greedy multi-step Prediction

Figure 3.5: Prediction sequence for very large windows covering the whole image. From
top to bottom: ground truth sequence of length 10, 2 seedframes and 8 pre-
dictions, difference images.

Figure 3.6: The greedy multi-step prediction scheme.

Figure 3.7: The typical effect of applying greedy prediction. From top to bottom: ground
truth sequence of length 10, 2 seedframes and 8 greedy predictions, difference
images.

Notably, the inevitable buildup of errors accompanying this prediction scheme
introduces the necessity to filter outliers in the local prediction, as exemplified in
Figure 3.8, where the large local shifts pointing opposite to most neighboring values
are plausible only within their own cells. From the point of view of the misjudging
cells, the lower bar of the digit 1 enters the cell at the bottom, just as the upper cell

29



3. Synthesis

Figure 3.8: An example of a common local misjudgment type.

contents disappear from its view. Consequently, the local translation is estimated
to be a large downward shift, while small upwards shifts are more plausible when
taking into account the other nearby shift estimates.

In conclusion to this chapter, we stress that refinement is unavoidable due to
breaches of geotemperoal permanence as well as hallucinated local shifts. We
introduce the prediction process as shown in 3.6 and upon this base the methods
proposed in the following chapter.
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4. Refinement
In the previous chapter, we established the necessity of a refinement that addresses
breaches of geotemporal permanence as well as local misadventures. Before this
can be developed further, we must secure a dataset of toy examples that feature
individual objects rotating, shifting and changing their scale.

4.1. Dataset Generation

Figure 4.1: An image deteriorating as a result of accumulating interpolation errors at
low resolution affine warps.

The primary concern in this regard is the culmination of interpolation errors
common to low resolution image transformation. To appraise the resulting errors,
we set up a basic trial. An image from the MNIST dataset (LeCun et al. [27]) is
selected, and mapped via a series of rotations that, in theory, amount to identity.
Specifically, we apply 45 rotations of 8◦. At the original resolution of 34× 34, the
image quality gradually deteriorates until the digit is barely legible, showcased in
Figure 4.1.

This chain of transformations amounting to identity is represented by the red
arrow in Figure 4.2, and the rows marked with the corresponding color in table 4.1
summarizes the discrepancy in terms of the pixel-wise L1 loss. We also upsample
the digit K times, each operation doubling the image size along each axis. With
increasing resolution, the interpolation errors vanish, shown in the rows marked in
blue. Nevertheless, mapping the digit through several upsample steps, performing
the rotations, and then finally downsampling again also causes an error, stated in
yellow. This is is explained by the fact that simply up- and then downsampling
also causes errors that converge as K increases, displayed in black. In consequence,
the only viable solution to generate ground truth data that is itself not inherently
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Figure 4.2: An overview of the dataset generation errors described in this chapter.

↑K K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8
Mean Error 3.44e−2 3.93e−2 4.04e−2 4.06e−2 4.07e−2 4.07e−2 4.07e−2 4.07e−2

Maximum Error 4.84e−1 5.26e−1 5.35e−1 5.37e−1 5.38e−1 5.38e−1 5.38e−1 5.38e−1
Mean Error 9.08e−2 9.08e−2 9.08e−2 9.08e−2 9.08e−2 9.08e−2 9.08e−2 9.08e−2

Maximum Error 8.16e−1 8.16e−1 8.16e−1 8.16e−1 8.16e−1 8.16e−1 8.16e−1 8.16e−1
Mean Error 3.81e−2 1.30e−2 3.60e−3 9.00e−4 2.00e−4 5.93e−5 1.48e−5 3.70e−6

Maximum Error 4.53e−1 1.73e−1 5.22e−2 1.36e−2 3.40e−3 9.00e−4 2.00e−4 1.00e−4
Mean Error 6.50e−2 4.89e−2 4.30e−2 4.13e−2 4.09e−2 4.08e−2 4.07e−2 4.07e−2

Maximum Error 7.03e−1 5.99e−1 5.55e−1 5.42e−1 5.39e−1 5.38e−1 5.38e−1 5.38e−1
Mean Error 3.18e−2 9.90e−3 2.70e−3 7.00e−4 2.00e−4 4.30e−5 1.07e−5 2.73e−6

Maximum Error 3.60e−1 1.20e−1 3.27e−2 8.30e−3 2.10e−3 5.00e−4 1.00e−4 3.56e−5

Table 4.1: Overview of Errors from different sources.

tainted by errors is to upsample the digits, discard the low resolution versions, cal-
culate the sequence of transformations in a high resolution, and then downsample
the whole sequence. The resulting errors are negligible for K ≥ 7, as listed in the
green row. An example sequence containing several snapshots of a digit rotating
is pictured in Figure 4.3.

Figure 4.3: An image sequence transformed at a high resolution multiple times, and
subsequently downsampled.
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Overall, the compilation of a dataset requires the following steps:

1. Select two random MNIST digits.

2. Upsample the images K = 7 times to a resolution of 4352px× 4352px.

3. Per digit, choose an initial orientation at random.

4. Uniformly sample for each a scale change from [−1%,+1%] and a rotation
from [−7◦, 7◦].

5. Apply the transformations to the respective images 9 times, yielding two
sequences of length 10.

6. Downsample the sequences down to 136px× 136px.

7. Place the sequences into a common 260px× 260px canvas, each subsequent
frame translated by a random uniform integer amount from [−8, 8].

8. Downsample the canvasses to 65px× 65px, simulating subpixel shifts.

4.2. Evaluation of Prediction Quality
To encourage improved prediction quality, the refinement process must be provided
an adequate objective function. The goal is to formulate an error metric which,
when optimized, aligns with increasing perceived visual quality of the predicted
frame. In this regard, simply using a mean square error is insufficient, as blurry
predictions are not penalized in a satisfactory manner (Amersfoort et al., Svoboda
et al. [7, 34]).

Instead, we rely on the Structural SIMilarity (SSIM) Index defined by Zhou
Wang et al. [35] as

SSIM(x, xpred) :=
(2µxµxpred

+ C1)(2σx,xpred
+ C2)

(µ2
x + µ2

xpred
+ C1)(σ2

x + σ2
xpred

+ C2)
(4.1)

where µx and σx are estimates of the mean intensity and standard deviation
within an image region, respectively. Furthermore, σx,xpred

is the correlation coef-
ficient estimated by

σx,xpred
=

1

N − 1

N∑
i=1

(xi − µx)(xpred,i − µxpred
) (4.2)
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and C1, C2 stabilize the division with weak denominators. This is viewed as a
loss function called the Structural Dissimilarity (DSSIM) (Riba et al. [36]) by

DSSIM(x, xpred) =
1− SSIM(x, xpred)

2
(4.3)

.
Like SSIM, the DSSIM loss is calculated between small kernels sliding over

both inputs, effectively providing a differentiable local comparison of luminance,
contrast and structure. Specifically, we use a GPU-accelerated implementation
provided in Kornia (Riba et al. [36]) with a window size of 5 × 5. To tackle the
drain of image intensity described in Chapter 3 directly, we define the prediction
loss as an interpolation between DSSIM and L1 losses, both reduced to their mean
values

Losspred(x, xpred) := αDSSIMavg(x, xpred) + (1− α)|x− xpred|avg (4.4)

.
In practice, we set α = 0.5 and observe that Losspred < 5e−3 corresponds to

a satisfactory prediction, while Losspred < 8e−4 describes predictions that are
visually indistinguishable from the ground truth.

4.3. Pre- versus Post-prediction Refinement
Since the whole pipeline described in this thesis is differentiable, we can, in prin-
ciple, train a model to improve the output at each stage of video prediction. How-
ever, in terms of finding an appropriate point of application, there are two intuitive
candidates to refine the prediction. First, we could adjust the prediction after it
has been created. i.E using a learned residual image. The alternative would be to
refine the phase differences before they are added to the LFT of the current frame.

Our initial experiments evaluated the former approach. We adapted the L8-Net
described by Svoboda et al. [34] as a tool to correct image degradation resulting
from JPEG compression. It refers to a fully convolutional model consisting of
8 layers with kernel sizes varying between 11 × 11 and 1 × 1. To facilitate the
propagation of information through these layers, a skip architecture (Shelhamer
et al. [37]) passes a copy of the outputs of higher layers to lower layers, bypassing
intermediate layers. At the lower layers, the previous output is concatenated to
the input, providing geometric information at that stage. Like the original L8 net,
we pass the output of the first layer to the fourth and sixth layers. We change
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this model by not only presenting it with the predicted frame, but also with an
estimate of the local linear shifts upsampled to match the image resolution. This
information is generated by the soft argmax described in Chapter 2 and passed in
two additional input channels. In turn, the model outputs a residual image that
is added to the prediction to correct errors. Unfortunately, the model would not
train when we zeroed out the image intensity channel from the orignal prediction,
and improved just as well when we zeroed the channels for the local shifts along
y and x directions. While we are able to correct predictions in this manner, our
conclusion is that the model has learned the semantics of the MNIST digit data
and is using that information to correct the frames, instead of taking into account
the extracted local transformations. This is possible because the receptive field
of the L8 net is 25px × 25px (Svoboda et al. [34]), so it would fit a whole digit.
It is also undesirable, as it is unlikely that such information is useful for natural
images.

Therefore, we warn against correcting the prediction using a residual image
based on the prediction, and propose a method for refining PDu,v before it is used
to update the current frame.

4.4. Proposed Architecture

Figure 4.4: The proposed pre-prediction refine model.

Building up on the results of the previous section, we attempt to decouple any
efforts at improving the prediction from the semantics of the sequence dataset.
This is achieved after the extraction of PDu,v which encodes only local translation,
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4. Refinement

but is nescient regarding image contents. As depicted in Figure 4.4, we transform
PDt,u,v to local cross-correlation matrices in spatial domain, represented by lcct,u,v,
via iFFT. We view the collection of these terms as lying on a grid with contiguous
axes, appropriately zero-padded, then slide a square window over the grid. This
operation has a stride of N ′, thus the window is always anchored on the center
of a cross-correlation matrix. To cover exactly all cells at a Chebyshev distance,
in terms of N ′, of less than K, the window side length is defined as (2K + 1)N ′.
For example, for K = 2, the window contains a 5 × 5 grid of terms lcct,u,v. This
is then flattened and transformed by one fully connected layer to a vector of
length N ′2, which is then reshaped to N ′ × N ′, yielding Rlcct,u,v and replacing
the cross-correlation that the window was centered on. By sliding over all terms
in this manner, sharing the parameters of the fully connected layer between all
extraction locations, the transport of information between encodings of local shift
is encouraged within a neighborhood defined by K. Of course, the number of
model parameters is quartic as a function of N ′, but for our windows of size 7

to 15, this is tractable, the model parameters then occupy about 5 MB. Finally,
Rlcct,u,v is mapped to RPDt,u,v by FFT, which in turn, is used to predict the next
frame Predxt+1.

In the context of training and evaluation, the pipeline segments presented in
4.4 leading up to the refine model input are handled by a preprocessor, and the
steps following the network output up to the prediction of the next frame by a
postprocessor. These share access to Xt,u,v.

The preprocessor observes the first seed frame GTxt−1 and caches the LFT
Xt−1,u,v of xt−1. Then it observes the second seed frame GTxt. It calculates Xt,u,v,
and since Xt−1,u,v is cached, obtains the phase differences PDt,u,v. In the process,
the cached terms are overwritten by Xt,u,v. Then PDt,u,v is transformed to lcct,u,v
and passed to the refine model, which outputs the adjusted terms Rlcct,u,v. The
postprocessor calculates the refined phase differences RPDt,u,v and applies them
to Xt,u,v. Finally, it uses the iLFT to obtain Predxt+1. This is then passed to the
preprocessor, where the process begins anew, until, for a fixed time horizon T , a
set {Predxt+1, . . . ,

Pred xt+T} of predictions is gathered. Consequently, the loss is
calculated with respect to {GTxt+1, . . . ,

GT xt+T}. Of course, the loss corresponding
to the predicted frame at time t+i depends on the quality of the predictions for the
frames {Predxt+i−1, . . . ,

Pred xt+1}. Therefore, at the end of each epoch, the chain
of predictions is unrolled and the loss backpropagated through time (Mozer [38]),
taking into account previous prediction errors. Since a prediction loss is not mean-
ingful if the previous predictions were poor, the training process runs through a
warm-up phase, during which the prediction time horizon k ∈ {1, . . . , T} is in-
creased based on the training epoch number. This way, the refine model is also
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4.5. Differentiable Window Function Selection

exposed to the synthetic frame predictions that it produces, while getting accus-
tomed to the accumulating prediction error in a gradual manner.

Figure 4.5: Vector fields visualizing lccu,v before (left) and Rlccu,v after (right) refine-
ment.

After training, the refine model has learned to adjust the estimated local shifts by
increasing the confidence where neighboring cells have similar values, and smooth-
ing outliers. This can be observed in Figure 4.5, where the an estimate of the local
transformation is shown before and after refinement. The vectors drawn using the
soft argmax with τ = 0.02, are clearly longer for the refined local cross-correlations,
reflecting a higher confidence in the extracted translation. Also, the border regions
of the vector field have been smoothed, resulting in what can be compared to a
morphological dilation. However, it is also evident that the velocities at several
locations are not plausible, especially for the digit 2. This shows that in this ex-
ample, which is from the validation set, the refinement has not yet learned to fix
all kinds of failure cases. However, since the window size used here was 9× 9, we
do not expect a handful of misjudgments viewing only a small section of the digit
to destabilize the prediction. Also, the results imply that the output of the model
can still be interpreted as a local cross-correlation, which is not clear a priori as
the loss function evaluates only the prediction quality.

4.5. Differentiable Window Function Selection
Currently, the local cells are small, and consequently, the window functions are
represented by only a few samples. For high resolution application, it is plausible
that the local cells can be larger in terms of their pixel size. The window functions
would then be of sufficient size to render spectral analysis meaningful. Especially,
it should be possible to fine-tune the windowing to the pixel velocities present in
the scene. This is described for Gabor Kernels useful to optical flow estimation in
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4. Refinement

Figure 4.6: Several window functions approximated by a flat top window. Rows from
top to bottom: confined Gaussian window, generalized normal window and
Planck-taper window. Within a row, from left to right: inital flat top win-
dow, intermediate interpolation step, final interpolation result. Projected,
respectively in blue and red: current flat top window and target window
cross-sections.

Reference (Fleet et al. [26]). Assuming that a high quality estimate of local shifts
is essential to generating realistic predictions, the gradient of the prediction errors
with respect to the parameters of the window function should allow an automatic
focus on observed pixel velocities. To demonstrate the core idea, we use a flat top
window (Heinzel et al. [33]) radialized from the weighted sum of cosines

wFT [n] = a0 +
m∑
k=1

ak cos(k2πn
N

) (4.5)

with m = 4.
The parameters a can be adjusted by following the respective gradient of a loss

function. In a demonstration of the flexibility of the flat top window, it is fitted to a
generalized normal window (Chakraborty et al. [39]), a confined Gaussian window
(Starosielec et al. [18]) and a Planck-taper window (McKechan et al. [40]). Figure
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4.5. Differentiable Window Function Selection

4.6 demonstrates the process of following the MSE gradient for this purpose. We
initialize a to resemble a confined Gaussian window and augment the refinement
process by this training option, a is then considered a trainable parameter vec-
tor of the preprocessor. While the window function parameters change slightly
during training, we have not observed any beneficial nor detrimental effects due
to this, but believe these guided adjustments will be necessary, hopefully even
interpretable, at higher resolutions.

After this chapter, we are now in the position to present our results and compare
them to other existing methods of video prediction.
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5. Results
To evaluate how well video prediction via local phase differences with refinement
applied in advance to the prediction stage performs, we show the quality of pre-
dicted frames on several datasets of increasing difficulty. As baselines, we compare
this to images predicted by implementations of VLN and PGP provided by Az-
izi et al. [41], as well as two versions of the FDTN, one using fully connected
(FC-FDTN), and one using convolutional (Conv-FDTN) refinement layers, both
implemented by Farazi et al. [9]. Relative performance is quantified by measure-
ments of binary cross entropy loss (BCE), L1 loss, MSE and DSSIM averaged over
the validation sets of the respective datasets.

5.1. Prediction of Global Translation
We begin by training all models on lin_1, a collection of 5000 sequences of temporal
length 10 showing an individual MNIST digit moving on a white background
without changes to its orientation nor scale. In this task, the basic assumptions
of the motion models hold for each reviewed architecture, so it can provide a
meaningful baseline.

Metric BCE L1 MSE DSSIM no. Params
VLN 3.35e−2 5.42e−3 8.05e−4 6.60e−3 1320429
PGP 3.67e−2 8.49e−3 1.78e−3 1.61e−2 32061

Conv-FDTN 3.27e−2 8.15e−4 2.91e−5 1.22e−4 51065
FC-FDTN 3.14e−2 5.39e−4 1.25e−5 2.46e−4 410108

Ours 3.26e−2 1.25e−3 4.85e−5 5.02e−4 714194

Table 5.1: Errors on the lin_1 dataset.

An overview of the results is provided in Table 5.1. Despite the additional bur-
den of forming the global prediction from local predictions in 9×9 windows viewed
at a hop size of 2, our model outperforms VLN and PGP, and offers comparable
prediction quality to both FC-FDTN and Conv-FDTN.

Overall, we believe that the Conv-FDTN presents the most convincing results,
especially given that it uses comparatively few parameters. To provide a quali-
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5. Results

Figure 5.1: The output of the Conv-FDTN on lin_1. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.

tative comparison, we show the predictions for a subset of the validation set for
Conv-FDTN in Figure 5.1 and for our model in Figure 5.2. As indicated by the low
DSSIM loss achieved by both models, all predictions are plausible. Visualizations
of the results for the VLN and PGP can be found in Appendix B along with the
outputs of the FC-FDTN.

5.2. Prediction of Composite Transformations

Next, we move to a trial on rot_lin_scale_2, which contains 3500 sequences of 2
digits moving while rotating and expanding or shrinking. This dataset was gen-
erated according to the the manner specified in Section 4.1 and tests specifically
for the capabilities that video prediction based on local phase differences is de-
signed to comprehend. Therefore, comparison to the other models, save for VLN,
which does not make any assumptions on the frame-to-frame transformations, is
not quite fair, but can quantify the importance of representing such movement in
the motion model.

An overview of the results is provided in Table 5.2. Our model, with H = 2
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5.2. Prediction of Composite Transformations

Figure 5.2: The output of our model on lin_1. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.

and a window size of 9, as previously on lin_1, significantly outperforms the other
methods in this task.

Notably, the VLN performs better in terms of the BCE loss, but this is not
critical with respect to visual quality of the generated predictions. This can be
observed in Figure 5.3, where the predictions are clearly lacking. For our model,
the predicted sequences in Figure 5.4 are more realistic, but the previously men-
tioned problematic directed drain of image intensity is visible in the bottom row.
The images predicted by PGP, FC-FDTN and Conv-FDTN are included in Ap-
pendix C.

Metric BCE L1 MSE DSSIM no. Params
VLN 7.11e−2 1.47e−2 3.41e−3 2.62e−2 1320429
PGP 7.75e−2 2.22e−2 5.61e−3 4.97e−2 32061

Conv-FFT 2.11e−1 4.45e−2 8.61e−3 2.29e−1 51065
FC-FFT 2.08e−1 4.64e−2 8.68e−3 2.34e−1 410108

Ours 7.57e−2 6.30e−3 7.33e−4 6.86e−3 714194

Table 5.2: Errors on the rot_lin_scale_2 dataset.
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5. Results

Figure 5.3: The output of the VLN on rot_lin_scale_2. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.
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5.2. Prediction of Composite Transformations

Figure 5.4: The output of our model on rot_lin_scale_2. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.
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5. Results

5.3. Video Prediction on Natural Images
In conclusion to this chapter, we present some preliminary results on natural video
sequences from the validation set of sequences we extracted from different traffic
camera recordings gathered by Koller et al. [42].

Metric BCE L1 MSE DSSIM
6.28e−1 6.33e−3 4.16e−4 9.99e−3

Table 5.3: Errors on natural video data

The dataset has about 600 frames in total. Therefore, it is too small to enable
training towards very good predictions. However, the validation set errors shown
in Table 5.3 are similar to the resulting losses in the previous section, implying
that this type of video data is actually easier to predict, potentially because the
changes in object scale are not severe.

Figure 5.5: Realistic prediction of a natural video scene.

Figure 5.6: Another example of plausible predictions for this dataset.

In Figures 5.5 and 5.6, the movement of several vehicles is predicted accurately
from only 2 seed frames. This can be identified by comparing the position of the
cars relative to the road markings and by the front view of the truck leaving the
image region in Figure 5.5.

Figure 5.7 shows the intersection recorded from a similar pose with a different
camera, but some blurring occurs locally. This effect is amplified for very fast
motorists, as exemplified in Figure 5.8.
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5.3. Video Prediction on Natural Images

Figure 5.7: A prediction sequence showing local blurring.

Figure 5.8: In this prediction, significant blurring of the fast car in the center of the
scene occurs.

Figure 5.9: Elongated vehicles in predictions of an intersection viewed from above.

Finally, Figure 5.9 shows plausible predictions from a bird’s eye view, but sev-
eral vehicles appear elongated. It should be noted that for this experiment, the
output of the refine layer is concatenated to its subsequent input to provide a
band-aid solution to the significant accelerations present in these traffic scenes at
intersections. In the long term, this method is not acceptable, as it does not allow
interpretation of the local accelerations.

In summary, we have shown in this section a first application of our method
to traffic data. While the predictions are clearly not perfect in all situations, the
results contain some plausible futures for a variety of movements.
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6. Conclusion and Outlook

Throughout this thesis, we introduce a video prediction system based on the eval-
uation and manipulation of local Fourier domain phase information. In order to
do so, we first compile the requirements for such a technique, taking into account
the advantages and demerits of related work. In this context, we reason that the
flexibility to represent arbitrary image transformations, along with their higher or-
der terms, should be prioritized along with end-to-end trainability and exhaustive
interpretability of all intermediate results.

In the second chapter, we formalize these ideas, specifying in detail the ex-
traction of local cells and the considerations necessary when making use of the
corresponding frequency space representations. In doing so, we have defined the
extraction of local phase differences in terms of the local Fourier transform. In
addition, we address the visualization of this intermediate result and provide an
accompanying sanity check of the validity of local phase differences.

Next, we dedicate a chapter to use of local phase differences as an image trans-
formation. In this context, the assumption of geotemporal permanence emerges
as a limit of all local transformation models. Most importantly, we derive the
formation of a global frame prediction as the superposition of individual local pre-
dictions. Concurrently, we define the inversion rule of the local Fourier transform.
Especially in this chapter, theoretical deliberation is inextricably tied to the tech-
nical implementation, which proved far more challenging than initially assumed,
but is ultimately solved efficiently.

Having previously illustrated a host of mathematical assumptions that we can-
not take for granted in practice, we develop a minimalist testbed for various types
of image transformations. We combine this with a discussion of adequate loss func-
tions to judge prediction quality and use both tools to weigh multiple refinement
approaches, arguing that directly improving the predicted frame carries the risk of
undesirable usage of image content knowledge. Therefore, we target the extracted
local phase differences as the most promising option for trained improvements to
the quality of image forecasting.

Finally, we provide qualitative and quantitative comparison to other video pre-
diction methods on select datasets, supporting the viability of our strategy and
thereby rounding out this thesis.
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Unfortunately, our end result is yet somewhat unsatisfying. Our video predic-
tion, while evidentially capable of competing with established methods, has thus
far not produced convincing results on natural video sequences over a significant
time horizon. This shortcoming is compounded with the current lack of explicit
representation of higher order terms of the image transformation, which turned
out to be beyond the scope of this work.

Nevertheless, we are far from discrediting the local phase-based approach to
modeling transformations. Alternative convolutional or otherwise sparse refine-
ment processes less restrictive with respect to utilizing larger local windows are
conceivable, potentially even in frequency space. Porting the existing code to
TorchScript could accelerate the outer loop of successive frame prediction to the
speed of a compiled programming language, thereby rendering quick evaluation
on larger datasets possible. Perhaps most excitingly, this could enable a ’predic-
tion pyramid’, operating simultaneously at different resolutions and fine-tuned for
distinct local velocities at each level and similar to biological systems observed by
Baba et al. [43].

At minimum, we hope that we could shed some light on the vast quantity of
information enmeshed in video data and its potential to be unraveled by following
prediction errors. It is there that we see the main application of video prediction;
a key that can unlock semi-supervised learning of proxy tasks on image sequences.
We are curious for future developments in this domain and hope to participate in
them!
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A. Derivation of the
Overlap-Equations

The following is a step-by step derivation of the 2D overlap-add equations pre-
sented in Chapter 3. Note that the 2D case is entirely analogous to the 1D case.

∞∑
u=−∞
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This proves Equation 3.7 in Chapter 3.
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B. Results for Prediction of Global
Translation

Below, we present the outputs of the PGP (Figure B.1), the VLN (Figure B.2)
and the FC-FDTN (Figure B.3) on the lin_1 dataset. FC-FDTN produces correct
predictions, but VLN and PGP do not accomplish this.

Figure B.1: The output of the PGP on lin_1. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 3 ground truth seed frames
and 7 subsequent predicted frames.

53
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Figure B.2: The output of the VLN on lin_1. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.

Figure B.3: The output of the FC-FDTN on lin_1. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.
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C. Results for Prediction of
Composite Transformations

Below, we present the outputs of the PGP (Figure C.1), the Conv-FDTN (Figure
C.2) and the FC-FDTN (Figure C.3) on the rot_lin_scale_2 dataset. All models
presented here, by design of their motion models, cannot account for the transfor-
mations present in these frames. Due to this, the predictions quickly diverge from
the ground truth data.

Figure C.1: The output of the PGP on rot_lin_scale_2. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 3 ground truth seed frames
and 7 subsequent predicted frames.
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Figure C.2: The output of the Conv-FDTN on rot_lin_scale_2. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.

Figure C.3: The output of the FC-FDTN on rot_lin_scale_2. In pairs of two rows:
Upper row: Ground truth image sequence, arranged in chronological order
from left to right.
Lower row, separated by a bold horizontal line: 2 ground truth seed frames
and 8 subsequent predicted frames.
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