7

UNIVERSITAT

Rheinische Institute for Computer Science
Friedrich-Wilhelms-  Department VI
Universitat Bonn  Autonomous Intelligent Systems

RHEINISCHE
FRIEDRICH-WILHELMS-UNIVERSITAT BONN

MASTER THESIS

Learning Object Dynamics and Interactions for
Object-Centric Video Prediction

Author: First Examiner:
Ismail WAHDAN Prof. Dr. Sven BEHNKE

Second Examiner:
PD Dr. Volker STEINHAGE

Date: February 9, 2023






Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature






Abstract

Extracting the compositional structure of a scene, as well as modeling the dynam-
ics of different objects, are desired properties for autonomous agents’ planning and
reasoning capabilities. While existing methods can successfully decompose a scene
into its object components in an unsupervised manner, understanding dynamics
and object interactions from visual observations still remains a challenging task. In
this work, we extend the popular Slot Attention model and its extension Slot At-
tention for Video (SAVi) model for the task of object-centric video prediction, i.e.,
modeling the spatio-temporal dynamics of objects in a video in order to predict the
future object states, from which we can then generate subsequent video frames.
With the goal of learning meaningful object-centric spatio-temporal representa-
tions, we perform an in-depth analysis of the role of different predictor modules,
including recurrent models and transformers, for modeling object dynamics and
generating realistic future frames. We also introduce two novel transformer-based
architectures specific for this task. In our experiments, we show promising results
indicating that our predictor learns to represent different objects, model object
dynamics, and understand their significance for the task of future prediction. Fur-
thermore, we show that the learned object-centric representations can be used for
future frame prediction providing good, interpretable results.
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1. Introduction

Understanding a scene is a much more complicated process than it seems at first
glance. It is not just about recognizing what is where, but about recognizing ac-
tions taking place, possible next states, and the relations and interactions between
different objects in the scene. Each of these tasks are well known problems in the
fields of machine learning and computer vision. Segmentation tries to answer the
what and where questions, video prediction addresses the task of understanding
what happens next in the scene, and object-centric learning tries to understand
the relations and interactions between existing entities in the scene.

Computers see images and videos as discrete pixel values, whereas human brains
are optimized to perceive the world in terms of objects (when discrete and count-
able) or stuff (Green and Quilty-Dunn 2021; S. P. Johnson 2018; Kahneman,
Treisman, and Gibbs 1992; Spelke and Kinzler 2007). Bridging the gap between
the two representations would make it easier and more efficient for computers to
understand the actions and interactions in the world, in the same way it is easier
to compute the dynamics of a moving ball as a whole than computing the dynam-
ics of each thread holding it together. Moreover, understanding the world in the
same way as humans do will help computers give clearer and explainable answers
to humans. Machine learning algorithms, which are used as black box methods,
face obstacles on the way for mainstream use in fields where actions need to be
well-interpreted and justified (Adadi and Berrada 2018; Char, Shah, and Magnus
2018; Goodman and Flaxman 2017; Samek, Wiegand, and Miiller 2017).

In this thesis, we build upon an existing model for object-centric learning, the
Slot Attention (SA) model (Locatello et al. 2020), and later move on the following
up model of Slot Attention for Videos (SAVi) (Kipf, Elsayed, et al. 2022), for
reasons that will be discussed throughout the thesis. We extend both of them
for the pretext task of object-centric video prediction. Our goal is to improve the
object representations learned by the models and have predictor models that are
able to represent relations between said objects. Such relations need temporal
information to be identified, which is why we deal with sequence processing and
video prediction.

Another character of intelligent agents is the ability to expect results of certain
actions and interactions. Video prediction is the equivalent problem in the field
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of computer vision. The task is defined as such: given n context frames, what
is a possible future in the next m frames. Due to the stochasticity of the future,
sometimes just a reasonable or the most likely output is desired, and sometimes
the approach tries to model several possibilities of the future. However, video
prediction is rarely sought after for its own solution, but because it provides the
valuable option to learn data representations in a self-supervised manner, without
the need for labeling and extensive human labour. One video is trivially divided
into a seed/context video segment that is used as input, and the following frames
are the desired output. Most of the effort here goes into designing an architecture
that learns the aspects that we want the model to be able to identify and extract.
In our case, these aspects are distinguishing objects, encoding them with enough
information to be able to reconstruct them, and to be able to model dynamics
and interactions between such objects and predict their upcoming states. These
aspects are what defined object-centric video prediction. The model tries to extract
existing objects in a scene, understand their current states and interactions, then
produce an output of prediction for each object. This output is reconstructed back
to a common scene which presents the predicted frame. In figure 1.1, we see an
introductory figure of this thesis’s approach that demonstrates this process.

Which prediction paradigms to use in an object-centric approach to video pre-
diction is not an easy question to answer. A good predictor will need to capture
a lot of information from mixed facets. It needs to capture information about the
object and its history, as well as its interactions with the environment and other
objects. All of this has to be done efficiently. This thesis tries to answer this
question by comparing these paradigms in the same setting, which is possible by
separating the object-centric representation learning for the actual prediction. As
such, this is our approach.

Our main contribution in this thesis can be summerized with the following
points:

» Proposal of a deep learning pipeline that utilizes object-centric representa-
tions, learned by slot-attention based models, to try and predict future states
of objects in the scene, as well as the future of the scene as a whole.

» Investigation of different predictors and introduction of two novel object-
centric transformers that predict future object states in a more structured
and interpretable manner than a regular transformer model.

« Evaluation of the different predictors and perform a number of ablation stud-
ies in pursuit of the best training setup, and we show through our evaluation
that the predictors we are using are able to deliver meaningful results.
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Figure 1.1: Example of object-centric deconstruction and reconstruction of a scene for
the purpose of frame prediction, as performed by the approach proposed in
this thesis. The scene is encoded into object representations. Prediction is
then performed on these representations. The result is combined and decoded
back to generate the predicted frame.

The thesis is organized as follows: Chapter 2 will discuss the fundamentals,
including general computer vision and deep learning topics needed for the under-
standing of this thesis. Chapter 3 will discuss the related work and current status
of research in video prediction and object-centric learning. Chapter 4 will intro-
duce our methodology and all contributions of the thesis. Chapter 5 will include
discussions of the experimental setup, model evaluation and various experiments
and their results. Finally, chapter 6 will include the conclusion and any discussions
about the future work.






2. Fundamentals

In this chapter we present general topics of computer vision, deep learning, and
sequence processing that are of interest for this thesis. We start by introducing
multiple neural networks paradigms that are relevant for processing of visual and
sequential data, starting by convolution, the main method of extracting visual
information in neural network, then by discussing encoders and decoders and their
meaning for sequence processing, then move on to Recurrent Neural Networks
(RNNs), taking the example of Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) architecture. We then present the more recent alternative
transformer networks and discuss their building units, including the self-attention
mechanism and positional encoding.

2.1. Convolution and Convolutional Neural Networks

In general, convolution is the operation of applying change on a signal using an-
other one. For computer vision, convolutions are two dimensional and discrete, and
their kernels are usually described as filters. In classical computer vision, filters
were handcrafted for certain tasks, such as edge detection and noise cancellation.
In deep learning, filter weights are model parameters learned in a data-driven man-
ner by back-propagation. Mathematically, convolution for images is described by:

I(zy)« Flz,y)= Y Y Iay)Fz—uvy-u) (2.1)
ve—1,0,1 ue—1,0,1

In modern day networks, convolutions as building units are used in bulk and
combined in different ways. They can be cascaded, stacked, have skip connec-
tions and combined in parallel (He et al. 2016; Huang et al. 2017; Simonyan and
Zisserman 2015; Szegedy et al. 2015). Non-linear activation functions are used
between layers to prevent the model from collapsing and to allow for learning non-
linear functions. To avoid depth problems, skip connections are used, as well as
dropout and different normalization techniques. In figure 2.1, we see an example
of a standard neural network with stack layers and non-linear activation functions.
In most of the mentioned architectures above, the spatial resolution of the fea-
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Figure 2.1: Diagram of a standard VGG16 convolutional architecture. (Simonyan and
Zisserman 2015).

ture maps (outputs of one layer passed as input to the next) decreases as the
network grows deeper. This downsampling is achieved via mechanisms such as
average or max pooling, or strided convolutions. These mechanisms aim to reduce
the number of passes over the input, and to encourage the network to learn how to
abstract the information. However, for applications where the desired output is in
the original input’s size, e.g. semantic or instance segmentation, the output needs
to be resized back by a decoding phase, that upsamples the feature maps till it
reaches the desired size (Badrinarayanan, Kendall, and Cipolla 2017; Ronneberger,
Fischer, and Brox 2015; H. Wu et al. 2019). Transposed convolutions and interpo-
lation filters are among the popular upsampling techniques used there. In figure
2.2, we see an example of the popular U-Net architecture for image segmentation,
that utilizes upsampling as will as skip connections to rebuild the image back in a
hierarchical manner,

Instead of always employing randomly initialized models, convolution models
already trained on large datasets (Deng et al. 2009; T.-Y. Lin et al. 2014), e.g.
pre-trained ResNet (He et al. 2016) models, are often used for feature extraction, as
they have learned to extract most relevant information from visual content. Most
often outputs of the first few layers are the most useful and generalizable, and they
are often called feature maps. This operation of using the parameters learned on
a task to extract information for another one is known as transfer learning, and it
can be used in the context of object-centricity to extract and describe objects in
an image.
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Figure 2.2: Diagram of a U-Net architecture for image segmenation. (Ronneberger, Fis-
cher, and Brox 2015).

2.2. Encoder-Decoder Architecture

An Encoder-Decoder architecture is a type of neural network that, as the name
suggests, consists of two components: the encoder, and the decoder. The encoder’s
job is to transfer (encode) the input into a hidden space, that represents its infor-
mation in another format. Usually it is desired that this space is smaller than the
original space, so that the encoder learns to extract the most relevant information
to its task, e.g. semantics of objects. Decoders then translate back this hidden
representation (decodes it) into a desired output space. This output space can be
the original space, as in the case with Autoencoders, where the target is learning
this process itself and being able to store the information in the hidden space.
A currently more common use case is decoding the encoded representations into
another space that is easier to reach from the hidden space. One example here
is semantic segmentation, as shown in the convolution section, where the encoder
(downsampling) part learns an abstraction of the image parts and what they in-
clude, while the decoder turns this information into segmentation of the image.
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Input | Encoder |—| State || Decoder |—| Output

Figure 2.3: Encoder-decoder structure. (A. Zhang et al. 2021).

Another example is image denoising, the task of regenerating the image without
signal noise in it. Such task also use similar architectures to image segmentation,
and by going first to the hidden space that has more information density, noise
can be removed since the model can learn it is not a relevant or desired of the
information it needs to encode. The decoder’s task is then to reconstruct this
purer represenation of the image.

The encoder-decoder paradigm is also often used in sequence processing, because
mapping a sequence to another sequence is a hard task to learn. It can be too
complicated to directly match elements of two sequences together and understand
their relations, so instead the hidden space is used as a middle ground, such that
the encoder learns to capture the meaning of a sequence in this intermediate space,
whereas the decoder learns how to represent this meaning in the desired space,
improving the learning capabilities of sequence-to-sequence models.

An encoder could also take the input apart and be built to extract certain
information from it. For example, in this thesis, we deal with slot attention, a
mechanism that encodes an image in a set of the vectors, each assigned to an
object in the image. In this case, the goal of the encoder is to extract and seperate
objects in the image, with the goal of learning an object-centric view of the world.

2.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family of deep learning models built
for various tasks of sequence processing, including many-to-one problems, e.g.
sequence labelling (Akbik, Blythe, and Vollgraf 2018; Ma and Hovy 2016; Namysl,
Behnke, and Kohler 2020), one-to-many problems , e.g. image captioning (Herdade
et al. 2019; Hossain et al. 2019; Vinyals et al. 2016), and many-to-many problems,
e.g. machine translation (M. X. Chen et al. 2018; K. Cho, Van Merriénboer,
Bahdanau, et al. 2014; K. Cho, Van Merriénboer, Gulcehre, et al. 2014) or video
prediction (Farazi, Nogga, and Behnke 2021; Finn, Goodfellow, and Levine 2016;
Karapetyan et al. 2022; Oprea et al. 2020; Poibrenski et al. 2020; Santana and
Hotz 2016; Y.-F. Wu, Yoon, and Ahn 2021; Ye et al. 2019; Zang et al. 2022).
Dealing with sequences requires the model to have notion of history and the
previous inputs it received. There are different types of RNNs that try to manage
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Figure 2.4: Simple RNN structure. (Deloche 2017).

this differently, however, most of them, including the most basic and the most
popular forms, do this by introducing a vector h, called the hidden state. In the
most basic form of RNNs, shown in figure 2.4, the network consist of neurons with
an input, output, and self-connections. The core in RNNs is that the output h of
the self-connection, should preserve information of previous inputs. For example,
in a task of machine translation, A would preserve information contained in pre-
vious words in the sentence, like genders, counts, and tenses, which are all needed
while choosing the next output.

Learning to store this information is done by two things: the model uses this
hidden state in computing the output, so the output does not just depend on the
current input, but also on the hidden state summarizing the previous sequence
elements it saw. Secondly, the model performs back-propogation through time,
so previous output and hidden states are all involved in the learning process and
parameter optimization, so the history is included in the learning. Thus, RNNs
depend on parameter sharing in a sense, because the output and the hidden state
for all time steps are all generated using the same parameters, so these parameters
have to optimize for all sequence steps and not just any particular one of it.

The problem that arises here is that storing all this information in one vector is
hard, and often leads to information loss. Moreover, while learning, the elements
further back in time gradually lose the ability to affect the gradient, because
of the problem known as vanishing gradient (Hochreiter and Schmidhuber 1997;
Pascanu, Mikolov, and Bengio 2013), which describes how gradients in the earlier
layers of any model have very small effect on learning. The analogy of unfolding
the network, as shown in the figure, shows that going back in time is similar to
back-propagating back to earlier layers in a deep model. Such problems lead to
the introduction of types of RNNs that try to migitate them, including LSTMs.

Long Short Term Memory (LSTM) models is a type of RNNs that addresses the
above mentioned problems by trying to control what the model remembers and
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what it forgets. Unlike simple RNNs, LSTMs keep track of two vectors over time,
h and C'. h is the cell output that is reused in the following next step, representing
the short memory part, and C' is the cell state that keeps tracks of cell history as a
whole, with less changes between time steps, representing the long memory part.

LSTMs are built out of gates, which are ways to continue information flow to the
cell state. A gate consists of a linear mapping, followed by an activation function.
It has three gates, as shown in the structure in figure 2.5, each named according to
their functionalities. The first gate is the forget gate, that looks at current input
x; and last output h;, and decides what information is likely not important any
more, and can be discarded from the cell state, freeing up space for more important
information. This done through a sigmoid function that outputs a value between
0 and 1 for each element in the C vector. Multiplication with these values decide
what is kept and what is forgotten, with multiplication with 1 acting as completely
keep, and with 0 as completely forget. The output of this gate is f;.

The second gate is the input gate, which is another sigmoid that decides what
part of the new input will be needed for the future, and as such will be remembered
by the cell state. The sigmoid result 7; acts in a similar way as with the forget gate,
specifying the magnitude of "remembrance”, while the tanh output ¢; specifies the
direction, i.e., will information be deleted or added, since the tanh output is in
the range [—1, 1].

The last gate is the output gate, which specifies in a similar manner how the
cell state could be changed to produce the new output. h; is used either directly
as an output, or it can be processed by another feed forward model. Both states
are passed to the next time step, and the operation is repeated.

LSTMs variations are still among the most used models for sequence processing
in different fields, and in our thesis we use them as a baseline in prediction to
compare new approaches with.

2.4. Transformers

Transformer networks (Vaswani et al. 2017) were presented in 2017 as an alter-
native architecture for sequence processing. It is a multilayered architecture that
uses self-attention to be able to process long sequential data, without having to
deal with the memory loss issues faced by RNNs. Transformers also have the
advantage of being able to process elements of sequences in parallel, which make
them far more efficient for longer sequences. Transformers were first introduced
for and applied in the field of natural language processing (NLP) and were later
adapted to computer vision applications.

10
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Figure 2.5: Overview of an LSTM cell (Olah 2015).

2.4.1. Architecture Overview of Transformers

A general overview of the transformer structure can be seen in figure 2.6. Trans-
formers are an encoder-decoder architecture, where depending on the application,
encoders or decoders are used as stand-alone models, or together.

In the beginning, the feature maps are embedded to a suitable vector space to
be used in transformers. Transformers need to be applied to sequences of one-
dimensional vectors and not directly on images. Since the attention operation
allows every vector to attend to other vectors, a positional embedding is added
to the vectors to preserve temporal information. There are many ways to encode
position. The encoding that was used in the original work, as well as in this thesis,
is:

PE(pos,Zi) = Sin(p05/100002i/dmodel>

i 2.2
P E(pos,2i+1) = cos(pos/ 1()0()()2Z/dmodel) (2.2)

where PFE is the vector that will be added to the input according to position,
and d,,oqe; is the embedding dimension.

Attention, as shown in the figure, is a simple scaled dot product process of
three components, query @, value V' and key K. This key/value/query concept

11
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Figure 2.6: Transformer architecture. (Tay et al. 2020).

comes from the field of information retrieval, where a query is compared with a
set of keys to produce the best matching values. In the case of transformers, all
three components are a result of a learned linear projection of the input features
themselves. The goal is to learn which features should attend to which features
depending on their content. Mathematically, attention is expressed as:

QKT
Vi

where dj, is dimension of keys, and is used to prevent the parameter inside the

ATTENTION(Q, K,V) = softmax( 1% (2.3)

softmax function from growing to a scale where the function has negligible values.

The rest of the architecture consists of regular building units of neural archi-
tectures, such as residual connections, layer normalization, and feed forward con-
nections. The decoder has similar parts, with the notable introduction of masked
self-attention, that assures that the tokens can only look back in time and can’t
base their output on the future. We also see the cross-attention layer, also known
as encoder-decoder-attention, where the three components actually differ from
each other. Keys and value come from encoder, and the query from the decoder,
resulting in a mapping between the encoder and decoder outputs.

12
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2.4.2. Transformers for Computer Vision

Although images are not usually seen as sequences, the high performance of trans-
formers and their ability to surpass RNNs begged the questions, whether they
would be able to do the same to convolution and CNNs. Vision Transformers
(ViT) (Dosovitskiy et al. 2021) were introduced to do this. They turn an image
into a sequence of its patches, then embed their flattened form and use it as an
input for a transformer encoder. The output of the encoder is passed then to an
MLP classifier for the task of image classification.

Transformer Encoder

A
Lx °

Multi-Head
Attention
Embedded
Patches

Figure 2.7: Transformer encoder used in vision transformers. (Dosovitskiy et al. 2021).

For this thesis, the important part is the encoder structure as shown in 2.7,
since it is similar to what we will be using later in our model.

13






3. Related Work

3.1. Video Prediction

Making an intelligent decision depends on the ability on knowing the possible re-
sults of different decisions. An example is shown in figure 3.1. Given n context
frames, m frames are predicted and used in decision making. Similar scenarios in
autonomous systems and robotics have motivated the research in the video pre-
diction problem as a goal in itself in the past years (Finn, Goodfellow, and Levine
2016; Karapetyan et al. 2022; Poibrenski et al. 2020; Santana and Hotz 2016; Zang
et al. 2022). Furthermore, prediction tasks on videos, whether direct prediction
of frames or other features, such as context, object tracking and rotation, have
proven to be good pretext tasks for learning visual representations (Behrmann,
Gall, and Noroozi 2021; Benaim et al. 2020; Diba et al. 2019; Farazi, Nogga, et al.
2021; Jing et al. 2018; Kim, D. Cho, and Kweon 2019; J. Wang, Jiao, and Liu
2020).

There have been various approaches for video prediction, which can be broadly
classified under the three classes: convolutional, recurrent and generative models
(Oprea et al. 2020). However, it is usually the case that many approaches combine
these classes to solve each one’s problems with the other.

Convolution on its own has serious limitations that prevent it from performing
well enough in videos and in video prediction. The first is the limited perception
of a kernel due to its size, as most kernels perceive smaller parts of an image or a
frame, usually 3x3 or 5x5 blocks. This is usually mitigated by increasing the depth
of the model and the downsampling of the feature maps. The second part is the
inability to capture dependencies between frames and what is happening between
them. For this, 3D convolutional networks are introduced, where time is another
dimension in the kernel. However, while there are workarounds, and some works
try to use purely convolutional models, such as (Gao et al. 2022) and (Chiu, Adeli,
and Niebles 2020), most works that use them combine them with the use of other
paradigms, usually RNNs. RNN are able to help the convolutional components by
modeling temporal changes of visual features, which gives the model the ability to
understand the evolution of the scene.

Using RNNs and other sequence processing paradigms is the most intuitive

15
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Figure 3.1: An example of a scenario where video prediction is needed from (Oprea et al.
2020). A person suddenly appears from behind the white car in front of the
agent (a moving car). The agent has to expect that this person is going to
walk in front of it and has to adjust its plan accordingly.

approach for video prediction, since a video is a sequence of visual features. The
prediction itself is recursive in its nature, which is another plus point for recurrent
models, as they are explicitly trained to be able to handle their own output as
an input. Thus, there is an abundance of models that are built this way (Denton
and Fergus 2018; Finn, Goodfellow, and Levine 2016; Karapetyan et al. 2022;
Poibrenski et al. 2020; Santana and Hotz 2016; Y. Wang et al. 2017; Y.-F. Wu,
Yoon, and Ahn 2021; Yan et al. 2022; Ye et al. 2019; Zang et al. 2022).

Recurrant models of course do not just use RNNs, but it is a core part of their
structure. Convolutions are still used for feature extraction and understanding
visual input, and generative networks are still used to try to handle the multi-
modality of the future. An example here is the Stochastic Video Generation (SVG)
model(Denton and Fergus 2018), which is a pixel-level prediction model that uses
both a deterministic frame predictor and time-dependent stochastic latent vari-
ables. The predictor is a regular ConvLSTM (Shi et al. 2015) based encoder-
decoder model. It is trained with the help of a pre-trained inference model that
generates the latent variables, either from fixed (SVG-FP) or a learned (SVG-LP)
prior. These latent variables should carry the stochastic information about the
next frame that a deterministic model cannot capture. At inference time the prior
is used directly without the need for the inference model. This approach shows
that recurrent approaches on their own cannot model a multi-modal future, be-
cause the recurrent part is deterministic and a stochastic component needs to be
introduced.

Another example of recurrent models is the Patch-based Object-centric Video
Transformer (POVT) (Yan et al. 2022). It does not use regular RNNs, but trans-
former networks for modeling object dynamics. Transformers can fall under the
umbrella of recurrent approaches, even though they are not RNNs,; as they look
at the whole input at once, but they too deal with sequence processing and see
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the input as a sequence. Most approaches that work with RNNs can work with
transformers too, given the right adjustments. Transformers might even be the
better alternative, depending on the application, because they can be better are
modelling relations and interactions between objects, since again they have access
to the whole input.

Another approach that can also be frequently, is the one seen in the conditional
video prediction model used by (Kossen et al. 2019; Z. Lin, Y.-F. Wu, S. Peri,
et al. 2020a; Ye et al. 2019). Here it uses graphs and graph neural networks
(Kipf, Fetaya, et al. 2018) for modeling object representations. Edges in the graph
represent the relations and interactions between objects, and can carry feature
representations of them. However, these model often need supervision in locating
and describing the entities and their relation to each other at least in the first
frame, so the approach is not fully self-supervised.

For deeper understanding of the video prediction taks, it is worth it to take
a look on the approaches of Frequency Domain Transformer Networks (FDTN)
(Farazi and Behnke 2020) and Local Frequency Domain Transformer Networks
(LFDTN) (Farazi, Nogga, and Behnke 2021). Here it is talked about the uniquely
aims for separation of the three components of video prediction: interpretation of
the formed internal representations, extracting transformations from input frames,
projecting them onto the future frames by applying the transform on the current
input. These mentioned approaches uniquely aim to compartmentalize these three
components in the model. This allows for higher interpretability of the model,
while having much fewer learnable parameters. In FDTN, a motion segmentation
model that does not have any learnable parameters is introduced, which is inspired
by classical linear dynamical systems theory and Kalman filters. This takes places
in iterations of prediction and correction steps, and models foreground and back-
ground separately. The model is extended by a simple CNN to allow for learning
foreground motion. In LFDTN;, this is extended further to video prediction and
not just motion prediction. These approaches allow us to analyse the different
aspects of video prediction and understand what kind of work could be applied to
each component.

For the object-centric case, these transformations are learned by objects. For
this to be possible, we need to track the object over time and be able to match it
with its own history. In the paper by (Y.-F. Wu, Yoon, and Ahn 2021), this issue
is addressed. It introduces another example of a model that mixes generative and
recurrent paradigms for video prediction, called Object-Centric Video Transformer
(OCVT). The paper argues for the use of object tokenization in videos, similar to
practices in the field of natural language processing, while keeping in mind that
unlike words in a sentence, objects in a video do not have a natural order. Instead
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of serializing and predicting an ordered output, the whole image is predicted at
once.

The proposed architecture consists of an encoder, in the form of a Variational
Autoencoder (VAE) (Kingma and Welling 2013), that generates latent variables
designed to be object-centric with explicit bounding box information. These la-
tents are then passed as input to a transformer decoder, which generates the
predicted latents at the next time step. To generate the reconstruction of the
image, the VAE’s decoder is used. The latent variables have four components: a
binary value indicating the presence of an object, the boundary box of the object,
the depth of the object, and all other information about the object. Each frame
is divided into H x W cells, each of which detects the above latent variables, en-
abling the detection of H x W objects. The decoder uses deconvolution to create
an image for each object.

As the model directly applies loss functions in the token space, it is necessary
to correctly align objects in adjacent frames, to apply the loss function on tokens
that represent the same object. As the output is not ordered, one object could
be described by the first token at one time step, and the last token in the next.
As such, the objects in both latent outputs are aligned using a permutation ma-
trix and the Hungarian algorithm, to find an optimal matching. Other alignment
strategies, such as incorporating appearance information and learning the permu-
tation matrix, may also be used. This alignment idea is highly relevant to the
work of this thesis, especially at earlier stages as we used Slot Attention before
SAVi (both will be discussed in the next section).

Unlike most of the work mentioned here, the work of this thesis is highly in-
terpretable by the using of attention mechanisms that allows investigation of how
object states and interactions affect prediction. Object interactions are modeled
intuitively through attention over interacting objects and over past states, and
the attention is modeled efficiently by separating temporal and object attentions.
There is no need to use specially-designed structures like graphs. There is no need
to use a number of components equal to the number of possible interactions, be-
cause interactions are modelled as a relation between objects, and not a separate
entity.

3.2. Object-Centric Video Prediction

Video prediction is by definition a problem where the input and output are both
in frame pixel space, however, for human eyes, it is not just about applying a
transformation on an image. It is about understanding what is in the scene, what

18



3.2. Object-Centric Video Prediction

it is doing, and how this action or state evolves. Understanding scene dynamics, as
well as object properties, is crucial for a correct prediction. A model that only sees
pixels, without understanding for example the difference between a light and heavy
object, will have a hard time understanding why objects that look similar behave
very differently, depending on their material for example. Here comes object-
centric video prediction into play. Object-centric representations can improve
sample efficiency, robustness, generalization to new tasks, and interpretability of
machine learning algorithms (Greff, Van Steenkiste, and Schmidhuber 2020).

Object-centric video prediction is a subset of video prediction approaches, where
the prediction is not applied directly on the frames our their extracted features,
but on a learned object representation. Object-centric representation learning is
an active area of research, which will be discussed more in the next section. Here
we talk more about video predictions model that utilize such representations.

One example we already discussed is the conditional video prediction model (Ye
et al. 2019), where object representations are given with the image input in the
form of feature description and location in frame. This initial object detection is
done by the help of a pretrained ResNet-18 (He et al. 2016) CNN. Prediction is done
in the entity representation space. To model object interaction, a Graph Neural
Network architecture is used in the predictor. The graph structure is defined
according to application, e.g. fully connected, or defined by human skeleton for
human pose prediction. For modeling the stochasticity of future prediction, a
global trajectory-level latent random variable is used. This variable is used to
generate multiple plausible futures from just one frame as input.

Patch-based Object-centric Video Transformer (POVT) (Yan et al. 2022) also
has object-centric representations that are generated from given boundary boxes.
A Spatial Transformer (Jaderberg, Simonyan, Zisserman, et al. 2015) is used for
extracting patches from each boundary box, and then they are down-sampled using
a CNN for fixed size. Features are shifted from frames by one timestep, because
they can only be extraced from an already generated frame. After preprocessing
object representation, the approach uses a two stream transformer to model latent
variables and object dynamics separately, then combines them using quadratic
attention that spans both spaces.

For OCVT (Y.-F. Wu, Yoon, and Ahn 2021), the model needs to have explicit
information about location and size in the representation. The input frame is
divided into a grid of H x W size, and features are extracted from each cell and
supplemented with this information. While this information is not needed in the
dataset itself, the representation is kind of handcrafted to include them, so the
representation is not fully learned.

As we see, in most object-centric video prediction approaches, the model need to
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be somehow initialized with object information to be able to represent the objects,
or the representation needs to be human designed, to have a good enough repre-
sentation to perform prediction on, thus requiring expensive human annotation.
This is not the case in our approach, where the whole pipeline can be trained fully
self-supervised. It does not need to be initialized by object information in form of
extracted features by the aid of a pre-trained model, or through given information
like boundary boxes or pixel locations.

3.3. Object-Centric Learning

As seen from the examples above, there are various methods to represent objects
in a scene. Some are handcrafted, and some used pre-trained models for object
extraction and description. In this section, we discuss approaches that learn to
recognize and describe objects in a self-supervised manner.

Self-supervised object-centric representation has been an active research area for
both images (Burgess et al. 2019b; Greff, Kaufman, et al. 2019; Z. Lin, Y.-F. Wu,
S. V. Peri, et al. 2020; Locatello et al. 2020; Villar-Corrales and Behnke 2021) and
videos (Jiang et al. 2019; Kipf, Elsayed, et al. 2022; Watters et al. 2019; Weis et
al. 2020). However, most of these approaches still only work on simpler synthetic
datasets, and struggle with real life ones (Greff, Kaufman, et al. 2019; Harley et al.
2021).

In the following we individually present the approaches relevant to this Thesis,
which are Slot Attention and Slot Attention for Video. For them, while initializa-
tion with extra information can indeed be helpful, they also work well with random
(learned) initializations, and this in fact is what we use in our experiments. They
also provide flexibility in querying the objects and setting number of objects we
want to see in a scene, to control the granularity of object detection, which are
aspects that are helpful for video prediction. We can control the number of objects
that we want to see in the scene and perform prediction on even with an already
trained instance of a slot attention model. Nevertheless, the learned representation
is strong enough for our application, as evident by applying prediction directly in
object representation space, which will be showcased in detail over the upcoming
chapters.

3.3.1. Slot Attention

In (Locatello et al. 2020), an architectural component called Slot Attention is
introduced. It can be connected to the output of other componenets, e.g. CNNs,
to produce a set of task-dependent representations, which are called slots. The
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Figure 3.2: Overview of the slot iteration process. Left: Iterative process of slot atten-
tion. Through the attention mechanism, the slots themselves act as queries
that ask for more of the information they already include. Right: Recon-
struction of slots after each iteration on objects from CLEVR dataset.

representations are extracted using an iterative procedure, that learns retrieval
parameters generalizable to unseen compositions. This component can be utilized
for multiple tasks on images, including object discovery and set prediction.

Iterative Slot Extraction

A representation of the iterative slot extraction process can be seen in figure 3.2a.
A fixed number of slots is used in the model, which should be equal to the max-
imum number of object that can appear in an image, plus one slot for the back-
ground. Slots are randomly initialized from a learned distribution or completely
at random. This randomness means that they have different initial distances to
the representation of each of the objects. It also means that slots are unordered.
No specific slots is always assigned to the same object, but this depends on the
initialization.

The image is handled as a grid and feature maps of image parts are generated.
A positional embedding is added to these features to keep spatial information.
This input is used in an attention mechanism as keys and values, while the queries
are the randomly initialized slots themselves. Intuitively, this means that at every
iteration, each slot asks for more of the information it already contains. It also
means that slots compete for the objects. Through iteration, each object converges
to a slot. The background as well is assigned to one of the slots.
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Image Reconstruction

This slot attention component is in itself just an encoder, that needs a decoder’s
feedback to learn what representation is needs in this slot space. Multiple tasks
can be used for this, but for the purpose of this thesis, the object discovery task
with image reconstruction is the most relevant.

As shown in figure 3.3, the image is reconstructed again from the information
included in slots. By reconstructing the image from the slots, and using a recon-
struction loss function, the model is forced to learn an object slot representation
that is good enough for retrieving the image.

Object Slots

¥
/  Encoder \ / Decoder \
[ v
\

> L,..(LI)

Recons. |

Input 1

Figure 3.3: Architecture of the encoder decoder slot attention model. (Locatello et al.
2020).

The decoder works as follows: it generates a full image out of each slot, and a
mask for each slot that specifies which areas are most relevant for the object in
this slot. The masks are combined together by a applying softmax over the masks.
As such, the slots are each competing for each pixel in the reconstruction. This
allows for the reconstructions to be combined together in one final image. MSE is
enough to act as a reconstruction loss function and proves sufficient for learning.
Examples of reconstruction are shown in figure 3.2b.

Since both the decoder and the encoder are shared for all slots, and the whole
difference between the slots is the initialization values, they can work with any
number of slots needed, even if it differs from the number of objects in training
dataset. For example, if we want to encode an image with the same structure, but
we know it has more objects, we can increase number of slots at inference time to
accommodate for this.
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3.3.2. Slot Attention for Video

Slot Attention for Video (SAVi) (Kipf, Elsayed, et al. 2022) is the video extension
of slot attention. It is applied directly on a sequence of related frames, and as such,
leverages the information learned at one time step for information extraction in
the next. The information flow is as follows:

Similar to slot attention, the first frame is passed to an encoder, which encodes
the image information using feature maps and positional embedding. The initial-
izer in SAVi is a dedicated component for the first frame, which either initializes
the slots randomly or using information about objects in the scene, such as bound-
ary boxes or pixel locations. A new component is introduced, which is described
as the corrector. For the first frame, it compares the slot initialization, with the
encoders output, and tries to adjust to contain better information. The output
of the corrector is then passed to a decoder, whose type depends on the task. In
(Kipf, Elsayed, et al. 2022), both tasks of predicting optical flow and image recon-
struction are used to facilitate learning object representation. The output of the
corrector is also passed to a predictor, which is a transformer module designed for
predicting the upcoming slots in the next time step. For the following time steps,
the output of the predictor is used instead of the initializer. The predictors are
corrected by the corrector, and the recursive process of predicting and correcting
goes one over the video. Whole overview of the process can be seen in figure 3.4.
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Figure 3.4: Overview of SAVi architecture (Kipf, Elsayed, et al. 2022).
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After reviewing the literature and the current state-of-the-art in both object-
centric learning and video prediction, we seek an approach that provides object
representation learning that is both interpretable as well as as flexible as possible.
Ideally, we want an approach that is fully self-supervised, without the need for
any hints about objects, e.g. bounding boxes or location, and with the ability to
adjust the number of objects and how granular they are divided, or on whether
we want larger objects, or we want them divided into more detailed subparts. We
also want a representation that is good enough for the scene to be reconstructed
back from it with enough quality, and that contains enough information to be
used in prediction directly in this object representation space. As such, we want a
prediction pipeline that focuses equally on both the end reconstruction result, as
well as having meaningful predictions in the object representation space.

Our proposal is to use the slot attention approaches discussed in the previous
section, whether the Slot Attention Model, or SAVi, for the object representation
learning, and try to combine them with predictors suited for the learned represena-
tion, and that generate results that can be reconstructed back by the same models
decoder to form the predicted scene. We experiment with different approaches for
prediction, including RNN and transformer-based approaches, to try to find the
best one for performing prediction in this object slot space, and how each of them
handles the task and affects the results.

This chapter is divided into the two main two topics of the thesis. The first
section focuses on the object representation learning using Slot Attention and
SAVi, what steps were taken there, and what final setup we arrived to. The second
section focuses on the prediction. We introduce our used predictors, including
two new transformer-based predictors designed for object-centric prediction, and
discuss how each of them works and what their advantages and disadvantages are.
We finish the chapter by discussing the complete training pipeline and any details
relevant to how the predictions are performed.
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4.1. Architecture overview

The success of the slot attention models in capturing object information encourages
using this information in different tasks. This thesis investigates the possibility of
performing prediction tasks on this slot representation. To validate this prediction
we evaluate the reconstruction of the predicted slots and compare it with ground
truth frames. The overview of architecture is shown in figure 4.1.
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Figure 4.1: Overview of our proposed approach.

For a predefined number of context frames 7', the frames are encoded into their
object slot representations of N, slots each of dimension D;. A tensor of dimension
T x Ng x Dy is passed to a predictor model, that generates a tensor of dimension
N, x Dy describing the predicted frames of time step 1"+ 1.

The ground truth target frame is also encoded into the slot space, and the model
tries to match the ground truth in both slot space as well as frame space, using
two equally-weighted loss functions. We use pre-trained instances of Slot Attention
and SAVi to preform the encoding and decoding of the scene into the object-centric
represention (slot representation). They are frozen through training, and are not
affected by the learning process. It is the predictors task to learn to deal with the
representation generated by them.

4.2. Slot Extraction

4.2.1. Slot Attention and Slot Alignment

The slot attention model provides the needed encoder component in the above
architecture, so we needed to perform experiments on the used datasets to find the
best configuration for training Slot Attention, since the results from the encoding
are of vital importance for the rest of the pipeline. We started with the simplest
data, which is VMDS, to run quick experiments and notice problems early. Slot
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Attention is designed to work on images not videos, so the dataset was fed as
individual frames to the model.

As mentioned, objects in a frame build an unordered set. The slots generated
are also unordered, and are assigned to each object randomly, depending on the
initialization. As such, when encoding two consecutive frames, slots need to be
matched according to the object they contain. We theorize that the slot repre-
sentation of the object is well-defined enough to recognize objects and calculate
similarities within it. After calculating similarity scores, a matching algorithm
needs to be used to align the slots and track the objects over time. Namely, we
employ the Hungarian algorithm (Kuhn 1955) to find the best matching between
the object slots in consecutive video frames.

4.2.2. Initial Results on VMDS and Slot Alignment

After obtaining a successfully trained instance of Slot Attention on VMDS, we
used it for working on slot alignment. For a similarity measure we used both
L2-distance, as well as cosine similarity:

sTs

S - 1%
o(51:52) = ]

(4.1)

Using these similarity measures, we generated distance matrices between slots
of time step ¢t and ¢ + 1 for each ¢ € T', and then apply the Hungarian algorithm
for finding the best matches. Example of scores generated for 6 slots at time steps
1 and 2 can be seen in figure 4.2a. The matching is done step by step in time,
where each slot was matched with the best match in the immediate past to form
a linked list of slots belonging to the same object.

We have found through qualitative analysis that the alignment performance
depends heavily on having the right number of slots. In training, we initialize the
model with the highest number of objects expected in a scene in the dataset. If the
number of slots is higher than number of objects, the performance of alignment
goes down. If we extract the number of objects from the test data, and initialize
the model with an equal number of slots plus one for the background, we often get
good results, like in figure 4.3b. If we just use number we used in training, we get
worse results as shown in 4.3a. In both cases however, the alignment is still not
perfect and we argue that the learned object representations are likely not good
enough for training our object-centric predictor modules.
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Figure 4.2: Slot alignment using cosine similarity and Hungarian method. Left: A sim-
ilarity score matrix generated by cosine similarity. Right: Object matching
between slots depending on the scores shown in figure 4.2a. First row is the
individual slot reconstruction at time step 1, and second row are the corre-
sponding matches found from time step 2.

(a) Similarity scores matrix. b) Object matching between slots.

4.2.3. Switch to SAVi

Trying to match the slots proved to be too complicated and error prone, so we
swtiched the SAVi model. SAVi is designed to work on videos directly. The slots
are randomly initialized only for the first frame, then passed as a seed to the
slot iterations of the next frame and so on. This works because there are minor
changes between consecutive frames and usually contain the same objects. It also
means that the slots will nearly always keep their order, because the object that
it is most similar to a certain object is itself, even if it moved a little or its shape
slightly shifted. The query in slot attention will always ask for information about
the object that was in the slot in time step before. An example is shown if figure
4.4, where a perfect aligment is automatically found by the model.

4.3. Predictors

The main contribution of this thesis is the investigation of various predictors and
their inductive biases when performing the combined task of predicting future slots
and video frames. We investigate four different predictors: a traditional LSTM
model, a regular vanilla transformer encoder, and introduce two new types of
transformer encoders for the specific task of object-centric video prediction.
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(a) Alignment with the fixed number of b) Alignment with the right number of
slots as in training. slots needed for scene.

Figure 4.3: Example of slot alignment when initializing the model with same number of
slots as in training vs. when providing correct number of objects.

Figure 4.4: Readily aligned slots generated by SAVi.

4.3.1. LSTM

Given a sequence of slots belonging to the same object, an LSTM model can
learn to recursively predict the next slots. The LSTM is fed the slots representing

29



4. Methodology

a single object extracted by the encoder from the context frames, and tries to
predict the next slot. During training, it can be fed back its own prediction, or
teacher forcing, which is the process of feeding the model the ground truth instead
of its own output, can be used to make sure the input is always correct. The
process is repeated for all slots, and at the end the predicted slots are collected
according the time step they belong to, and slots of each time step are decoded
together to reconstruct the predicted frame.

The advantage of such model is that it is not limited by a chosen number of
context frames or predicted frames. It can iterate as long as context frames are
available. The disadvantages include the usual RNN disadvantages of limited in-
formation. The LSTM tries to summarize all context frames in its internal state,
so it does not have access to the whole information from the past. Another dis-
advantage is that only looks back in the temporal dimension, but cannot perceive
the spatial dimension, and the interaction between objects. Each slot is predicted
on its own without knowledge of other slots.

Seed Stage: Initializing RNN states Predict Stage: Using slate to predict future slots
Seed Slots Predicted Slots

Figure 4.5: LSTM based prediction of slots.

4.3.2. Vanilla Transformer

Unlike RNNS, transformers are able to take a look at the whole input sequence
at once and choose from it the most important information using attention. The
vanilla transformer predictor that we use takes T'- N, slots of all seed time steps. It
uses self-attention over all of them and is able to choose the relevant information
for the prediction. Architecture is shown in figure 4.6.

Transformers do not have notion of order of the input, which is why the model
needs positional encoding. Since objects are unordered anyway, we just need
positional encoding along the time dimension. We apply along it the encoding
mentioned in equation 2.2.

Complexity of this predictor is O((T - N,)?), and hence, unlike the LSTM pre-
dictor, it is able to model interactions between objects and can consider what is
happening for one object when predicting what will happen for another. This
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Figure 4.6: Vanilla transformer prediction of slots. The models gets all slots from all
context frames as input, and outputs them shifted by one step such that the
last set of slots are the predicted slots.

would enable it to make predictions during events such as collisions, occlusions,
and momentum transfers.

This predictor, however, is not very structured, and as such can be hard to
interpret. Here the model is tasked with predicting the future given all available
information about everything that happened to all objects. No structure is given
to help the model understand interactions and dynamics. The model can still learn
to generate meaningful prediction, because all the information it needs is there,
but for human it might be hard to interpret the results. For example, it might
no be clear what does it mean if the model attends to an object’s past to predict
the future of another object. During evaluation, we see some examples of how this
high complexity affects the model and the self-attention.

4.3.3. Sequential Object-Centric Video Transformer

We propose a novel transformer-based predictor architecture that aims to reduce
the complexity of the regular transformer discussed above, by separating the pro-
cessing of temporal and spatial dimensions. All slots of all time steps are given
together to the module as input, but it passes them through two consecutive
phases. First, it employs an object attention block, which attends for each time
step only to the object states at this time. The output of this block is an encoding
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Figure 4.7: Our two novel object-centric video transformers. Left: The sequential
object-centric video transformer consists of two consecutive phases, where
the model attends first to the spatial dimension (other objects in the scene
at the same time step), then to the temporal dimension (the states of the
object itself in the past). Right: The parallel object-centric video trans-
former consists of two concurrent phases, where the model attends to the
spatial dimension and to the temporal dimension in parallel, and processes
the results together.

for each slot that describes it and its surroundings. It is passed to the next module,
the time attention block, that for each slot attends to its representations along
time. These representations now include encoding of the surroundings, so the
transformer is able to observe how the slot and its relevant surroundings change
according to time. Architecture is shown in figure 4.7a.

This model also takes the input with positional encoding along the time di-
mensional. For controlling the attention, we generate a mask for each block, that
defines the elements allowed to be attended to for each slot. Unlike the vanilla
transformer, the complexity here is linear in O(T? + N?), instead of O((T - N,)?).

This separation of dimensions in the attention blocks makes it easier to interpret
the process of prediction inside the object-centric transformer. Each block answers
a direct and intuitive question. The object attention block answers the question
of how the current object is affected by its surrounding objects, i.e., it answers the
question of object interactions. The time attention block answers the question of
how the object’s past influences its future, i.e., it answers the question of object
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dynamics. Both questions together are highly relevant to the prediction task,
as well as understandable and intuitive ways for the human mind to view the
prediction task.

4.3.4. Parallel Object-Centric Video Transformer

Our second proposal goes a step further in the direction of efficiency. Instead
of consecutive processing of the two dimension, the blocks are merged into two
parallel paths and the outputs are added after the attention mechanisms. The
normalizing layers and MLP are shared between them. Architecture is shown in
figure 4.7b.

Parameter sharing means less parameters to train, so the model is more efficient
to train. However, since the attentions take separate paths and the output of
one does not affect the other in any direct way, the model cannot check relations
between slots of different at different times. Whether this poses a problem or not
is a question that will be answered with the experiments.

4.3.5. Attention Masks

For all three transformers, attention masks are needed to limit the attention span
to only the past time-steps, because we do not want the model to just copy for
a certain slot its future as the prediction. Moreover, masks are used along the
different dimensions to control the kind of attention each block has in the object-
centric transformers.

—
Img 1 —
=3 Masked-Out
Cannot
— attend
—
=
Img 3 —
Unmasked
— Can attend

11 LR

Figure 4.8: Attention mask for vanilla transformer for 4 frames each encoded into 3 slots.
The model attends to all slots in all time steps.

Object attention and mask attention differ in the areas they span in the attention
map. Object attention describes an isolated block of the all slots at the a certain
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mg 1
Masked-Out
Cannot
attend

Img 3
Unmasked
Can attend

I P

Figure 4.9: Attention mask for object attention in object-centric transformers for 4
frames each encoded into 3 slots. For each slot the model can only attend to
other slots at the same time step (same frame).

Masked-Out
Cannot
attend
Unmasked
Can attend

Figure 4.10: Attention mask for time attention in object-centric transformers for 4 frames
each encoded into 3 slots. For each slot the model can only attend to the
same slot at the current and past time steps (current and previous frames).
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i

I

Img 3
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l Masked-Out
I Masked-Out Cannot
= Cannot t=0 attend
Obj. 1 — - attend
— t=1

Obj. 2 _

t=2 Unmasked
Obj. 3 Unmasked =3 Can attend

— T

. . . Can attend
Obj.1 Obj. 2 Obj. 3 t=0 t=1 t=2 t=3
(a) Batch-wise implementation of object at- (b) Batch-wise implementation of time at-
tention. tention.

Figure 4.11: Implementation of object and time attention for 7' = 4 frames and num-
ber of slots N; = 3. Left: Attention masks for object attention in the
batch-wise implementation collecting time steps together. Right: Atten-
tion masks for time attention in the batch-wise implementation collecting
slots together for time attention.

time step. It has no dependency on whatever came before or whatever came after.
This is why in figure 4.9 we see it visualized as square blocks on the diagonal,
such that no two blocks ever overlap in the same row or the same column. On the
other hand, time attention focuses on one thing, namely one certain slot, doing
this repeatedly every time step. This is why it appears in figure 4.10 as a repeated
function with a period equal to the number of slots, with each line shifted by one
from the line before.

While object and time attention masks can conceptually be visualised by figures
4.9 and 4.10, in the actual implementation, we divide the slots into batches along
the dimension on which we want the attention to take place. For object attention,
this simply means we have batches of slots exisiting in each time step. The resulting
attention map, as shown in figure 4.11a, is a three dimensional tensor of shape
T x Ng x Ny, describing at each time ¢ how much each slot attends to other slots
of objects in the frame. For time attention, the batches are along the number of
slots, and for each slot the batch consists of its versions along time. Since we want
to model to only use the past for prediction not the future, the attention maps
have a lower-triangular shape, depicted in figure 4.10, which only allows attention
on previous indices. The resulting attention map is a three dimensional tensor of
shape Ny x T' x T. Attention masks of this batch-wise implementation are shown
in figure 4.11b.

In figure 4.12, we see an example of how the time attention would work at
prediction. The attention will usually be the strongest at the nearer time steps,
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and decreases with distance in the past. For more static objects, the attention can
be more divided over the time steps.

attn. val attn. val attn. val attn. val attn. val
P f
0.026 0.018 0.009 0.008 0.939 rediction of object

Figure 4.12: Attention values for time attention.

4.3.6. Building Choices for the Predictors

All predictor modules, LSTMs and transformers, can be stacked to increase the
capacity of the model. We test different configurations of multiple LSTM cells
together, and multiple transformer blocks together. We also test the effect of
having residual connections between these blocks on the model performance.

Other choices for predictor training include teacher forcing and skipping first
slots. When predicting more the one frame in the future, we have a choice to used
already predicted frames as inputs, or the ground truth frames, also known as
teacher forcing. Teacher forcing can facilitate model training by providing it with
the correct input to be able to learn the relation between the input and output
better. However, it can bias the model and make it unable to handle its own
imperfect predictions, which is something that is needed when it is fed its output
again in inference time. We test this in our ablation studies to see what works
best.

As mentioned about SAVi, the first time step receives randomly initialized slots,
while the following slots used their predecessors as a seed that is corrected to the
new input. As a result, the performance of the SAVi model is always worse at the
first time step. This might affect the predictor training, if the slot description is
not of enough quality. A choice of discarding the slots of the first time step can
be made, and we also include it in our ablation studies.

4.3.7. Loss Function

Our choice for loss function is a combined loss of the slot prediction and recon-
structed frame prediction. We apply MSE on both of them, and give them equal
weights. We want the model to be focus equally on predicting the same slot rep-
resentation that is generated by SAVi, as well as giving a resulting reconstruction
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that is close to what happens. This results in the loss function in equation 4.2,

where the P is for slot space outputs, and [ is for frame space outputs. The loss
computation is also visualized in figure 4.13.

~

L= LroolI, 1)+ Lyprea( P, P) (4.2)

Predicted Slots
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Figure 4.13: Loss function computation using predictions in slot and frame spaces.
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5. Evaluation and Results

5.1. Datasets

A number of datasets have been collected and labelled for the different tasks of
video analysis and prediction, varying in length, complexity, object interactions,
dimensionality (two or three dimensional objects), and being natural or synthetic.
For video prediction as a self-supervised learning problem, any video dataset can
be used. However, some datasets are much more challenging than others. The
following are the datasets that are relevant to our experiments.

5.1.1. VMDS

Video Multi-dSprites (VMDS) (Burgess et al. 2019a) is a dataset consisting of
simple two dimensional geometric shapes of consistent colouring and colourful
backgrounds. Each frame contains a maximum of 5 objects. There is no interaction
between objects, however, they can come in front of each other causing occlusions.
Frame size in this dataset is 64 x 64.

AR - -

Figure 5.1: Example of frames in multi-dSprites and VMDS datasets (Burgess et al.
2019a).

5.1.2. Obj3D

Obj3D (Z. Lin, Y.-F. Wu, S. Peri, et al. 2020b) is a video extension of the CLEVR
dataset (J. Johnson et al. 2017). It includes colourful three dimensional objects
on a gray plane. The complexities in the dataset include lightening direction,
occlusions in a 3D environment, collisions, and acceleration. While CLEVR as an
image dataset was built to include a lot of semantic information for the tasks of
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5. Evaluation and Results

visual reasoning and question answering, a lot of this information is lost in the
extension to videos. As such, this dataset does not provided labelled masks for
the frames. Frame size in this dataset is 64 x 64.

Figure 5.2: Example of a 5-frame sequence in Obj3D (Z. Lin, Y.-F. Wu, S. Peri, et al.
2020b). The ball is moving towards the objects and will collide with them
bringing them to motion.

5.1.3. SynPick

SynPick (Periyasamy, Schwarz, and Behnke 2021) is another synthetic dataset,
designed for the task of bin picking. The data consists of videos of a mechanical
arm picking up objects inside a box. This dataset is a challenging dataset, because:
it shows the movement of an active agent that makes decisions to achieve its goal,
and it has a high number of objects (up to 21 objects). The actions of moving
and picking introduce variety in scene dynamics, and objects interact together in
different ways, such as collision and occlusions. The dataset also offers different
lighting options and three different views of the box. The dataset has automati-
cally generated object annotation. It can be considered as a tough test for video
prediction models. Frame size in this dataset is originally Full HD 1920 x 1080.
For our experiments we resize it to 64 x 112.

Figure 5.3: Example of scene in the SynPick dataset(Periyasamy, Schwarz, and Behnke
2021). The robot gripper is moving and picking up different objects, in
different light settings. As it moves, it covers and uncovers objects in the
scene.
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5.1.4. Sketchy

Sketchy dataset (Cabi et al. 2019) is a real video dataset, designed for the task of
picking and stacking objects. The data consists of videos of a mechanical gripper
picking up objects on a flat surface and moving them. It is another challenging
dataset, because it also shows the movement of an active agent that makes decisions
to achieve its goal, however it has fewer objects (maximum of three objects per
scene, in addition to the gripper) and the viewing angle is similar to Obj3D dataset.
Difficulty-wise for the model, it might be to be more complicated to learn than
Obj3D, but simpler that SynPick, due to the viewing angle and the fewer number
of objects. However, the gripper in Sketchy has a more complex structure and
movement. Experiments should say more about how the datasets have different
demands from the model. Frame size in this dataset is 600 x 960 but we resize it
in our experiments for 80 x 120.

Figure 5.4: Example of scene in the Sketchy dataset (Cabi et al. 2019).

5.2. Video Prediction Metrics

Video prediction metrics try to compare the quality of prediction by comparing
the similarity of a predicted frame to a ground truth frame, and averaging over
length of prediction. We use the following functions in our experiments. MSE is
mainly used as the loss function, but not for evaluation, while we report the rest
of these metrics as our evaluation metrics.

MSE

Mean squared error is a common learning metric for regression tasks. It is used
as a loss function that is to be minimized, so as a metric the less it is the better,
down to a perfect zero.

MSE = TNE? 1 2 (Yie — }A/it)2 (5.1)
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PSNR

Peak signal-to-noise ratio (PSNR) is the ratio between the maximum power of an
image signal and the power of noise corrupting it. As such, it is a metric that
is desired to be as high as possible (with no theoretical maximum if there is no
error). It can be defined by MSE using:

MAX?

(5.2)

LPIPS

Learned Perceptual Image Patch Similarity (LPIPS) (R. Zhang et al. 2018) tries to
capture image similarity in a way that coincides with human judgment. In order
to do this, MSE is not directly calculated over the exact output and ground truth.
Instead, both of them are passed through a pre-trained CNN, e.g. VGG, that
generates meaningful features maps for both of them. The distance is calculated
between these two features maps, since they should be more focused on values and
details relevant to visual tasks. As with any distance metric, it is desired to be
minimized in our case.

SSIM

Structural similarity index measure (SSIM) (Z. Wang et al. 2004) is a measure of
image similarity that tries to capture the overall structure similarity instead of the
per pixel error. It is defined by:

(2py pry + 1) (204 + c2)

SSIM(X,Y) =
(3 + 15 + c1)(02 + o + ¢2)

(5.3)

where X and Y are the two images we measure similarities for, pux and uy are
their means, o,,0, and o,, are their variances and co-variances. ¢; and ¢y are two
stabilizing variables for the division. This formula results in values between 0 and
1, where 1 indicates the two images are identical.

5.3. Experimental Setup

We used VMDS only for preliminary experiments, but focused our work on the
three more complicated experiments of Obj3d, Sketchy, and SynPick. We follow
the guides of the original SAVi paper in training where-ever possible on the Obj3D
and Sketchy datasets. After multiple experiments, configurations that reached best
results are listed in table 5.1.
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Table 5.1: Training Setup For SAVi According to Dataset
Obj3D Sketchy SynPick

No. Slots 6 11 14
Slot Dimension 128 128 256
Slot Attention Iters. 3 3 3
Input Frame Size 64 x 64 80 x 120 64 x 112
Slot Initializer Learned Random Learned Random Boundary Boxes
Encoder Conv. Encoder Conv. Encoder ResNet34
No. Frames in Input 10 ) 10
Batch Size 64 32 16
No. Epochs 2000 240 100
Starting LR le-4 le-4 le-4

LR Scheduler
Optimizer
LR warm-up

cosine annealing
Adam
v

cosine annealing
Adam
v

cosine annealing
Adam
v

Note that these configuration are not exhaustively optimized to reach the best
possible values. We trained the SAVi instances till reaching reasonably good re-
sults without introducing extra requirements and complexities. For example, the
learned random initialization was good enough for Obj3D and Sketchy, however,
for SynPick we needed to introduce boundary box initalization. Same thing with
the simple convolutional encoder and the ResNet34 used as encoder for SynPick.

For prediction training, the configurations are similarly summerized in table 5.2.

Table 5.2: Training Setup For Predictors According to Dataset

Obj3D Sketchy SynPick
No. of context frames 5 5 5
No. of predicted frames 5 5 5
LSTM Hidden Dimension 128 128 256
Trans. Token Dimension 128 128 256
Trans. Hidden Dimension 256 256 512
Trans. No. of Heads 4 4 4
Batch Size 64 32 64
No. Epochs 1500 60 500
LR le-4 le-4 le-4
LR Scheduler constant constant constant
Optimizer Adam Adam Adam
LR warm-up v v v
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5.4. Evaluating SAVi on Used Datasets

Our training attempts for training SAVi on the three datasets achieve different
degrees of success, with the order expected from the complexity of the datasets.
We are able to achieve good results on Obj3d, and satisfactory results on Sketchy
and SynPick, enough to test the predictors. The reconstruction results can be seen
in table 5.3.

It is worth mentioning that we would expect to achieve better results if we were
able to try experimenting more with model parameters, capacity, and structure,
however, due to the time constraints, and since one training running on the more
complicated datasets needs around one week, we were not be able to do so. As a
result, we focus mainly on Obj3D dataset, and also report results on Sketchy and
SynPick.

Table 5.3: Evaluation of SAVi instances we trained on used datasets (averaged over
sequence length used per dataset).

PSNR1 SSIMt LPIPS|
Obj3d  34.919 0.953 0.020

Sketchy  28.705  0.912 0.081
SynPick 26.171  0.728 0.192

When evaluating SAVi results frame-wise, we see that the metrics for the first
frame are always below average, and get better over the next two frames before
converging. This is expected, because the first frame is initialized randomly, while
the second frame starts from where the first frame ended, so it gets a better result,
and the third starts from where the second ended, so it gets an even better result.
Then the metrics stays consistent, because the slot initialization is consistent in
quality. These numbers on the Obj3D datasets can be seen in table 5.4 and the
trends in them are visualized in figure 5.5c. The findings are the same over all
three metrics. Qualitative results shown later confirm these findings.

Table 5.4: Average metric values with respect to time for SAVi trained on Obj3D.

Frame 1 Frame 2 Frame3 Frame4 Frameb Frame 6

PSNR?T 33.9601 34.98925 35.14135 35.13971 35.15079 35.13416
SSIM1T  0.9414  0.95401  0.95554 0.955 0.95489  0.95461
LPIPS| 0.03055 0.01933  0.0184  0.01855 0.01861  0.01861
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(a) PSNR scores. (b) SSIM scores. (c¢) LPIPS scores.

Figure 5.5: Plots of evaluation metrics according to time step for SAVi model trained
on Obj3D. A trend of improving performance as the model sees more similar
frames is observable.

In figure 5.6a, we observe visually how the reconstructions of SAVi compare to
the input on the Obj3D. We see the input, output, and difference between them.
We notice that the first frame indeed sometimes has some artifacts that get fixed
over the following frames. Object decomposition results can be found in Appendix
A.

We repeat the same for Sketchy and SynPick in figures 5.6b and 5.6c. The
results are not as good as the ones on Obj3D, as to be expected from the numbers.
The objects seem to be smoothed, which might be an indication that the models
needs higher capacity to capture a higher resolution reconstruction, but this needs
more investigation. This smoothing is the reason the difference images mostly
correspond to object edges.

5.5. Ablation Studies of Predictors

To better understand the model and training requirements to perform object-
centric video prediction, we perform several ablation studies using our predictors
using the trained instance of SAVi on Obj3d, since it achieved the best results.

Using the vanilla transformer, we test the effect of the following choices: using
teacher forcing, skipping the first slot time-wise (the one that is randomly initial-
ized in SAVi), and having residual connections bridging the predictor modules.
The results of our ablation studies are listed in table 5.5.

For teacher forcing, we find that it sometimes helps the model achieve better
results on the shortest prediction horizon of 5 frames, but without it the model
learns to handle its own imperfect predictions better, and as such performs better
for the longer prediction horizons for 15 and 30 frames. For this reason, we choose
to train without teacher forcing for the rest of the experiments.

Skipping the first time step does not seem to help the model predict better

45



5. Evaluation and Results

(a) SAVi reconstruction on Obj3D.

(b) SAVi reconstruction on Sketchy.

| | | | | |
| | | | | |

(¢) SAVi reconstruction on SynPick.

Figure 5.6: Examples of reconstruction of SAVi using the decoded slots on the three
datasets, and how they compare to the input. In each example, we have row
1: input, row 2: output, row 3: difference between them.



5.6. Comparisons of Predictors

frames, often leading to the same LPIPS and SSIM scores, even though it is usually
the lowest quality reconstruction for SAVi. This might be due to decreasing the
number of available context frames by discarding this time step. We choose to
train later models without skipping the first time step.

For the number of layers, we found that training the model with 2 transformer
blocks was the optimal spot. Just one layer was not enough capacity for the model,
and four and six layers were causing overfitting. We decide to stick with 2 layers
for the rest of the experiments.

Finally, we test the model using residual connections between each transformer
block. We find that having residual connection had the greatest effect on the
model performance. A reason for this could be that the model keeps track of the
original structure of the slots and the output of transformer encoder going to the
next encoder is used as supplementary information and not a replacement. We
use residual connections for the rest of the experiments.

After finding this large effect of residual connections, we repeat the experiments
again with residual connections, to have accurate representation of their effects.
The final results can be seen in table 5.5. The affect the residual connections have
is very prominent and we deduce that they act against the overfitting effect of
adding more layers, and that now the 4-layer transformer is the best performing
version.

In summary, our ablation studies find that for transformer predictors, the best
setup consists of: using no teacher forcing, using residual connections, and stacking
4 predictor layers together. For skipping the first time step, no significant difference
is noticed, especially after adding the residual connections, and it can be done
either way. We apply these findings when training the object-centric transformers.

We then move on to performing ablation studies to try to find best configurations
for the rest of our predictors. We find that for most of them, by introducing the
residual connections, the same effect applies. Increasing number of layers up to
two cells for LSTMs and four layers for object-centric transformers has a positive
effect, especially for the PSNR metric, and as the prediction horizon increases. The
difference in quality between one and four layers of an object-centric transformers
increases significantly as the model tries to predict more frames. Evaluation results
can be seen in table 5.6.

5.6. Comparisons of Predictors

The higher SAVi performace on Obj3D and the dataset’s relative simplicity en-
able us to perform extensive experimentation on it. When ccomparing the best
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Table 5.5: Ablation Study of Residual Vanilla Transformer on Obj3D

Num Preds = 5

Num Preds = 15

Num Preds = 30

PSNRASSIM{ LPIPS, PSNR1SSIMt LPIPS| PSNR1SSIM{ LPIPS)
Trans. w/ TF 34.27 0.949 0.019 32.62 0.923 0.025  26.67 0.866 0.057
Trans. w/o TF 34.29 0.949 0.019 32.84 0.929 0.025 29.98 0.873 0.053
Trans. w Skip 34.52 0.951 0.019  32.97 0.929 0.025  30.02 0.873 0.053
Trans. w/o Skip 34.29 0.949 0.019 32.84 0.929 0.025 29.93 0.873 0.053
1-Layer w/ Res 34.23 0.949 0.020 32.62 0.926 0.026  29.79 0.869 0.055
1-Layer w/o Res 32.179 0.930 0.025  30.843 0.901 0.034  28.504 0.847 0.071
2 Layers w/ Res 34.29 0.949 0.019 32.84 0.929 0.025  29.98 0.873 0.053
2 Layers w/o Res 32.422 0.933 0.023  31.132 0.906 0.032  28.747 0.852 0.066
4-Layers w/ Res 34.28 0.950 0.019  32.89 0.931 0.025  30.12 0.876 0.051
4-Layers w/ Res 31.914 0.925 0.025  30.385 0.894 0.036  28.287 0.842 0.069
6-Layers w/ Res 34.17 0.949 0.019  32.79 0.929 0.025  29.93 0.873 0.053

6-Layers w/o Res

30.904 0.909 0.028

29.508 0.878 0.04

27.611 0.829 0.078

Table 5.6: Ablation Studies on Recurrent and Object-Centric Modules

Num Preds = 5
PSNRASSIM?T LPIPS]

Num Preds = 15
PSNRASSIM®T LPIPS]

Num Preds = 30
PSNRASSIM*T LPIPS]

LSTM 1-Layer
LSTM 2-Layers

33.758 0.944 0.021
34.2090.948 0.02

30.652 0.894 0.04
31.1250.9  0.039

27.993 0.836 0.093
28.1310.834 0.09

Seq.
Seq.
Seq.

OCT 1-Layer
OCT 2-Layers
OCT 4-Layers

34.41 0.950 0.020
34.53 0.951 0.019
34.55 0.951 0.019

32.67 0.925 0.027
33.04 0.931 0.025
33.10 0.932 0.025

29.76 0.867 0.057
30.05 0.873 0.053
30.15 0.875 0.053

Par.
Par.
Par.

OCT 1-Layer
OCT 2-Layers
OCT 4-Layers

34.07 0.947 0.020
34.30 0.950 0.019
34.31 0.949 0.020

32.43 0.923 0.027
32.72 0.928 0.025
32.99 0.931 0.025

29.60 0.866 0.577
29.86 0.872 0.055
30.03 0.873 0.053

48



5.6. Comparisons of Predictors

configurations of all four predictors with each other on Obj3D, it is clear that the
transformer predictors in general outperforms the LSTM predictor, especially in
the longer prediction horizons. The LSTM can compete with the others in predict-
ing 5 frames, but the difference is too large for the 15 and 30 frame predictions.
The comparison of numbers can be seen in table 5.7. We see a visual example of
the four predictors on the scene in figure 5.7a. Overall, they all seem to behave
reasonably well. Further object-centric video prediction results can be found in
Appendix A.

Table 5.7: Quantitative Comparison of Best Predictors on Obj3D.

Num Preds = 5 Num Preds = 15 Num Preds = 30
PSNRASSIM®T LPIPS| PSNRASSIM?T LPIPS] PSNR1SSIM1T LPIPS]

Vanilla Transformer  34.28 0.950 0.019  32.89 0.931 0.025 30.12 0.876 0.051

Seq. OCT 34.55 0.951 0.019 33.10 0.932 0.025 30.15 0.875 0.053
Par. OCT 34.31 0.949 0.020 32.99 0.931 0.025 30.03 0.873 0.053
LSTM 34.209 0.948 0.02 31.125 0.9 0.039 28.131 0.834 0.09

We notice in the animated predictions that the physical boundary of the objects
sometimes does not match the visual boundary, leading the objects to happen
before the objects touch. It might seem like the objects are acting as repelling
magnets. This effect seems to be more prevalent in the LSTM predictions. A
reason for this could be the inability of the LSTM predictor we use to model
interactions, and as such, while it still handles collisions and occlusions, it does
not do it as well as the transformers.

Among the transformers, their performances are very similar, with the sequen-
tial object-centric transformer having a slight edge over the others. Still, the
vanilla transformer also comes first in some of the metrics, and the parallel object-
centric transformer is never far behind. Overall, performance-wise they all perform
nearly equally, so it is worth it consider their performances in the light of their
complexities and interpretability.

As discussed in the methodology, object-centric transformers are more efficient
than a vanilla approach. They enable a batch-wise implementation that divides
both the object and time attentions and adds the results, reducing the complexity
to a linear one in terms of number of slots and number of frames. In this operation,
it only loses the ability to see histories of other slots, while predicting the output for
a certain slot. Whether this is a big loss seems to be doubtful, as the performances
are quite similar, with the sequential object-centric transformer even performing
better sometimes. Visually, we see evidence of this in the attention of the of vanilla
transformer as shown in figure 5.10a, where the model mainly attends to other slots
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(a) Predictor results on Obj3D.
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(b) Predictor results on Sketchy.
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(c) Predictor results on SynPick.

Figure 5.7: Example of predictions for the same scene generated by the different predic-
tors.
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5.7. Attention Masks

only in the last time step (4 out of the top 10 attended features), and most of the
rest of the attended features are of the slot itself in other time steps (also 4 out
of the top 10 attended features). This hints that the introduced object-centric
transformers provide the same quality for less complexity. More insights will be
provided in the next section on attention masks.

We perform more experiments on the Sketchy and SynPick datasets using the
same high performing configurations of the predictors. Qualitative results are
shown in figures 5.7b and 5.7c. Metric comparisons are shown in tables 5.8 and
5.9. Note that for Sketchy we extend the prediction horizon to 45 frames, since in
this dataset the changes between frames are less prominent and to see change, we
needed a higher number of frames.

For Sketchy, the transformers also outperform the LSTM, especially for longer
predictions. Here, object-centric transformers perform slightly better than the
vanilla transformer, with the parallel object-centric transformer achieving the best
results. However, the results are less clear than with Obj3D. For SynPick, this is
more of the case, as LSTMs actually achieve the better results in most metrics. It
is clear that the lower performance of SAVi affected the training of the predictors.
We hypothesize that due to the large number of objects and the complexity of
the dataset, slot representations are very imperfect and transformers struggle to
learn the interactions from them, which is not the case for LSTMs, which do not
explicitly model the interactions.

Table 5.8: Quantitative Comparison on Sketchy.

Num Preds = 15 Num Preds = 30 Num Preds = 45
PSNRSSIMTLPIPS],  PSNRSSIMTLPIPS]  PSNRSSIMTLPIPS|

Vanilla Transformer  23.21 0.860 0.095 22.02 0.835 0.118 21.48 0.817 0.138

Seq. OCT 23.35 0.863 0.092 22.18 0.837 0.112 21.53 0.813 0.129
Par. OCT 23.2880.862 0.0916 22.14 0.841 0.111 21.55 0.823 0.127
LSTM 23.36 0.863 0.094 22.14 0.830 0.118 21.48 0.796 0.146

5.7. Attention Masks

We stated from the beginning that interpretability is one of this thesis’ goals, and
the attention mechanism are supposed to help this by providing insight into what
the model focused on when it was trying to compute a certain output. In this
section, we try to qualitatively analyse the attention maps of our transformers in
order to extract these insights.
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Table 5.9: Quantitative Comparison on Synpick.

Num Preds = 5 Num Preds = 15 Num Preds = 30
PSNRASSIM?T LPIPS] PSNRASSIM?T LPIPS] PSNRASSIM?T LPIPS]

Vanilla Transformer  24.08 0.686 0.208 22.12 0.629 0.234 20.91 0.572 0.264

Seq. OCT 24.13 0.687 0.208 22.09 0.630 0.235 20.81 0.572 0.267
Par. OCT 24.21 0.686 0.205 22.12 0.624 0.229 20.82 0.559 0.254
LSTM 24.23 0.687 0.208 22.10 0.631 0.234 20.92 0.578 0.267

By design, our transformers have different attention structures. For example,
the vanilla transformer has one large attention map that spans all objects in the
past, while the object-centric transformers have two split maps for each of the time
and object dimensions, and even those are split in the implementation in batches.
Here we take a look at examples of such maps and try to draw observations from
them.

5.7.1. Vanilla Transformer Attention

In figure 5.8, we see an example of the attention maps generated by the vanilla
transformer. The effect of the mask that prevents looking into the future, can be
clearly seen. Due to the large size of the attention map, it is hard to find any clear
observations. However, we can see that whatever object exists in the third slot
tends to have the highest attention values.

We check the decomposition of the scene to see what object is at which slot. We
see this decomposition in figure 5.9. The object at slot 2 is the biggest object and
the one at the center of the scene, which seems to be the reason why the model
attends to it frequently. This observation is repeated in other cases.

We go on to check what objects are attended for the most when predicting the
state of a certain object. In figure 5.10, we see the complex cases that exist. We
have predictions for moving object, stationary object, and the background. The
object does not necessarily just look back to the last time step, or its previous
states. Multiple factors seem to interact. For example the moving object in figure
5.10c seems to focus more on the nearby object it is about to collide with. The
background in figure 5.10b seems to focus on itself more, as its state is naturally
not changing. The stationary object in 5.10a is checking its surrounding, that
are also mostly static. For static objects that model does not really differentiate
between them in the different time steps, because the slots contain nearly the same
information.
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Figure 5.8: Example of a resulting attention map from the vanilla transformer. The
input is a 5 time steps seed, with each time stop containing 6 slots, building
an input of 30 slots in total.

seed frame: 0 Object in slot: 0 Object in slot: 1 Object in slot: 2 Object in slot: 3 Object in slot: 4 Object in slot: 5

Figure 5.9: Object decomposition in a scene, where each object was assigned to a slot.
We notice that slot remained empty while an object that should have been
in it is grouped with the background. A reason for this could be that the
object is in the back and of near colour to the background.
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Time:4 Time:d Time:4 Time:3
j:4 Obj:1 0Obj:3 Obj:2 Obj:4
attn. val:0.063 attn. val:0.058 attn. val:0.049 attn. val:0.048 attn. val:0.042

Prediction of object 4

Tlme 4 Time:4 Time:3 Time:0 Time:0
Obj:0 Obj:1 Obj:5 Obj:4
attn. ual 0.042 attn. val:0.040 attn. val 0.035 attn. val 0.034 attn. val 0.034

(a) Vanilla transformer attention for a stationary object.

Time:4 Time:0 Time:0 Time:0 Time:1
Obj:3 0Obj:3 Obj:5 Obj:1 Obj:3
attn. val 0.050 attn. val:0.048 attn. val 0.048 attn. va\ 0.047 attn. val:0.046
=" ! ! - .
Time:0 Time:1 Time:2 Time:0 Time:1
Obj:0 Obj:4 Obj:2 Obj:4 Obj:0
attn. val:0.046 attn, ual 0.045 attn. \.ra\ 0.045 attn. \.ral 0.044 attn. val:0.044

(b) Vanilla transformer attention for the background.

TImE’ d Time:3 Tume 4 Time:4 Time:0
0Obj:2 Obj:3 Obj:3
attn. val n 128 attn. val:0.085 attn val 0 054 attn. val:0.036 attn. val:0.035
[ . . . !
Time:0 Time:0 Time:0 Time:0 Tlme 3
Obj:5 Obj:4 Obj:1 0Obj:2
attn. val:0.034 attn. val:0.034 attn. val:0.032 attn. val:0.032 attn. ual ﬂ 032

(¢) Vanilla transformer attention for a moving object.

Figure 5.10: Example of slot attention of vanilla transformer while predicting certain
slots. We show the predicted slots, top 10 slots used in prediction, with
their corresponding slot number, time step, and attention value.
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5.7.2. Object-Centric Transformers Attention

In order to take a look at object-centric attentions, we take a look at the prediction
as a whole, at attention values for individual objects for both object and time
attentions, and the corresponding attention masks. In figures 5.11 and 5.12 we see
detailed examples of the attention computation in both these predictors. We also
observe some of their working mechanisms, and notice how similarly they both
behave.

For time attention, both models focus more on the last and the first time steps.
The model draws the prediction from the initial and final states, which might be
because states in between are included in their difference. The attention at the last
time step is the highest by a large margin, which is logical since this is the state
the object is coming from. Differences between attention values for the rest of the
time steps are much less significant. The order of time steps in time attention
tends to be equal between the two predictors.

For object attention, the attention values are distributed more over the slots. It
does not show a clear criteria for how the models tend to choose objects to attend
to, but it seems the distance between objects play a role in this, which is to be
expected. The nearer an object is, the more it is likely to affect the current object.
Object also do not seem to always attend to themselves during prediction, which
should be due to the existence of time attention. If the object has seen all its
versions in the past, the information offered from it in the object attention is just
a repetition.
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Ground truth

Model prediction

seed frame: 0 seed frame: 1 seed frame: 2 seed frame: 3 seed frame: 4

(a) Seed frames, the GT and the prediction.

Obj:5 Obj:4
attn. val 0 221 attn. va\ U 217 attn. val U 159 attn. val D 153 attn. val:0.133 attn. val:0.116
Prediction of object 0
Object
Attention
Time:4 Time:0 Time:1 Time:2 Time:3
attn. val:0.939 attn. val:0.020 attn. val:0.019 attn. val:0.014 attn. val:0.008

Time
Attention

(b) Example of attention values for predicting object 0.

Obj:4 Obj:1 Obj:5 Obj:3 Obj:0 Obj:2
attn. val 0.352 attn. val 0.189 attn. val:0.185 attn. val:0.118 attn. val:0.097 attn. val:0.058

Prediction of object 1
Object
Attention

Time:4 Time:1 Time:0 Time:2 Time:3
attn. val:0.696 attn. val:0.096 attn. val:0.092 attn. val:0.068 attn. val:0.049

Time
Attention

(c) Example of attention values for predicting object 1.

slot 0 time attention map " slot 1 time attention map 10 time step 4 object attention map

08 ’ 08 04
g 06 g 06 2 03
g - 04 g - 04 g 02
£ [ 3

02 : 02 s’ 01

00 : 00 ’ 00

Times in output Times in output Slots in output

(d) Time attention of object in (e) Time attention of object in (f) Object attention map at
slot 0. slot 1. last time step.

Figure 5.11: Summary of the attention process of the sequential object-centric trans-
former.
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seed frame: 0 seed frame: 1 seed frame: 2 seed frame: 3 seed frame: 4 Ground truth

)]

Model prediction

(a) Seed frames, the GT and the prediction.

Obj:2 Obj:4 Obj:3 Obj:1 Obj:5 Obj:0
attn. val:0.267 attn. val:0.216 attn. val:0.189 attn. val:0.126 attn. val 0.122 attn. val :0.079
Prediction of object 3
Object
Attention
Time:4 Time:0 Time:1 Time:2 Time:3
attn. val:0.939 attn. val:0.026 attn. val:0.018 attn. val:0.009 attn. val:0.008

Time
Attention

(b) Example of attention values for predicting same object of figure 5.11b.

Obj:2 Obj:1 Obj:4 Obj:5 Obj:3 Obj:0
attn. val:0.381 attn. val:0.228 attn. val:0.128 attn. val 0.097 attn. val 0.092 attn. val :0.074
Prediction of object 5
Object
Attention
Time:4 Time:0 Time:1 Time:2 Time:3
attn. val:0.805 attn. val:0.087 attn. val:0.078 attn. val:0.023 attn. val:0.007

Time
Attention

(c) Example of attention values for predicting same object of figure 5.11c.

slot 3 time attention map slot 5 time attention map
10 10

time step 4 object attention map

(d) Time attention of slot (e) Time attention of slot "7 smname”
3 (same object in figure 5 (same object in figure (f) Object attention map at
5.11d). 5.11e). last time step.

Figure 5.12: Summary of the attention process of the parallel object-centric transformer.
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6. Conclusion

The goal of this thesis was to fuse object-centric learning with video prediction, to
provide interpretable and explainable results. We set out to look for an efficient
method for extracting information into objects, applying prediction onto said ob-
jects, and reconstruct back the frames. We investigated the combination of such
object-centric representations with different predictor models, and investigated
how they work together.

Our starting point was the slot attention mechanism, an approach applicable
for both images and videos, to learn about object in a scene, and encoding them
separately, while having the possibility to recombine these representations again.
Using Slot Attention For Video (SAVi), we trained multiple models on multiple
datasets, achieving different degrees of success. Using these models we trained
four types of predictors, exploring attention for modeling object dynamics and
interactions in four different ways. The LSTM model has no attention and had no
way of modelling the interaction between slots, as it could only look at the slots’
own history. The vanilla transformer had a complex attention span, looking at
the complete history of all slots together, and allowed to connect a certain slot
at a certain time step with another one at another time step. The object-centric
transformers were allowed to look in rows and columns, i.e., for each slot its own
history, or the current state of the others. The first version did this sequentially,
allowing the time attention part to take a look at supplemented input from the
object attention part, whereas the second version did this in parallel, separating
the two flows completely.

Our goal of having a fully self-superivsed approach is achieved. For two out
of the three datasets, namely Obj3D and Sketchy, complete self-supervision is
granted. The data we used did not have labelling in any way in both phases of
training. Our predictors were able to achieve good results on the Obj3D dataset.
They show that given good object representations, they are able to predict frames
of good quality and sensible scenarios. We show that the attention between slots
lead to better results, with the gap increasing with the number of predicted frames,
and that this attention does not have to have high complexity. Just focusing
on the object-centric version can lead to results of the same quality, with less
computational needs. We show that the attention models can be used for analysing
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6. Conclusion

and visualizing the prediction process. Our object-centric transformers provide
easier to understand and visualize attention maps, because they span a smaller
space and can be interpreted in terms of two questions "what parts of my history
I see as important for my future?” and ”what part of my surrounding I think
will affect me in the future?”. Combing both provides valuable insights into the
models” workings.

Still, we also see there is plenty of room for improvement in our approach. The
predictors are dependant on having a well trained SAVi results with good results,
which needs some experimentation to configure all the possible settings, such as
number of slot attention iterations, number of slots, dimensionality of slots, and
capacity of encoders, each of them coming with their computational costs. For
more complicated datasets, such as Sketchy and SynPick, we need to more time
and resources to test them and find a good enough combination of settings that
can handle their complexities, which means weeks more of training that we did
not have for this thesis. Moreover, we sometimes see artifacts in our predictions,
such as force fields that prevent objects from touching as they collide. These need
more investigation regarding their causes and solutions. Our model also does not
seem to handle highly uncertain scenarios, such is the case for robotics datasets,
where the motion is governed by intention of the operator, not the dynamics.

There is a lot of exciting suggestions for future works. First of all, more exper-
imentation with slot initialization and even introducing some object information
could be helpful for extracting objects especially in the harder datasets. This was
already needed in SynPick and it could be worth it to experiment with easy to
obtain labelling data. In this regard, we see that complex datasets can lead SAVi
to attend to frame patches instead of objects, so having object information in slot
initialization could help there. Moreover, we could extend the training to be fully
end-to-end, so that the predictor is trained directly with SAVi, optimizing the rep-
resentations directly for prediction. It also might be worth it to experiment with
using different loss functions or the same functions but with different weights for
each component. Overall, experimenting more and trying to achieve good results
on more datasets will help us understand how the model works and how it can be
improved. For datasets with intentional movements, introducing mutli-modality
in our predictions using a stochastic component could help the model understand
how the future is shaped and can change. Another way to handle this could be
collecting action input, e.g. input given to gripper that leads to its movement in
robotics datasets, and then giving this input to the model, which would be another
interesting experiment.
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Figure A.1: Example 1 of decoding flow from slots to frame on Obj3D.
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Figure A.2: Example 2 of decoding flow from slots to frame on Obj3D.
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Figure A.3: Example 3 of decoding flow from slots to frame on Obj3D.
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Figure A.4: Example of slot decoding in our trained instance of SAVi on Sketchy dataset.
Original reconstructions shown in figure 5.6b.
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Figure A.5: Example of masks generated in our trained instance of SAVi on Sketchy
dataset. Original reconstructions shown in figure 5.6b.
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Figure A.6: Example of combining masks with generated objects in our trained instance
of SAVi on Sketchy dataset. Original reconstructions shown in figure 5.6b.
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