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Abstract

Autonomous robots perform a vast range of tasks in different environments which

vary from household to aerospace. In most cases they should interact with the

environment using articulated human-like arms. That is why there is a necessity in

algorithms which are able to effectively plan feasible trajectories for manipulation.

However, as manipulators have many Degrees Of Freedom (DOF), trivial planning

algorithms such as A* are not able to plan in reasonable amount of time due to the

curse of dimensionality. Moreover, often except of collision avoidance, there is a

necessity to account for orientation constraints, torque minimization and trajectory

duration. All together, these factors make planning of manipulation trajectories a

challenging problem.

In this thesis an approach to optimize the manipulation trajectories is presented.

The optimization is performed with respect to the following criteria: collision

avoidance, preserving joint limits and any additional orientation and/or position

constraints, trajectory duration and torque minimization. This approach is based

on Stochastic Trajectory Optimization for Motion Planning (STOMP) method by

Kalakrishnan et al. [1]. Our modifications serve to decrease the overall runtime

of the algorithm and include additional criteria, such as trajectory duration. We

present our own cost function which is designed in order to enable flexible tuning

of trajectory properties for each particular planning task.

We evaluate our method in simulation using tasks of different nature and diffi-

culty. We measure the average runtime, success rate, trajectory length and com-

pare our approach with other planning algorithms: RRTConnect, LBKPIECE

and STOMP-Industrial. We demonstrate that our approach shows better runtime

and comparable high success rate. We analyse the effects of torque and duration

optimization as well.
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1 Introduction

1.1 Motivation

The area of autonomous robotics improves and develops from year to year. More

complex and agile robots are being designed with an aim to improve current ca-

pabilities of robots and to solve previously unapproachable tasks. Autonomous

robots are being applied into vast range of environments: household, industrial,

outdoors, space, etc. Majority of these robots are designed to interact with their

surroundings by means of robotic arms. This makes an arm manipulation planning

problem one of the essential tasks for this type of robots.

Therefore, an arm manipulation planning has been investigated by many re-

searchers. Even though this extensive research has created lots of different meth-

ods, the problem can not be considered as solved. This is caused by the curse of

dimensionality and by overall complexity of the task. Usually a robotic arm has

at least 6 Degrees Of Freedom (DOF) and must precisely act in unstructured envi-

ronments. Complex geometric shape of the arm complicates the collision checking,

meanwhile multiple additional criteria, such as: joint limits, orientation constraints

and torque minimization produce solution spaces with many disjoint local minima.

As planning of a manipulation trajectory usually is a part of more a complex task,

it is desirable to obtain a trajectory as fast as possible. High success rate is re-

quired as well, as it allows to solve the task reliably and allows to avoid performing

several attempts in order to solve the task, which prolongs the spent time. Al-

together, these requirements and characteristic of the problem make the task of

planning a feasible manipulation trajectory a challenging problem.

Furthermore, if a robot has additional joints, such as torso yaw or pitch, it may

be feasible to involve them into the planning process in order to obtain a possibility

to solve wider range of tasks. However, adding more joints increases the amount of

dimensions and makes the planning more computationally expensive. In addition,

manipulation of certain objects imposes orientation constraints to the end-effector.

For instance: a glass with liquid which can not be spilled. Moreover, an object

may have a significant mass, which can not be neglected. This creates a necessity

to account for the torques as well. Besides that, the environment around the robot

may change while the planned motion is being executed. This situation requires
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1 Introduction

immediate replanning in order to adapt the movement to the new state of the

environment. In order to accomplish this task it is necessary to have a planner

which can find a feasible solution very fast.

It is possible to see from this brief overview that there are many challenges to

overcome. In this work we present an approach which addresses some of them.

The problem we aimed to solve is defined in more details in the next section.

1.2 Problem Definition

The task of motion planning can be formulated as finding a feasible path in un-

structured environment, given a start configuration A and a goal configuration

B. This path must be collision free in a way that both collisions with the envi-

ronment and self-collisions are avoided. Any additional constraints, such as joint

limits, orientation and/or position constraints, torque and velocity constraints,

must be satisfied as well. Moreover, the path must be as smooth as possible since

jerky movements may potentially cause a damage to the motors.

This work has been inspired by the CENTAURO project [2]. The purpose of

this project is to design a centaur-like robot with four legs and human-like upper

body with two arms. This robot is developed to act in disaster scenarios where

human intervention is not possible due to high risk for human health and life. The

CENTAURO robot is assumed to be teleoperated by the human operator during

most part of the mission. However, there may arise situations where wireless

connection has insufficient quality or is absent at all. In this case it is necessary

to have a possibility to perform all tasks autonomously, including arm motion

planning. Moreover, the manipulation planning is usually a part of a more complex

task. Thus, it is profitably to reduce the load of the main operator by performing

planning of certain manipulation tasks autonomously even in a presence of good

connection.

A disaster scenario demands tasks to be executed as quick as possible due to

potential danger to human lives. Thus, not only the planning itself should be

performed fast, but the execution of obtained motions must allow to achieve desired

configuration in a short amount of time. In a disaster scenario the robots often need

to operate with heavy objects, such as different tools or fragments of destroyed

structures. In this case the trajectories must also be optimal with respect to

torques affecting the arm, as this prevents motors from being damaged and saves

the battery power which raises the chances of mission being completed successfully.

In many cases a trajectory may be generated with a help of motion primitives.

However, these trajectories usually are not optimal with regards to the current
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specific situation. Thus, it is necessary to have a capability to optimize these

trajectories to meet the requirements discussed above.

In summary, a trajectory should fulfill the following requirements:

• A trajectory must be able to move the arm to a given goal configuration.

• A trajectory must avoid any collisions with the environment or the robot

itself. Joint limits have to be satisfied. Any additional orientation or position

constraints have to be satisfied.

• Trajectories must be generated as quick as possible.

• Trajectories must be planned in a way that their execution time is as short

as possible.

• Trajectories must be planned so that operations with heavy objects generate

as less torque as possible.

1.3 Approach

As it was discussed previously, multiple criteria have to be considered in order to

successfully solve a manipulation planning task. Moreover, the process of plan-

ning have to be performed as fast as possible. In order to employ an efficient

multicriteria optimization we modify an existing algorithm: Stochastic Trajectory

Optimization for Motion Planning (STOMP) [1]. The algorithm is capable of op-

timizing non-differentiable costs, and thus can be applied to deal with orientation

constraints and torque minimization. In addition, STOMP has complexity linear

in number of dimensions, which allows to solve tasks with 6 and more DOF in

reasonable amount of time. We describe the algorithm in details all together with

its advantages and disadvantages in chapter 4. Below we give a brief overview of

the proposed modification.

In order to achieve decrease of runtime and ability to optimize for required cri-

teria, we introduce other way of state cost computation. In the original STOMP a

state cost of a trajectory is a sum of costs of each keyframe. Instead, we propose

to compute state cost of a trajectory as a sum of costs of the transitions between

consequent pairs of keyframes. This model allows to plan trajectories with much

smaller number of keyframes. Moreover, this model fits continuous nature of tra-

jectory better, as it considers consequent transitions instead of separate keyframes.

This allows to account for the duration of these transitions, and hence, to optimize

the overall duration of the trajectory.

3



1 Introduction

Arm manipulation planning requires many complex computations to be done.

In order to reduce the amount of computations for collision checking we improve

a representation of a robot compared to idea of the original STOMP.

We also introduce our own cost function which target is to account for many

criteria while having fast runtime. The cost function is designed in a way that

each term has its importance weight. One may achieve trajectories which favour

different behaviours by manipulating these weights. In order to optimize the du-

ration of the trajectories, we add one more dimension to configuration space: a

velocity for each transition from current to next keyframe.

These modifications allow to take into account additional criteria during opti-

mization and to lower the runtime. Moreover, the execution time of trajectories

itself can be optimized which gives overall improvement of runtime for the pipeline

plan-execute.

1.4 Structure of Thesis

The thesis has the following structure:

• Chapter 2 provides a review of related work in a context of a trajectory

planning for manipulation tasks. In this chapter researches, which seemed

to be the most interesting to the author of this thesis are briefly described.

The overview of existing manipulation trajectory planners allows to show

how proposed method fits into the current state of the art.

• Chapter 3 describes several key prerequisites for the motion planning: kine-

matic chain, forward and inverse kinematics, world and configuration spaces.

• Chapter 4 gives a detailed description of the original STOMP algorithm,

which is used as base for this work. The chapter is finalized with analysis of

advantages and disadvantages of the algorithm.

• Chapter 5 presents the proposed modifications. First, the changed cost com-

putation policy is discussed. Second, the proposed cost function is described

in details. Brief overview of the implemented system concludes this chapter.

• Chapter 6 contains the criteria we used in order to evaluate the performance

of proposed method. The performed experiments are described and their

results are presented. A comparison of several algorithms against our method

is shown as well.

4



1.4 Structure of Thesis

• Chapter 7 is a summary of the thesis. First we summarise the contributions

of this thesis, then we discuss known limitations, and, finally, we present

possibilities for the future work.
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2 Related Work

Arm manipulation planning is an essential task for autonomous robots. That is

why a lot of research has been done in this field. However, manipulators have quite

complex structure with respect to their geometry and numerous DOF. Moreover,

manipulation tasks often require several constraints to be fulfilled. These char-

acteristic make arm manipulation planning a challenging problem. Besides that,

robots are getting more complex and are required to perform more complex tasks.

Thus, this area demands further investigation from the side of a research commu-

nity.

Many different approaches have been proposed in order to address the prob-

lem of manipulation planning. Sampling-based planners have achieved noticeable

popularity and success [3] [4] [5] [6] [7]. Many approaches try to downscale the

dimensionality of the problem in order to avoid exhaustive search due to curse of

dimensionality. In this section we give a brief overview of the related work has

been done in this area.

James J. Kuffner et al. [8] utilized Rapidly-Exploring Random Trees (RRTs) [9]

in his work: RRT-Connect: An Efficient Approach to Single-Query Path Planning.

The proposed approach is to incrementally grow two trees towards each other from

the start and goal configuration respectively. A simple greedy heuristic is used in

order to bias the trees towards exploration of large unseen areas as well as to

grow towards each other. A solution is found when the trees are connected. This

technique allows to find solutions even in complex cluttered environments with

narrow passages of compound shape. Moreover, the approach is quite robust

and does not require fine parameter tuning. The method can also be used for

navigation planning. However, the obtained trajectories are not smooth and often

contain many unnecessary movements. Thus the postprocessing is necessary which

still not always provides a sufficiently smooth paths.

Another interesting approach is based on RRTs as well: Constrained Bi-directional

Rapidly-Exploring Random Tree (CBiRRT) [10]. The main focus of this work is to

solve planning problems which involve such constraints as: torque limits, orienta-

tion constraints, and constraints for following workspace surfaces. As an example,

the authors use a task where robot should move a heavy dumbbell from one ta-

ble to another. This task encourages the robot to slide the dumbbell along the
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2 Related Work

surface of the table as long as possible before lifting it in the air. However, a set

of configurations which satisfy this constraint occupies a very small volume in the

configuration space. Thus, it is very unlikely that direct sampling in configuration

space will result in successfully found solution. This problem can not be solved

efficiently with planners which sample the C-space directly. Instead, the authors

propose to project the samples onto constraint manifolds. They utilize the same

approach of growing two trees towards each other biased by the greedy heuristic.

This allows to find a connections between complex constraint manifolds efficiently

which results in feasible trajectories.

Ioan A. Sucan et al. proposed a different method - Kinodynamic Planning by

Interior-Exterior Cell Exploration (KPIECE) [11]. The approach is based on a

multiple-level grid discretization of the state space. The motivation for this work

are systems which have complex dynamics described by physical models which

creates a necessity for physics-based simulation. Even though simulation intro-

duces higher computational costs, it allows to obtain trajectories of higher quality.

This is because “physics simulators take into account more dynamic properties

of the robot (such as gravity, friction) and constructing models of systems is eas-

ier and less error prone than deriving equations of motion” [11]. Moreover, the

method does not require state sampling method and distance metric. This method

takes an advantage of dimensionality reduction as well. Thus the state space Q

is replaced by projection space E(Q). The multiple-level discretization is used to

estimate the coverage of the state space which allows to detect and explore large

unexplored areas which potentially may contain a solution. Each next level has

finer resolution than its parent. This structure allows to efficiently represent the

tree of motions. A cell is considered to be exterior if it has less than 2n neighbours

where n is the dimensionality of E(Q). The exploration is biased towards exterior

cells. A multiresolution representation of the state space allows to find a solution

efficiently. However, KPIECE requires a postprocessing to obtain more smooth

and short trajectory.

In work of Lydia E. Kavraki et al. [12] another method for planning in static en-

vironments is used: Probabilistic Roadmaps for Path Planning in Hihg-Dimensional

Configuration Spaces. The method consists of two phases: learning and query.

During the learning phase a probabilistic roadmap is constructed. It is repre-

sented as a graph where the nodes are collision free configurations, and the edges

are a collision-free transitions between these configurations. These a transitions

are generated by some local planner. In the second phase any required initial

and goal configurations are connected to the roadmap. Than the local planner

attempts to find a feasible plans to transition from initial and goal configurations

to the closes nodes of the roadmap. This method was used in [13] and [14] as

8



well. The approach is well generalized and any planner can be used to plan local

transitions. However, it fits well only environments which are completely static

during the mission, as frequent reconstruction of the roadmap is a high-cost op-

eration. The runtime of roadmap construction heavily depends on dimensionality

and complexity of collision checking.

Another approach is to use an artificial potential field proposed by O. Khatib

et al. [15]. The idea is that the environment is represented as a set of force

sources. The goal has an attractive force, meanwhile the obstacles have repulsive

forces. These force influence the end-effector, which makes end-effector attempt to

smoothly approach the goal avoiding the obstacles at the same time. However, in

a cluttered environment there is a high risk of being stuck in one of the numerous

local minima. Nevertheless, this approach can be effectively used for real-time

control.

A noticeable method is Covariant Hamiltonian Optimization for Motion Plan-

ning (CHOMP) [16]. In contrast to previously reviewed sampling-based planners,

in CHOMP the covariant gradient technique is used. The idea is similar to elas-

tic bands planning [17] [18]. However, the input trajectory does not have to be

collision-free. The algorithm quickly converges to the locally optimal trajectory

due to use of gradient descend. The authors use signed distance field as environ-

ment representation, so that cells on the border of obstacles have 0 value, cells

outside - positive and cells inside - negative values respectively. Such a representa-

tion allows to perform collision checking fast. At the same time negative distances

inside the obstacles allows to obtain gradients even for non-collision-free parts of

the trajectory. The experiments have shown that CHOMP produces smooth tra-

jectories which do not need further processing and are ready to be executed on the

real robot. Though, the costs used in this method must be differentiable which

puts certain limitations on the available constraints. Moreover, as any gradient-

based algorithm, CHOMP tends to get stuck in local minima.

In [19] the CHOMP algorithm is extended to support goal sets. In most cases it

is possible to grasp an object in many different ways, the same applies to placing

the object. A set of possible goal configurations is called a goal set. The resulting

trajectory may vary significantly when different goal poses are chosen. Thus,

supporting goal sets can lead to better solutions. It is achieved by employing a

constrained optimization solution. They constraint the goal configuration to the

goal set, in addition, they allow CHOMP to change the goal. The needed behaviour

is achieved by these steps. However, it is noticeable, that in some situations

the goal-set implementation provides worse results than original CHOMP. This is

explained by the goal converged to the local minima.

Another extension of CHOMP is T-CHOMP [20]. The authors extend the con-

9
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figuration space by one additional dimension: time. This allows to optimize in

space-time, which leads to trajectories which differ from those obtained by the

original CHOMP. In general, such approach gives more freedom to the algorithm,

thus increasing the available range of valid solutions. The authors mention that

the implementation is very sensitive to parameters and without good tuning it is

possible to obtain a “collision-free” solution where the robot slowly goes through

the obstacles. Overall, the idea behind this work is similar to ours.

Stochastic Trajectory Optimization for Motion Planning (STOMP) [1] adopted

the distance representation from CHOMP. However, instead of using gradient de-

scent it uses sampling technique. This allows to use non-differentiable cost func-

tions and decrease the chance of being stuck in the local minima. As in this work

we modify the STOMP algorithm, it is described in more detail in the next section.

Ricarda Steffens in her Master thesis [21] proposed a modification of STOMP.

The idea is to consider the uncertainty of the future through employing multireso-

lution in time. An initial part of a trajectory is being planned with high resolution.

However, parts of the trajectory which are located further away in time are planned

with lower resolution. This allows to decrease the runtime and apply the method

in dynamic environments through frequent replanning. The approach has been

applied to service robot Cosero [22].

In the work of Chonhyon Park et al. [23] the problem of planning in dynamic

environments is covered. Authors present an incremental approach: Incremental

Trajectory Optimization for Real-time Replanning in Dynamic Environments (IT-

OMP). They use a stochastic trajectory optimization framework in order to obtain

a collision-free smooth trajectories. The method does not require any prior infor-

mation. In order to handle the dynamics of the environment, a local bound around

each obstacle is computed over a short time interval and after that is used to plan

a collision-free path in incremental manner. The future positions of the obstacles

are estimated using previous measurements, taking the sensor noise into account.

That is why the plan is guaranteed to be safe only during short amount of time

after it was generated. Thus, a frequent replanning is needed. In order to support

this, the robot must be able to perceive the information about the environment fre-

quently enough. This approach uses Euclidean Distance Transform (EDT) [24] as

representation for the environment as well as many previously described methods.

The limitation of this method is that it is necessary to set the overall trajectory

duration and a duration for each waypoint before the optimization process starts.

In Motion Planning with Sequential Convex Optimization and Convex Collision

Checking [25] authors use convex-convex collision checking instead of signed dis-

tance fields and spheres. The motivation behind that is the increased accuracy of

this approach which allows to plan for complex tasks as surgery with a needle. In-

10



stead of gradient descend this method uses sequential quadratic programming [26]

with exact penalty method. It minimizes the cost function by iterative construc-

tion of local approximation of it. However, in order to perform a convex-convex

collision checking one needs to obtain an environment representation as a set of

convex shapes from the raw sensor data. This operation is computationally ex-

pensive and may be imprecise.

In contrast to previously discussed approaches, Nikita Kitaev et al. [27] viewed

the problem of approaching a pre-grasp poses from different perspective. In their

work they investigate a problem of reaching a pre-grasp pose when there is no

collision-free trajectory at all due to highly cluttered environment, for instance,

a refrigerator shelf. In order to solve this task, the robot must move the objects

away from the vicinity of the target pose. The authors propose a physics-based

trajectory optimization. They utilize a full physics simulator in order to solve such

problems. The authors assume that the objects are placed on a horizontal surface,

and that the objects may be either movable or static. Meanwhile the collisions

with the static objects still must be avoided, the collisions with movable objects

are the key to success in these tasks. Using physics simulator it is possible to chose

a trajectory, that minimizes the harm to moved objects, i.e. they do not fall and do

not push other objects. The issue is that physics simulation is costly. Thus, only

simple shapes are used. Moreover, an assumption that all objects are positioned

on a horizontal plane is made. This method is an example of a completely different

view on the problem.

In this section we briefly described some significant related work. It is possible to

see that different approaches has been proposed to solve the manipulation planning

and optimization problem. Several authors viewed the problem from different

perspectives and came up with various possible solutions. However, there is a lot

of room for improvement of a planner/optimizer which tackles the manipulation

planning in any context.
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3 Theoretical Background

In this chapter we present a background which is necessary for the discussion of

our approach. First, we review fundamental concepts as: kinematic chain, forward

and inverse kinematics. Finally, we define the manipulation planning problem and

its core components.

3.1 Kinematic Chain

A goal of a manipulation planning is to find a feasible path of a manipulator of

a robot. Nowadays most robots are composed from set of rigid bodies which are

connected with joints. A kinematic chain is used in order to model this structure.

In this section we describe, what is a kinematic chain.

A kinematic chain is a model which describes a mechanical system of n rigid

bodies connected to each other by J joints [28]. A rigid body in this system is

called link. The very first link in the kinematic chain is called fixed link. The

very last link in the kinematic chain is often called end-effector. In context of

manipulators, the fixed link is usually the body of a robot to which the manipulator

is connected. Consequently, the end-effector is a gripper which is used to interact

with the environment. An example of a kinematic chain is shown in Figure 3.1.

A mobility M of a kinematic chain is defined by its number of degrees of freedom

[29]. Each link has 6 DOF: 3 for position and 3 for orientation. Thus, a system of

N links has mobility M = 6N . However, in most cases a joint imposes constraints

on movement of links, which are connected by this joint. For example, hinge or

prismatic joints remove five degrees of freedom, thus allowing transforms which

involve one dimension only. The freedom f of a joint can be determined as f = 6−c
where c is the number of degrees of freedom which are constrained by this joint.

Therefore, the mobility of a kinematic chain with N links and J joints is defined

as:

M = 6N −
∑
J

(6− fj) (3.1)

A state of a kinematic chain is defined by a vector θ which has M dimensions.
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Figure 3.1: Example of the kinematic chain in 2D, where A, B, C, D are the
joints and d1, d2, d3 are the links.

Given such a vector one can obtain the exact positions of each link. This is done

using forward kinematics.

In order to define a forward kinematics for a robot, a suitable kinematic model

is necessary. One of the most often used methods is Denavit-Hartenberg method

[30]. It uses four parameters in order to describe a kinematic model: link length,

link twist, link offset and joint angle. Given these parameters, it is possible to

define a rigid transformation matrix i−1
i T for any link i, relatively to previous link

i − 1. The forward kinematics of the end-effector relatively to the base frame,

given N links, is defined as:

base
end-effectorT =

N∏
i=1

i−1
i T (3.2)

Note that the rigid transformations used in the above equations are assumed

to be proper. It is possible to decompose any proper rigid transformation into

rotation followed by a translation. Given vector v the rigid transformation is
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3.2 Manipulation Planning

defined as:

T (v) = Rv + t (3.3)

Where R is a rotation matrix and t is a translation vector. For the rigid transfor-

mation to be proper it is necessary that det(R) = 1, i.e. the reflection is excluded.

In order to solve the opposite problem i.e., to find a joint configuration which

corresponds to a given target link pose, the inverse kinematics is used. Inverse

kinematics addresses a problem of finding joint positions which produce a desired

position of the end-effector. Often there is more than one solution. It is possible to

solve inverse kinematics problem both with analytical and numerical approaches.

In most cases it is much faster to use an analytical closed-form solution [31].

3.2 Manipulation Planning

Manipulation planning can be split up into two main phases. In first phase a

goal pose is generated, for example: the exact pre-grasp pose. The second part

is to plan a feasible trajectory which will allow to reach the pose obtained from

the previous step. In this work we focus on the second part of the manipulation

planning pipeline. Thus, it is assumed that the goal pose is given.

A manipulation planning algorithm is provided with start and goal configura-

tions and is expected to output a feasible plan of movement from the start to the

goal. This plan consists of a finite number of waypoints N . Each waypoint is a

valid configuration and is referenced as keyframe further in this work. The trajec-

tory is composed in a way that consequent movement from current configuration

n to the next configuration n+ 1 will lead to the goal configuration.

It is possible to express a motion planning problem as a search in configuration

space for a sequence of valid configurations which consequently lead from a start

pose to a goal pose. However, large portion of possible configurations are not valid

due to various reasons, such as: violated joint limits, self collisions, collisions with

the environment, violated orientation or position constraints, violated torque lim-

its. That is why a configuration space for the manipulation planning has complex

structure. In Figure 3.2(a) a simple 2D world space with 2 DOF chain (grey) in

it is shown. There are initial and goal positions. The movement of the chain is

limited by several obstacles. In Figure 3.2(b) a respective configuration space is

shown. It is possible to see that even simple scene has quite complex configuration

space. In configuration space one can easily observe that the desired movement is

possible. However, for example a large portion of region between blue and yellow

obstacle is unreachable by the given chain.
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goal

initial

(a) World space

goal

initial

(b) Configuration space

Figure 3.2: World and configuration spaces for a simple 2 DOF chain in 2D. The
figure is taken from [32].

For low-dimensional configuration spaces it is feasible to discretize them into

grid-based structure and after solve the problem with a help of trivial path-finding

algorithms such as A*. However, for configuration spaces with higher dimensions,

this approach is not feasible because the number of cells grows exponentially while

the number of dimensions grows linearly, which is called a curse of dimensional-

ity. Thus, several other approaches are utilized in order to overcome the curse of

dimensionality.

In this section a task of manipulation planning was reviewed. We formulated

inputs and outputs of a general motion planning algorithm and outlined main

difficulties of this task. It is possible to conclude that there is no trivial solution

which reliably and effectively solves this task.
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4 STOMP

There exist many different approaches to manipulation planning problem. Stochas-

tic Trajectory Optimization for Motion Planning (STOMP) by Kalakrishnan et al.

[1] is one of them. We have chosen this algorithm to be a core of our approach due

to its properties: runtime linear in a number of dimensions and ability to handle

non-differentiable costs. In this chapter we discuss the original algorithm in de-

tail. First, we give a brief overview of the method, then we present all the details

about the algorithm. In the end we discuss its advantages and disadvantages and

formulate a conclusion about why exactly this algorithm has been chosen.

4.1 Overview

In STOMP a stochastic trajectory optimization technique is utilized. It is provided

with an initial trajectory, which may be a simple interpolation between start and

goal configuration. The trajectory is defined in joint space and consists of fixed

predefined number of equally spaced in time keyframes and has a predefined fixed

duration. When optimization process is completed, STOMP outputs resulting

trajectory.

STOMP is based on another optimization-based algorithm - CHOMP. CHOMP

uses covariant gradient descend technique in order to optimise an initial trajec-

tory. Because of the use of gradient based methods it is not possible to use non-

differentiable costs. Moreover, CHOMP as any gradient-based algorithm suffers

from local minima. STOMP adopts world and robot representation methods, as

well as similar cost function, but with use of random sampling instead of gradient

descent, it manages to overcome the problem of being stuck in local minima, which

is typical for CHOMP. At the same time more freedom in cost function design is

obtained.

STOMP is given an initial trajectory, which is often just a straight interpolation

between start and goal configurations. Then, random samples are generated using

the initial trajectory as a mean. By doing so the space around initial trajectory

is explored. Each of the samples is evaluated with a cost function. At the end

the distribution of the costs is estimated and the mean and standard deviation are
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4 STOMP

adjusted to fit this distribution and minimize the cost. This procedure is similar to

the expectation maximization [33]. A process described above is a single STOMP

iteration. The method performs iterations until a termination criteria is met.

This procedure allows to obtain smooth trajectories which are ready to be ex-

ecuted without additional postprocessing. However, a lot of computations are

involved. Thus, an efficient representation of the robot and the environment is

required. STOMP approximates the robot bodies with a set of spheres. The en-

vironment is represented using Euclidean Distance Transform (EDT) [24] which

can be efficiently precomputed from point cloud obtained from a sensor, or from

any set of geometric primitives, such as spheres and parallelepipeds.

4.2 Algorithm

In STOMP the planning task is considered as an optimization problem. Thus,

the purpose of the algorithm is to find a trajectory which has the minimal cost

according to a given cost function.

The input of the STOMP is an initial trajectory vector θ ∈ RN which consists

of N equally spaced in time keyframes in joint space, and has a predefined fixed

duration T . In most simple cases it is a straight interpolation between a start

configuration xstart and a goal configuration xgoal. During the optimization process,

start and goal configurations remain unchanged. STOMP outputs an optimized

trajectory θoptimized. In order to keep the explanation simple, the algorithm is

presented for 1-dimensional case. However, in order to apply it to problem with

higher dimensions, the steps described below are applied for each dimension. Thus,

STOMP has a complexity linear in number of dimensions and can be scaled easily

for a task with arbitrary number of dimensions.

The optimization problem which STOMP attempts to solve can be formulated

as:

min
θ̃

E
[ N∑
i=1

q(θ̃i) +
1

2
θ̃>Rθ̃

]
(4.1)

where θ̃ = N (θ,Σ) is a noisy joint parameter vector, given that θ is the mean

and Σ is the covariance, q(θ̃i) is a defined state cost function which may include

components as: obstacle cost, torque cost, constraints cost. Each state θ̃i of the

trajectory θ is evaluated using this cost function. The term θ̃>Rθ̃ is a sum of

squared accelerations along the trajectory, where R is a positive semi-definite

matrix which represents control costs. In order to compute R, the authors use

a kernel A which produces acceleration θ̈ when multiplied by the joint position
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vector θ. Matrix A is defined using finite differencing [34] as:

A =



1 0 0 0 0 0

−2 1 0 . . . 0 0 0

1 −2 1 0 0 0
...

...

0 0 0 1 −2 1

0 0 0 . . . 0 1 −2

0 0 0 0 0 1


(4.2)

Thus, it holds that

θ̈ = Aθ (4.3)

θ̈>θ̈ = θ>(A>A)θ (4.4)

Finally, the R is defined as R = A>A. Therefore, it is ensured that θ̃>Rθ̃ is a

sum of squared accelerations.

The predecessor of STOMP, CHOMP is taking a derivative of the expectation

from equation 4.1 in order to minimize it. STOMP computes the gradient of the

expectation from 4.1 with respect to θ̃ instead:

∇θ̃

(
E
[ N∑
i=1

q(θ̃i) + 0.5θ̃>Rθ̃

])
= 0 (4.5)

By differentiating the second term θ̃>Rθ̃, we obtain:

E(θ̃) = −R−1E
(
∇θ̃E

[ N∑
i=1

q(θ̃i)

])
(4.6)

which can also be rewritten as E(θ̃) = −R−1δθ̂G, with δθ̂G defining the gradient

estimate

δθ̂G = E
(
∇θ̃

[ N∑
i=1

q(θ̃i)

])
(4.7)

Instead of analytical functional gradient, the authors propose an estimated gra-

dient formulated as follows:

δθ̂G =

∫
δθdP (4.8)
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The use of an estimated gradient is inspired by research in probability matching

[35] and path integral reinforcement learning [36]. This equation represents the

expectation of the noise δθ in the parameter vector θ̃ given the probability metric

P = exp(− 1
λ
S(θ)). The term S(θ̃) corresponds to the state dependent cost which is

computed as S(θ̃) = [
∑N

i=1 q(θ̃i)]. Finally, we can formulate the stochastic gradient

as

δθ̂G =

∫
exp

(
− 1

λ
S(θ)

)
δθd(δθ) (4.9)

STOMP utilizes the idea of path integral stochastic optimal control [36]. In

the path integral stochastic optimal control the purpose is to find controls, that

minimize the performance criteria, and thus, are optimal with respect to it. The

controls are computed for each state xti, as δû =
∫
p(x)δu where δu are sampled

control costs and p(x) represents a probability for each trajectory τi which starts

in xti and ends in xtN . This probability is computed as p(x) = exp(−S(τi)) where

S(τi) is the cost of the path τi = (xti, . . . , xtN). It is possible to see that probability

p(x) is inversely proportional to the cost S(τi). That is why the trajectories with

high costs will influence the optimal controls much less than trajectories with lower

costs. The steps presented above are performed for each state xti until the terminal

state xtN is reached. After this the controls are being updated: u = u+δû. Finally,

the new set of trajectories is generated.

The assumption that state cost of each state S(θi) depends only on the param-

eters θi and does not depend on the previous or future costs is made in order

to simplify the problem and achieve faster convergence. Thus, the problem is

simplified to S(θi) = q(θi). Complete STOMP for R1 algorithm is presented in

Algorithm 1.

In order to produce adequate trajectories, the noise ε has a zero mean normal

distribution with a covariance matrix Σε = R−1. This allows to obtain samples

ε with low control costs εTRε. Moreover, such a sampling insures that trajectory

smoothly starts at the start configuration and smoothly converges towards the goal

configuration. This sampling strategy allows to exclude many certainly unfeasible

trajectories before spending computational time to evaluate them. At the same

time decent exploration of the state space is still possible.

4.3 Cost Computation

The cost for the trajectory θ consists from state cost and control costs. The

procedure of control cost computation is described in the previous section. The
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Algorithm 1: STOMP for R1

Given:
Start and goal positions x0 and xN
Initial trajectory vector θ
A state-dependent cost function q(θi)
Precompute:
A - finite difference matrix
R−1 = (A>A)−1

M = R−1

while Cost Q(θ) has not converged do
// Sample K random trajectories
for k = 1 to K do

θ̃k = θ + εk, where εk = N (0, R−1)

// Evaluate each sample, compute probabilities
for k = 1 to K do

for i = 0 to N do

S(θ̃k, i) = q(θ̃k, i)

P (θ̃k, i) = e−
1
λ
S(θ̃k,i)∑K

l=1[e−
1
λ
S(θ̃l,i)]

for i = 1 to N − 1 do

|δθ̃|i =
∑K

k=1 P (θ̃k, i)[εk]i

// Smooth noisy parameter update and update trajectory
δθ = Mδθ̃
θ = θ + δθ
// Calculate trajectory cost
Q(θ) =

∑N
i=1 q(θi) + 1

2
θ>Rθ

state cost is computed as

q(θ) =
T∑
t=0

qo(θt) + qc(θt) + qt(θt) (4.10)

where qo(θt) is obstacle cost, qc(θt) is constraint cost and qt(θt) is torque cost.

Below we discuss each cost component in more detail.

Before the planning process has been started, the EDT is computed from a point

cloud obtained from a sensor. The robot body B is approximated with a set of

spheres b ∈ B. Given such a setup, collisions as well as contact distances may be

computed fairly fast. An obstacle cost, which penalises collisions and being close
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to the obstacles is defined as

qo(θt) =
∑
b∈B

max(ε+ rb − d(xb), 0)||ẋb|| (4.11)

where ε is the minimum allowed distance to the obstacle, rb is the radius of the

sphere b and d(xb) is the distance to the closest obstacle relative to center of the

sphere b obtained from the signed EDT. The term is multiplied by the magnitude

of the workspace velocity of the sphere ||ẋb|| which ensures that planning algorithm

will not move quickly through high obstacle cost regions in order to reduce the

total cost.

In order to satisfy the constraints on the position or orientation of the gripper

the authors introduce the constraint cost which is computed as

qc(θt) =
∑
c∈C

|vc(θt)| (4.12)

where c ∈ C is a constraint from the defined set of constraints C and vc is a

function which determines the extent of constraints violation in configuration θt.

Torque minimization allows to perform manipulation tasks in energy efficient

way. Moreover, it ensures that motors do not experience load beyond their limits.

It is possible to compute torque for each joint in any point of time, given position

velocity and acceleration and dynamics model of the robot. The magnitudes of

the torques τ are summed together and added to the total cost function:

qt(θt) =
T∑
t=0

|τ |dt (4.13)

4.4 Analysis

STOMP does not use any gradient method explicitly. Instead, it utilizes a derivative-

free stochastic optimization method. This allows to construct a cost function with

parts which are not smooth and non-differentiable, such as position/orientation

constraints and joint torques. These constraints are of significant importance

when performing manipulations with objects, especially with heavy ones. In ad-

dition, STOMP has complexity linear in a number of dimensions. This gives an

opportunity to effectively scale it and apply to problems of higher dimensionality,

when additional joints, such as torso yaw or pitch, are involved into the planning.

In contrast to gradient-based approaches, STOMP does not suffer from local

minima. Also, a smaller amount of iterations is necessary in order to converge, as

much larger steps can be made during the exploration of the configuration space.
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4.4 Analysis

STOMP outputs trajectories which are smooth and do not contain unneces-

sary movements, which is the case for many other planners. Thus, it does not

need an additional postprocessing of the trajectory and hence, the runtime of the

whole manipulation planning pipeline is reduced. Moreover, as STOMP is an

optimization-based algorithm, the resulting trajectories are not only smooth but

also optimal with respect to constraints introduced in the cost function.

However, STOMP has several major disadvantages. As it uses a stochastic

approach, it needs to evaluate many samples in order to perform the exploration.

This leads to large amount of cost computations which is an expensive operation.

The speed of convergence as well as finding a feasible solution heavily depends on

the initial trajectory.

The duration of the trajectories is fixed. That is why even when the end-

effector should move for a short distance, the trajectory is executed very slowly.

Also this setting does not allow to optimize the velocities of the trajectory and

hence, minimization of torques can be performed better. In addition, fully discrete

policy for cost computation requires large amount of keyframes, i.e. 100. This not

only slows down the planning process due to many unnecessary cost computations

but also leads to trajectories which are uncomfortable to execute due to enormous

amount of keyframes.

Considering the advantages of the STOMP, discussed in this section, i.e., ability

to optimize non-smooth costs, linear complexity, ability to overcome a local min-

ima, we have chosen this algorithm as the basis for our work. In order to achieve

better performance, we propose a series of modifications which will allow to re-

duce the planning time, rise the success rate and improve the torque minimisation

altogether with ability to optimize the execution time of the trajectories.
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5.1 Overview

We have chosen the STOMP algorithm as a starting point for our research of an

arm manipulation planning in a disaster scenario in order to meet the requirements

formulated in Section 1.2. In this section we give an overview of modifications we

have made to the original algorithm.

In the original STOMP, the state cost function is applied separately to each

keyframe of a trajectory. This allows to threat each keyframe independently and

speed up the process of convergence. However, it requires a substantially large

amount of keyframes in order to guarantee that the generated trajectory is collision

free and there are no places, where there is an obstacle in between two collision-

free keyframes which leads to a collision when the trajectory is executed. In the

original STOMP 100 keyframes are usually used. This large amount of keyframes

introduces a heavy computational load, which is not necessary in many cases. For

instance, this amount is reasonable for sufficiently long trajectories, meanwhile in

case of very short trajectories, most part of the computations are not necessary.

However, it is not possible to determine in advance the length of the trajectory,

and hence, the amount of keyframes necessary to check the whole trajectory for

collisions. Thus, there is an obligation to use a large amount of keyframes. More-

over, this discrete cost computation makes estimation of continuous characteristic

of a trajectory, such as duration, difficult.

In contrast to the original STOMP, we propose to compute the state cost not

for separate keyframes, but for consequent transitions between them. Given a

trajectory θ which consists from N keyframes the state cost can be computed as:

q(θ) =
N−1∑
i=0

q(θi, θi+1) (5.1)

Where q(θi, θi+1) is a cost for a transition from the configuration θi to the con-

figuration θi+1. This policy for cost computation allows to take full control over

amount of collision checking and other expensive operations. Given a pair of

keyframes, it is possible to determine the exact amount of intermediate configura-
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tions which have to be checked in order to cover the transition from θi to θi+1 with

required precision. This ensures that only necessary amount of computations is

made. This model allows to plan for trajectories with substantially smaller amount

of keyframes: 10-20. Note, that we keep the second term of the original cost (Equa-

tion 4.1) of the STOMP, while replacing the first term, which corresponds to the

state cost. The second term penalizes non-smooth trajectories, which is essential

for our purposes as well. Thus, an optimization problem now can be formulated

as:

min
θ

E
[N−1∑
i=0

q(θi, θi+1) + γθ>Rθ

]
(5.2)

Where γ ∈ [0, 1] is the importance weight of the control cost.

Introduced policy of a trajectory state cost estimation fits better the continuous

nature of the trajectory, as we evaluate not separate configurations, but conse-

quent transitions between them instead. During the evaluation of a transition it

is possible to estimate the duration of the transition, and hence, attempt to min-

imize it. In order to achieve this, we extend the configuration vector by adding

one more dimension for joint velocity used during the transition from the previ-

ous keyframe to the current one. Given the velocity it is possible to estimate the

duration of the transition for each consequent pair of the keyframes. We intro-

duce an additional term for the transition cost: a duration cost, which penalizes

long durations. Given this cost component, STOMP now is able to find optimal

velocities which allows to obtain trajectories with lower durations. This provides

an access to accelerations along the transition as well, which allows to estimate

torques and optimize the trajectory taking this feature into consideration as well.

In contrast to the original STOMP, where a duration of a trajectory is fixed, our

modification is capable of choosing optimal path/velocity values which lead to

optimal duration/torque relation.

Furthermore, the runtime may be reduced by optimizing the world representa-

tion. We keep a signed EDT as a main tool for the world modeling. Further we

refer to the signed EDT as signed distance field, as this term is more appropri-

ate when talking about data structure itself. We make an assumption that while

performing a manipulation task, the robot base is stable and does not move. In

contrast to the original algorithm, where single distance field is used for the envi-

ronment representation only, we split up the robot representation into a dynamic

and a static part. Geometry of the static part is precomputed and stored into

a separate distance field. Meanwhile the distance field which represents the en-

vironment must be recomputed for each consequent use of the optimizer, as the

26



5.1 Overview

environment may change, the static part of the robot remains the same. Thus, the

amount of the calculations required to take place before the optimization process

starts, is reduced.

Overall, we introduce the transition cost function which can be formulated as

follows:

q(θi, θi+1) = qo(θi, θi+1)+qlim(θi, θi+1)+qc(θi, θi+1)+qd(θi, θi+1)+qt(θi, θi+1) (5.3)

Where qo is an obstacle cost, which penalizes collisions and being close to the

obstacles, qlim is a joint limit cost which penalizes violations of joint limits, qc
is a constraint cost which penalizes any custom constraints of the end-effector

position/orientation, qd is a duration cost, which penalizes long durations and

qt is a torque cost which penalizes high torques. Each cost component function

qj(θi, θi+1) is designed so that:

qj(θi, θi+1) =

{
λj · qk(θi, θi+1), if θi → θi+1 is valid

� 1, otherwise
(5.4)

Where λj ∈ [0, 1] is an importance weight of the cost component qj, and

qk(θi, θi+1) ∈ [0, 1] is a cost for a valid transition defined for the cost compo-

nent qj. The term θi → θi+1 corresponds to a transition from the configuration

θi to the configuration θi+1. A transition from θi to θi+1 is considered to be valid

with respect to the cost component qj if there are no critical violations of the

constraints defined for qj. For example, a collision with an obstacle is a critical

violation with respect to the obstacle cost function, which makes this transition

not valid. At the same time, having the closest obstacle in the distance of x > 0

meters makes the transition valid. A much larger cost for not valid transitions

is designed so that the algorithm can not decrease costs of the other transitions

in order to compensate a high cost for invalid transition. This design encourages

a removal of any invalid transitions from the trajectory during the optimization

process. So, by this cost design we attempt to overcome an issue mentioned by

Anca D. Dragan et. al: “We noticed in our experiments that the CHOMP obstacle

cost is less correlated to the feasibility of a trajectory than expected. A feasible

trajectory that stays close to obstacles will accumulate more cost than an infea-

sible trajectory that collides slightly at one point, but on average stays further

away from obstacles” [19]. At the same time, when the transition is valid, the

cost component is scaled within interval [0, 1], which allows to utilize a system of

weights λj ∈ [0, 1] in order to set a relative importance of the cost components.
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This approach gives an opportunity to obtain optimized trajectories according to

a specific criteria, depending on a concrete situation and task.

Overall, the modifications described above focus on decreasing the runtime, as

well as on adding new features, such as optimizing a duration of a trajectory and

controlling the character of the trajectory by the system of flexible cost weights.

In the next sections we describe each component of the cost function. We finish

this chapter with a brief description of the implementation of the optimizer.

5.2 Cost Function

In this section the proposed transition-based cost function is presented. It consists

of the five main components: obstacle, joint limit, constraint, duration and torque

costs. In the next subsections we describe each cost component in detail.

5.2.1 Obstacle Cost

One of the most important requirements for any robot motion is being collision

free. This ensures that a goal is reached and both robot and its environment

experience no harm. We present an obstacle cost which penalizes any collisions

and proximity to any obstacles as well. In this section the procedure of the obstacle

cost computation is described in details.

Collision checking is a very expensive operation in terms of computational time.

During a motion planning process, large amount of configurations must be checked

for collisions. That is why, in order to perform the planning in a reasonable amount

of time it is necessary to choose a proper model for collision checking, as well as

ensure that only necessary checks are performed. In the next subsections we first

describe our environment model and then continue with the cost computation

itself.

World Representation

In our work we adopt the approach of world representation from the original

STOMP. It utilizes the assumption that the environment is static and precomputes

all necessary information for the collision checking by means of a signed distance

field.

We utilize this assumption even more by dividing the robot body into static

and dynamic parts. As static parts do not move during the planned motion, their

geometry is precomputed as well and stored into a separate distance field. This

allows to reduce the amount of computations needed before the motion planning
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Figure 5.1: The collision approximation of the Momaro robot used in the exper-
iments. Green: dynamic part; Blue: static part; Yellow: real geometry.

process started, as this distance field must be computed only once, meanwhile the

environment distance field is computed before each planning task.

The dynamic part of the robot body which takes part in the planned motion

is approximated with a set of spheres as in original STOMP. During the collision

checking each sphere is checked for collision with environment and with static part

of the robot by means of corresponding distance fields. The example approximation

of the Momaro centaur-like robot [37] which is used in the experiments is shown

in Figure 5.1. The dynamic part of the robot, which is represented by the left and

right arm in this case, is approximated with a set of spheres (green). The static

part, which is the robot base and trunk, is approximated with two parallelepipeds

(blue). Note, that for the static part it is possible to use representation of any

complexity, as it is precomputed only once. We use very simple representation in

this example.

In order to perform collision checking within dynamic part (i.e., self collisions

of moving parts) of the robot, the spheres are divided into collision groups. It is
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necessary to exclude collision checks between groups which physically can not col-

lide, so Allowed Collision Matrix (ACM) is introduced. This matrix only contains

pairs of the groups which potentially can collide. Each group has a simplified

model which is represented as a sphere with radius and center, that covers all

other spheres which form this group. By performing the collision check between

two groups using their simplified models, it is possible to reduce the computations

by excluding full collision checking for collisions which are definitely not present.

If the simplified collision check fails, a full check is done by checking each pair of

spheres from two groups for a collision.

To conclude, our world model consists of the following components:

• Environment - represents a surroundings of a robot with a signed distance

field.

• Robot static part - represents parts of the robot body which do not take part

in manipulation with a signed distance field.

• Robot dynamic part - represents parts of a robot body which take part in the

manipulation as a set of spheres. This set is divided into collision groups in

order to perform self collision checking.

Cost Computation

Given the model of the environment and the robot, as described in the previ-

ous subsection, one may perform collision checking and estimate obstacle cost

qo(θi, θi+1) for the transition from the configuration θi to the configuration θi+1.

In order to estimate obstacle cost, it is necessary to determine a set of interme-

diate configurations Θ which covers the space between θi and θi+1 with a defined

precision. To achieve this, first we apply forward kinematics to θi and θi+1 and

determine the link which moves for the longest Euclidean distance d. In most

cases this link is the end-effector, but sometimes it may be some other link, for

example elbow. Dividing the distance d by a given precision p gives the amount

of the intermediate configurations which must be checked for collisions in order to

cover transition from θi to θi+1 with required precision. These configurations are

equally spaced along the transition. Precision p defines the distance between each

pair of intermediate configurations along the transition.

This approach allows to perform only necessary collision checks. It guarantees

that the transitions along the trajectory are checked for collisions with required

precision independently of the length of the trajectory. This allows to speed up

the planning process and to safely plan for the trajectories with lesser keyframes
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amount. However, there is no need to check intermediate configurations with

high precision for transitions when obstacles are far away, as such transition is

guaranteed to be collision free. At the same time, in situations when the transition

is performed in the area with high density of the obstacles, it may be necessary

to check the transition with much higher precision. Needless to say that if a very

high precision is used constantly, it results in a significant growth of the runtime.

At the same time lower precision may be insufficient in certain scenarios.

This leads us to the idea of utilizing a variable precision. In situations when

the obstacles are far away, a low precision is used, while in situations when the

obstacles are close, a high precision is used. In order to estimate the precision

necessary for the particular transition, we estimate the distance dobst to the closest

obstacle as: dobst = min(dist(θi), dist(θmid), dist(θi+1)), where dist(θi) is a function

which estimates the minimum distance to the obstacle for a given configuration

θi and θmid is a middle configuration between θi and θi+1. Given a finest allowed

precision pmax, it is possible to compute the precision p necessary for the particular

transition from θi to θi+1 as:

p = max
(dobst

2
, pmax

)
(5.5)

Distance to the closest obstacle for the configuration θi is estimated as follows:

dist(θi) = min
sj∈S

(EDT (sj)− rsj) (5.6)

Where S is a set of spheres used to approximate a robot body. rsj is a radius

of the sphere sj and EDT (sj) is the distance from sphere center sj to the closest

obstacle, obtained from the distance field. Position of each sphere sj is determined

by applying forward kinematics using configuration θi.

Consequently, given the length d of the transition from θi to θi+1, we obtain the

amount of uniformly spaced intermediate configurations K = d
p
. This allows to

decrease the computational time necessary by performing less checks in situations

with low obstacle density and at the same time - increase reliability of the planner

by performing a high-precision collision checking in situations with high obstacle

density.

Note, that the parameter pmax have to be chosen carefully, as too low maximum

precision pmax may lead to undetected collisions in some of the cases when dobst
2

<

pmax and the collision model as well as the environment have small elements with

dimensions � pmax. The finest precision pmax is introduced in order to prevent

unreasonably large number of intermediate configurations K → ∞ which occurs

in cases with dobst → 0. Introducing pmax in Equation 5.5 prevents this from
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happening. It is noticeable, that one can always use constantly high precision p

instead of the variable precision.

After that, it is possible to define a set Θ which consists of K uniformly spaced

intermediate configurations obtained by interpolation from θi to θi+1. We define

the obstacle cost for the transition from θi to θi+1 as:

qo(θi, θi+1) = max
(
qo(θj)|∀θj ∈ Θ, qo(θi+1)

)
(5.7)

Where qo(θi) is the obstacle cost which determines how feasible the particular

configuration θi is. Accordingly, the obstacle cost for the transition is defined as

maximum cost detected along this transition. Obstacle cost qo(θi) is computed as:

qo(θi) =


0 if dobst ≥ dmax

λo ·
(
1− dobst−dmin

dmax−dmin

)
, if dobst > dmin ∧ dobst < dmax

Co · |dmin − dobst|, otherwise

(5.8)

Where λo ∈ [0, 1] is the importance weight for the obstacle cost, dmin is a

minimum acceptable distance to the obstacles and dmax is a maximum distance

to the obstacles which the algorithm should take into consideration. dobst is the

distance to the nearest obstacle which is calculated by function dist(θi) using

world representation described in the previous subsection. Co � 1 is a predefined

constant which ensures that unfeasible configurations have a very high cost and

thus the algorithm attempts to make them feasible in the first place. The term

Co is multiplied by |dmin − dobst| in order to indicate larger violations with larger

cost. In case when configuration θi is feasible and the distance to the nearest

obstacle fall in the interval (dmin, dmax], the cost has smooth values in the interval

[0, 1]. The equation used to calculate this value can be found at the second row

in Equation 5.8. This allows to optimize trajectories which already do not have

critically close configurations to the obstacles with dobst < dmin. It results in a

trajectories which have comfortable distances to the obstacles. If such behaviour

is not needed, one can set dmax = dmin.

Distance to the closest obstacle dobst is being computed taking into account both

self-collisions and collisions with the environment. By using spheres for the robot

approximation and utilizing the signed distance field it is possible to check for

collision and obtain contact information very fast. In addition, spheres allow to

check collisions against each other faster than more complex geometric primitives

as parallelepipeds or prismatoids.

Overall, a presented way of computation of the obstacle cost effectively elimi-

nates unnecessary cost computations and hence, allows to reduce the runtime. At
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the same time, the use of variable precision for obstacle cost estimation of the

transition between two configurations allows to detect collisions reliably.

5.2.2 Joint Limit Cost

This cost penalizes violations of joint limits. Normally, actuators of a robot have

limited range of possible positions. Violation of these limits may cause damage

to the motors. Another consequence is that the motion is not executed properly

which results in the failed task and potential damage to the robot and/or the

environment. Thus, it is essential to account for the joint limits. As any other

cost component in our cost function, joint limit cost estimates the cost for a given

transition from a start configuration θi to a destination configuration θi+1. The

joint limit cost qlim is formulated as:

qlim(θi, θi+1) = max
(
qlim(θj)|∀θj ∈ Θ, qlim(θi+1)

)
(5.9)

Where the set Θ is the set of intermediate configurations which describe the

transition from θi to θi+1 with a given constant precision p. the constant precision

is used, as this cost does not depend on the environment geometry. Other than

that, the procedure is analogous to Equation 5.7.

Given upper and lower bounds on joint positions θmax and θmin and a configu-

ration θk we first find if there exists any violation such that ∃θjk ≤ θjmin ∨ ∃θ
j
k ≥

θjmax : ∀θjk ∈ θk, where θjk is the position of the joint j in the configuration θk. We

define the deviation ∆θk from the limits as follows:

∆θk = min
θjk∈θk

(∆θjk) (5.10)

Where ∆θjk is computed as:

∆θjk =

{
min(θjmax − θ

j
k, θ

j
k − θ

j
min) if θjk ≥ θjmax ∨ θ

j
k ≤ θjmin

min(θjk − θjmax, θ
j
min − θ

j
k), otherwise

(5.11)

In case when there are no violations of joint limits, we record the magnitude

∆θk of the smallest deviation from the limits (second row of Equation 5.11). Note,

that if there is a violation of a joint limit, ∆θk has negative value, or is zero. If

there are not violations, ∆θk has a positive value.
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Given these values, we define the joint limit cost as:

qlim(θk) =


Cc · (|∆θk|+ 1) if ∆θk ≤ 0
1
ε2

∆θ2
k − 2

ε
∆θk + 1, if 0 < ∆θk < ε

0, otherwise

(5.12)

Where Cc � 1 is a predefined constant which ensures that not feasible configura-

tions have a very high cost and thus the algorithm attempts to make them feasible

in the first place. The term ε is the magnitude of a considered safety margin. We

do not include a corresponding importance weight λlim, as in our opinion, this cost

is of significant importance in any case and can not be assigned a low priority. It

is known that even though positions which are closed to the motor limits are valid

and reachable, they still may cause harm to the motors. That is why we employ a

smooth cost to penalize positions which are close to the joint limits. This cost is

based on a quadratic function, such that largest considered deviation of ε leads to

a cost value close to 0, meanwhile deviation close to 0 leads to a cost value value

close to 1. This approach allows to produce trajectories which do not contain joint

positions which are very close to the limits. In our work we use the value ε = 0.1

rad. The visualization of the cost function for the case 0 < ∆θk < ε is shown in

Figure 5.2. One can observe the smooth grows to wards the maximum value of 1.

5.2.3 Custom Constraint Cost

This cost component is similar to the joint limit cost and preserves any other

custom constraints on joint positions/orientations which are set specifically for

concrete task. Mostly it is used to constraint the orientation of the end-effector

when manipulating objects, for which preserved orientation is of high importance.

We apply the same procedure for constraint cost qc, as for joint limit cost: given

a set of configurations Θ, we compute the cost qc for each of them. Then, the

maximum cost is chosen as the cost for the transition. For any custom constraints

on joint position or link orientation we check if there are any violations, as de-

scribed in Equations 5.10 and 5.11, but limits which define custom constraints are

used. If violations exist, we record the magnitude of the largest violation ∆θk.

and compute a cost for the custom constraints as follows:

qc(θk) =

{
Cc · (|∆θk|+ 1) if ∆θk ≤ 0

0, otherwise
(5.13)

Where Cc � 1 is a predefined constant which penalizes any violations of custom

constraints. We do not include a corresponding importance weight λc, as this cost
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Figure 5.2: Cost qlim for approaching a joint limit, with ε = 0.1.

has either a very large value, which penalizes violations, either is 0. This way of

the constraint cost computation allows to optimize trajectories with respect to an

arbitrary custom constraints which depend on a specific task.

5.2.4 Duration Cost

While planning of trajectories, using modern algorithms and hardware, often takes

less than a second, an execution of the motion may take much larger fraction of

time. That is why it is possible to sufficiently speed up the plan-execute pipeline

by optimizing the duration of the trajectories during the planning process. In this

subsection we present another component of our cost function, which penalizes

long durations, and hence - allows to minimize a duration of a trajectory.

In order to have a mechanism to influence the duration of the trajectory, a linear

velocity of a joint with longest path is added into a configuration space. We make

an assumption that a duration necessary to execute a trajectory is bounded by

the duration necessary to execute the trajectory of the joint with longest path.

Thus, before evaluating a trajectory, a joint with longest path is determined, and

consequent duration estimation is performed with respect to this joint. By doing

so we avoid increasing dimensionality of a problem by a factor of two, which would

result in large runtime growth. The extended configuration now consists of a joint
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vector and a single value for the velocity: θ̃i = 〈θi, v〉. For the transition from θ̃i
to θ̃i+1 the linear velocity v from the configuration θ̃i+1 determines the velocity

which will be attempted to be reached by the joint with longest path overall.

In case of a continuous trajectory execution, it makes sense to plan trajectories

which start with non-zero velocity. This may be very useful if a frequent replanning

method is utilized. In this case, if during the movement it is necessary to replan

because the environment or the task have changed, it is highly desirable to be

able to change the movement “on the fly”, without stopping the robot first. Our

modification of STOMP algorithm provides this opportunity. Of course, it is

possible to plan for the trajectories which end with non-zero velocity as well.

However, the Momaro robot that we use for the experiments currently has other

trajectory execution policy. At each keyframe the velocity is 0, so the trajectory

is being executed as a series of small movements between the keyframes with a

complete stop at the end of each movement. That is why, in this case the velocity

for the current transition does not depend on the velocity from previous transi-

tions and overall the velocity along the trajectory does not have to be smooth. In

the original STOMP sampling of the exploration noise for each dimension of the

configuration is done using covariance Σ = R−1. This allows to produce trajecto-

ries which are smooth and have low control cost. An example of this noise can be

seen in Figure 5.3. It is possible to see that all trajectories proceed smoothly from

the start to the goal. However, for the described case of “interrupted” trajectory

execution, this behaviour is not needed. Thus, we restrict the exploration noise of

last dimension, which represents the velocity, to be sampled with identity covari-

ance Σ = I. Moreover, we exclude this dimension from control cost computation

as it does not have to be smooth.

We prevent the velocity from exceeding the limits 0 < v < vmax on the stage

of noisy trajectories generation by clipping it to that limit. Given the desired

velocity for the transition from θ̃i to θ̃i+1 it is possible to estimate the duration t

necessary for this transition. The algorithm of the duration estimation depends

on trajectory execution control. In Algorithm 2 we present the algorithm for

continuous trajectory execution. The velocity is assumed to change uniformly

during the transition. Distance d corresponds to the largest displacement between

configuration θ̃i and θ̃i+1.

Before the optimization process started, we estimate a maximum acceptable

duration tmax for one transition in order to have an ability to scale duration cost

from 0 to 1. We define tmax as: tmax = ttotal
N−1

, where N is the amount of keyframes

and ttotal is a duration of the initial trajectory executed with substantially low

velocities.

In order to provide an additional level of safety for optimized trajectories, we
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Figure 5.3: Noise samples obtained with 0 mean and covariance Σ = R−1. The
figure is taken from [1].

introduce an additional constraint on a velocity which depends on a distance to

obstacles. The closer the robot is to the obstacle, the lower is the velocity. This

constraint is represented as a set V of tuples of a form 〈v, d〉, where v is the

maximum allowed velocity when the distance to the nearest obstacle is less than d.

For example, a set V may be composed as: V = (〈0.15, 0.2〉, 〈0.25, 0.3〉, 〈0.5, 0.5〉),
where the first tuple 〈0.15, 0.2〉means that velocity v > 0.15 rad/s is not acceptable

when distance d to the closes obstacle is < 0.2.

Finally, we determine the duration cost as:

qd(θ̃i, θ̃i+1) =


Cv, if ∃〈v, d〉 ∈ V : v > vθ̃i ∧ d < dθ̃i
λd · t

tmax
, if t ≤ tmax

Cd · (t+ 1), otherwise

(5.14)

Where λd ∈ [0, 1] is the importance weight for the duration cost, Cd � 1

and Cv � 1 are predefined constants, which penalize exceeding of the duration

limit and obstacle-velocity constraints respectively. The terms vθ̃i and dθ̃i are the

velocity and the distance to the closest obstacle respectively, measured for a set of

intermediate configurations Θ between θ̃i and θ̃i+1, which was defined previously

when estimating the obstacle cost. Using this approach, we manage to optimize

the execution time of the trajectories, and hence, speed up the overall execution of
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Algorithm 2: Duration estimation for continuous trajectory execution

Given:
Initial velocity v1

Target velocity v2

Distance to travel d

Estimate duration(v1, v2, d):
if v1 = v2 then

return d
v1

else

a =
v22−v21

2d

return v2−v1
a

the task. Velocity included into configuration space allows to estimate the torques

better. We discuss our cost for torque minimization in the next section.

5.2.5 Torque Cost

The last component for our cost function is a torque cost. The purpose of this com-

ponent is to penalize high torques and ensure that torque limits are not exceeded.

It is very important to do so when objects with large masses are manipulated.

Such situations happen especially often in disaster scenario, for example when a

robot has to clear blockages. In this subsection we describe how the torque cost

is computed.

In order to evaluate torque cost of the transition from θ̃i to θ̃i+1 we find a set

Θ̃ of intermediate configurations which are uniformly distributed along transition

with given precision p. We define the torque cost for the transition as:

qt(θ̃i, θ̃i+1) = max
(
qt(θ̃j)|∀θ̃j ∈ Θ̃, qt(θ̃i+1)

)
(5.15)

The torques τ affecting motors are expressed in function of joint positions and

their derivatives: τ = f(θ, θ̇, θ̈). As we have the linear velocity for the transition

included into a configuration space, it is possible to estimate the velocity and

acceleration for each intermediate configuration as well. As described in previous

section, only the velocity of joint with longest path is available. Thus, we use this

velocity for all joints with non-zero path during this transition and 0 velocity and

acceleration for joints with zero path. By doing so we avoid underestimating the

amount of torque. Given dynamic model of the robot it is possible to estimate

the torques. We use the RBDL library for this purpose. Recursive Euler-Newton
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algorithm [38] is used in order to iteratively estimate the torque for each joint

of the kinematic chain. Once the magnitudes τ of the torques are computed, we

define the torque cost of the configuration θ̃i as:

qt(θ̃i) =

Ct · (maxj∈J(τj − τmax) + 1), if τj > τmax

λt ·
∑

J τj
J · τmax

, otherwise
(5.16)

Where λt ∈ [0, 1] is the importance weight for the torque cost, τmax is a maximum

allowed torque for a single motor, and Ct � 1 is a predefined constant. In the first

row of the equation above, we penalize any exceeding of the maximum allowed

torque by large cost � 1. In the second row we produce a cost ∈ [0, 1] which

penalizes high torques. By employing this cost function we achieve effective torque

minimization. In addition, any exceeding of the limit is removed in a first place

as the cost in these cases is � 1.

5.3 Optimization Process

In the previous subsections the cost function which attempts to optimize different

criteria of the trajectories was presented. However, this complex function leads

to a complex solution space with many disjoint local minima. In this subsection

we describe a strategy which is employed when applying STOMP to optimization

tasks in order to find feasible trajectories more effectively.

The most severe barrier on the way to planning a feasible trajectory are ob-

stacles. They may form very sophisticated geometries which make planning for

kinematic chains with many DOF a challenging task due to complex configuration

spaces. In most cases when there are obstacles present in the working area, the ini-

tial trajectory for a planning algorithm is going directly through obstacles. Thus,

finding a collision-free trajectory is the first problem which must be solved by the

planner. However, our cost function consists of five components, some of which

are not relevant for this phase of planning. These components are the duration

and torque costs. While the algorithm attempts to leave the region of collisions,

the values of these costs are not important, because current solution is not feasible

anyway. Accounting for these cost components at this stage would lead to longer

convergence, as in some regions components may pull the trajectory into different

directions. Moreover, these components slow down the process of optimization, as

they introduce additional computations.

In order to solve this issue, the process of optimization is split into two consec-

utive phases. In the first phase a cost function consists only of three components:
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obstacle cost, joint limit cost and constraint cost. We refer to this function as sim-

plified. Optimization with simplified cost function continues until a valid collision-

free trajectory is found. After this, the configuration space is being extended with

linear velocity, and the second phase of the optimization starts. In this phase

the full cost function with five components is used. This phase continues until

termination criteria is met. We describe termination criteria below.

The termination criteria are:

• Maximum iterations - a total maximum number of iterations which algorithm

is allowed to execute.

• Maximum iterations after valid solution - a maximum allowed number of

iterations to be performed after a valid solution with no critical violations is

found.

• Maximum iterations with no improvement - a maximum number of iterations

to be executed without significant improvement of the cost. The improve-

ment is measured in percents relative to the cost of the current best solution.

If after given number of iterations the cost of the best solution improved less

than for given percent amount, algorithm terminates.

Due to use of the complex cost function the search space has many disjoint local

minima. In certain situations the algorithm can get stuck in these regions. In order

to prevent failures, or unnecessary exhaustive runs in these cases, we apply the

algorithm in iterative manner. If the algorithm can not improve the solution during

given amount of iterations, and current best solution is not valid, the optimization

process starts from scratch. However, in this case, the best solution from previous

run is used as initialization. Much larger initial noise standard deviation tend to

explore previously unseen areas and lead to a found valid solution. The amount of

replanning attempts M is predefined and we typically use the value M = 5. If a

valid solution is still not found after M attempts - the problem is not solved and

the algorithm terminates. This procedure is shown in Algorithm 3.

This approach shows better results than attempts to solve the problem in one

exhaustive run of the algorithm. The separation of the optimization process into

two parts with simplified and full cost function respectively allows to decrease the

time of the optimization, meanwhile keeping all the benefits of the full cost, as it

will be discussed in Section 6.3.3.
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Algorithm 3: STOMP modified

Given:
Initial trajectory θ
Termination criteria t
Number of replanning attempts M

STOMP-MODIFIED(θ, t,M):
i = 0
while isV alid(θ) = false ∧ i < M do

Run stomp with simplified cost:
θ = STOMP(θ, t, 〈qo, qlim, qc〉)
i = i+ 1

if isV alid(θ) = false then
return θ

else
Extend the trajectory with velocity dimension:
v = 0.1 // default velocity
∀θi ∈ θ do: θi = 〈θi, v〉
Run stomp with full cost:
θ = STOMP(θ, t, 〈qo, qlim, qc, qd, qt〉)
return θ

5.4 Implementation

In this subsection we briefly overview the implementation of the algorithm de-

scribed above. We use a C++ as a main programming language and the whole

system is designed under the Robot Operating System (ROS) [39] framework. The

original implementation of STOMP was updated in order to be compatible with

ROS Indigo. We keep the overall architecture of the system but exchange certain

components with our implementations. The class diagram of the system is shown

in Figure 5.4.

Classes Stomp, PolicyImprovement and CovariantMovementPrimitive were adopted

from the original STOMP implementation and only minor changes were made to

those classes. The other classes were implemented from scratch. Below we give a

brief overview of functionality of each class.

• StompNode - is the highest class in the hierarchy. It represents the ros

node and implements all necessary ros interfaces. It receives an optimization

request and performs a high-level optimization using the Stomp object as

described in Algorithm 3. It has some useful methods to provide the feedback

about optimization process and final result.
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Figure 5.4: Class diagram of the implemented system. Only the main classes are
shown.

• Stomp - the core class of the STOMP algorithm. It uses the objects of Pol-

icyImprovement, CovariantMovementPrimitive and CostComputer in order

to perform STOMP iterations.

• PolicyImprovement - implements main operations of the STOMP algorithm.

This class handles generation of new trajectories, as well as generation of

probability-weighted convex combination from a set of trajectories. Finally,

in this class the parameter updates after each iteration are determined.
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• CovariantMovementPrimitive - computes control costs, handles initialization

of a finite difference matrix.

• CostComputer - transtion costs which are described in previous sections are

computed in this class. It uses WorldModel class in order to obtain all data

necessary to compute the costs.

• WorldModel - represents a world model as described in section 5.2.1. It uses

MoveIt [40] library to compute forward/inverse kinematics. It utilizes an

implementation of a signed distance field from MoveIt as well. It uses RBDL

library to compute the torques.

5.5 Summary

In this chapter a proposed modification of the STOMP algorithm was presented.

In contrast to the original algorithm, where a state cost function is used, which is

applied independently to each keyframe in a trajectory, we introduce a transition

cost function, which is applied to consecutive transitions between the keyframes

of the trajectory. This allows to effectively control the amount of computations

made as well as to estimate a duration cost.

We describe each component of a new transition cost function in detail: obstacle,

joint limit, constraint, torque and duration components. In order to control the

duration of the transition, a linear velocity of a joint with longest path is included

into a configuration. In addition, this allows to optimize trajectories which start

and end with non-zero velocities. This feature can be beneficial for applying the

algorithm in a frequent-replanning manner.

Finally, a two-phased optimization is proposed. First phase lasts until collision-

free valid trajectory is found, or maximum allowed number of iterations is per-

formed. During this phase a simplified cost function, which consists only from

obstacle, joint limit and constraint components, is used. During the second phase,

the full cost is used (if duration and torque optimization is required by the task).

Optimization continues until termination criteria is met. Finally, we present short

description of the implementation of the algorithm.

43





6 Evaluation and Results

In order to measure the degree of success of our approach it is necessary to perform

certain experiments and evaluate obtained results. We compare our method with

three other algorithms: RRTConnect [8], Lazy Bi-directional KPIECE (LBKPIECE)

[41] from Open Motion Planning Library (OMPL) [42] and with STOMP-Industrial

from MoveIt Industrial [43]. In this chapter we first discuss our criteria for the

evaluation and the environment for the experiments, than we present the experi-

ments and the obtained results. Finally, we discuss the overall performance of our

method and outline its strengths and weaknesses.

6.1 Criteria

Our trajectory optimization algorithm is designed to optimize different features of

a trajectory. Thus, evaluation of it includes vast range of criteria. In this section

we present a list of criteria which we have chosen:

• Success rate. One of the most important characteristic of any planner/optimizer

is an ability to solve a planning task correctly. It is an essential requirement

for successful use of the algorithm. It must be tested especially scrupulously,

as STOMP is a stochastic approach, experiments with low number of trials

may not reveal possible failures.

• Runtime. Determines how quickly a given problem can be solved. A runtime

may limit solvable range of tasks significantly as some of the tasks require

a solution to be available in a very short amount of time. Another use

case of low-runtime algorithms is performing manipulation tasks in dynamic

environments with a help of frequent replanning.

• Trajectory length. In some situations planners may produce unreasonably

long trajectories, which makes them to be executed longer as well as intro-

duces higher load for the motors.

• Trajectory duration. In most cases a duration of a trajectory is much longer

than a planning time itself. That is why it is important to optimize the

duration as much as possible.
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• Torque minimization. Manipulation with heavy objects requires a minimiza-

tion of torques in order to reduce a risk of hardware damage.

This set of criteria allows to evaluate different aspects of a planner and to reveal

its advantages and disadvantages. In the next sections we describe a process of

evaluation and present the obtained results.

6.2 Experiment Environment

We perform the experiments in simulation on a desktop computer with following

specifications:

• CPU: Octa-core 4.00 GHz Intel Core i7-4790K

• RAM: 32 GB DDR3

• System type: 64-bit

• Operating system: Kubuntu 14.04 with 4.2.0-42 kernel

• ROS distribution: Indigo Igloo [44]

All evaluated algorithms run on a single core. Planning tasks are performed on

the Momaro centaur-like robot [37]. Momaro has four articulated compliant legs

which have a steerable wheels at the tips. This configuration makes the robot very

mobile and dexterous. However, an upper body is much more interesting in the

context of manipulation tasks. Momaro has two 7 DOF arms each equipped with

8 DOF gripper. In addition, the torso is able to rotate in a yaw plane. This setup

creates a large workspace which is important for the manipulation tasks. Momaro

robot is depicted in Figure 6.1.

The volume of a workspace covered and represented by a signed distance field is

2.0×1.5×1.5 m. The distance field has a resolution of 1.5 cm. The highest precision

for a collision checking of a transition is 1 check per 1 cm of a path. All start and

goal configurations used in the experiments are defined manually by a human. For

our modification as well as for STOMP-Industial a straight interpolation between

start and goal is used as an initialization for all the experiments.

6.3 Experiments

In this section we describe the experiments performed and present the obtained

results. We use the criteria from section 6.1 in order to evaluate our method and

to compare it against three chosen approaches.
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7DOF arm
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WiFi router

Figure 6.1: The Momaro robot, which is used for the experiments. The figure is
taken from [37].

6.3.1 Shelf

The first experiment represents a range of tasks, when there are certain obstacles

on the way, but obstacle-free area is quite large. It also represents a typical setup

of manipulation tasks when there is an object standing on a surface and the task

is to position the arm into a pre-grasp pose. An environment of this experiment

consists of a shelf with three cells 35×35×35 cm each. A thickness of shelf borders

is 3 cm. The robot is standing in front of the shelf with an arm in a neutral position

(Figure 6.2(a)). Except of the neutral configuration we also introduce three other,

where the hand of the robot is located inside the first, the second and the third

cell respectively. The scene as well as these configurations are shown in Figure 6.2.

This experiment consists of 12 tasks which are formed by all possible transi-

tions between the four configurations described above. Each task is performed

100 times in order to obtain reliable results. For each execution we record the

runtime, success/fail, and a trajectory length in joint space. Trial is considered to

be successful if it is collision free and there are no violation of joint limits or any
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6 Evaluation and Results

(a) Neutral configuration (b) Left hand in the first cell

(c) Left hand in the second cell (d) Left hand in the third cell

Figure 6.2: Four configurations which form 12 possible tasks for the shelf exper-
iments.

additional position/orientation constraints. When all trials were finished, average

over these values are calculated.

In order to cover the shelf environment as much as possible, two more series of

tasks of higher difficulty are performed. The set of configurations from above is

referred to as “Easy”. To make the task harder, the gripper is immersed deeper

into the cells, which produces a new configuration for each cell. The neutral

configuration remains the same. This setup makes the task harder as the gripper

must travel larger distance in a tight space of the cells. As in “Easy” experiment,

there are 12 tasks available. We call this test as “Hard”. The difference between

“Easy” and “Hard” configurations is shown in Figure 6.3. In “Hard” case the
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gripper is immersed 11 cm deeper into the cell.

(a) Gripper immersion in “Easy” case. (b) Gripper immersion in “Hard” case.

Figure 6.3: Difference between “Easy” and “Hard” configuration sets. In “Hard”
configurations set the gripper is immersed 11 cm deeper, which makes a planning
problem harder to solve.

Finally, an orientation constraint for the gripper is introduced. We keep the same

configurations as in “Hard” test, but now the gripper must hold the orientation

along whole trajectory, as if it was holding a glass with liquid which is unwanted

to be spilled. These motions are typically required for pick and place tasks when

an orientation of an object in space matters. Pitch and roll are constrained to

deviate no more than for ±0.2 rad from an orientation of an initial orientation.

This requirement makes the problem more challenging. We refer to this task as

“Hard constrained”.

We performed the tests described above using four algorithms: LBKPIECE,

RRTConnect, STOMP-Industrial and our method which is refereed to as STOMP-

New. The tests were preformed in simulation. We set the time limit for LBKPIECE

and RRTConnect to be 5 seconds. If there is no valid solution found after this

time elapsed, the trial is considered to be failed. We set the maximum iterations

number for STOMP-Industrial and STOMP-New to be 100. At each iteration

10 trajectories are sampled. An initial noise standard deviation is set to 0.6 for

both methods for each dimension. Trajectories optimized by our method have 10

keyframes between start and goal configurations, which results in 12 keyframes in

total. We made our best in order to tune the algorithms so, that they demon-

strate the best performance. While tuning of LBKPIECE and RRTConnect is

fairly simple, we can not guarantee that we managed to achieve the best tuning
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Table 6.1: Comparison of the success rate and average runtime of trajectory
optimization in the shelf experiment. The algorithms which realizations did not
support the features needed for the experiment are marked with “-” sign.

Difficulty level
Easy Hard Hard constrained

Algorithm
success

rate
runtime [s]

success
rate

runtime [s]
success

rate
runtime [s]

LBKPIECE 0.94 2.47 ± 1.08 0.93 2.46 ± 0.85 - -
STOMP-Industrial 0.87 0.87 ± 0.86 0.76 1.47 ± 1,01 - -

RRTConnect 0.97 0.29 ± 0.18 0.96 0.85 ± 0.58 0.97 1.22 ± 1.04
STOMP-New 1.0 0.09 ± 0.02 1.0 0.18 ± 0.11 0.99 0.28 ± 0.21

of STOMP-Industrial, as it is not straightforward to do so. In this experiment

we use simplified cost function in STOMP-New as other methods do not optimize

the duration or motor torques. Thus, we do not use these costs in order to obtain

a fair comparison. Both robot arm and torso yaw joint are involved in this task,

which results in a configuration with 8 DOF, where 7 DOF are coming from the

arm and 1 DOF - from the torso yaw joint respectively.

Overall, each test consists of 12 tasks, each task is attempted to be solved

100 times, which results in 1200 runs per test for each of the algorithms. The

measurements obtained are shown in Table 6.1 and 6.2. There are no results

for LBKPIECE and STOMP-Industrial for “Hard constrained” test as orientation

constraints were not realized in these implementations.

In Table 6.1 the average runtime and success rate of each algorithm are shown.

It is possible to see that algorithms except STOMP-Industrial and LBKPIECE

succeeded in almost all trials achieving success rate close to 1.0. However, the

average runtime differs significantly. The slowest method is LBKPIECE. It is

noticeable that for both “Easy” and “Hard” difficulties LBKPIECE spend ap-

proximately the same amount of time. Meanwhile, other algorithms experienced

growth of runtime with increasing difficulty. The second slowest algorithm in this

experiment is STOMP-Industrial, which has a noticeable improve in runtime in

comparison with LBKPIECE, having the lowest success rate at the same time. Our

approach together with RRTConnect have shown the best performance, keeping

high success rates and low runtimes. Our method achieved three or four times

lower runtime than RRTConnect in average. The average time for distance field,

utilized in STOMP-New computation was 0.033 s.

In Table 6.2 the average trajectory length in joint space for the “Easy” exper-

iment is shown. LBKPIECE and RRTConnect do not perform an optimization

of the trajectory during the planning itself. Instead, they pick the first valid so-
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Table 6.2: Comparison of the lengths of the trajectories in joint space, obtained
in the shelf experiment.

LBKPIECE RRTConnect STOMP-Industrial STOMP-New

Torso yaw 1.16 1.14 1.71 1.17

Shoulder yaw 2.37 2.18 1.87 0.96

Shoulder pitch 1.80 1.68 1.46 1.17

Elbow yaw 1.40 1.39 1.42 0.84

Elbow pitch 1.31 1.21 1.25 0.86

Wrist roll 4.41 4.53 2.03 0.83

Wrist pitch 1.18 1.10 0.83 0.44

Wrist yaw 1.06 1.00 1.03 0.62∑
14.69 14.23 11.63 6.89

lution found. Trajectory smoothing and removal of redundant waypoints takes

place in the postprocessing step. Thus, these algorithms produce relatively long

trajectories which sometimes have unnecessary manoeuvres. At the same time,

both STOMP implementations are optimization methods, hence their trajectories

are shorter. Due to use of different obstacle cost functions in STOMP-Industrial

and STOMP-New, the average trajectory length differs significantly. We observed

that trajectories obtained by STOMP-Industrial tend to avoid the obstacles with

large margins. There were no opportunity to tune the obstacle cost function of

STOMP-Industrial as there are no tunable parameters of this function available

in configuration files.

Overall, our approach demonstrated sufficient performance with respect to the

success rate, as well as RRTConnect and LBKPIECE. STOMP-Industrial was

outperformed by all other methods with respect to the average success rate. Our

method shown shorter runtime, which is achieved by effective world representation

as well as variable precision of collision checking.

6.3.2 Corridor

In this experiment we design a much harder task than previous one. While the

previous experiment represented tasks of moderate complexity, the purpose of this

experiment is to model a harder planning problem. With this task we are able to

analyse the performance of compared algorithms in a context of close to worst-case

difficulties.

An environment designed for this experiment consists from a narrow corridor

between two large obstacles. An initial configuration is positioned outside the

corridor, and a goal configuration is positioned directly inside the corridor (Figure
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(a) Viewed from behind. (b) Viewed from the front.

Figure 6.4: Goal configuration for the corridor experiment viewed from different
sides of the scene.

6.4). The obstacles are configured in a way that it is only possible to reach the goal

configuration by following the corridor during the whole trajectory. It is possible

to see that the corridor is narrow and the arm has very limited space in it. In the

middle of the corridor there is a ledge, so that it is not possible to just rotate the

torso, while keeping the arm in a static position. In order to reach the goal, the

robot must overcome the ledge by performing a manoeuvre inside the corridor.

As in the previous experiment, several difficulty levels are designed. In this

case they differ by the start configuration. We present two difficulty levels for

this experiment, which are “Easy” and “Hard”. The difference between them is

demonstrated in Figure 6.5. In the “Easy” variation, the start configuration is

chosen in a way that the arm is situated in front of the entrance to the corridor,

which makes it easier to find a path for methods which start planning with some

initial trajectory. In contrast, in the “Hard” variant, the arm is positioned very

close to the bottom obstacle, in addition it is extended downwards and the gripper

is rotated. In this scenario, a planning problem is much harder, as there is a larger

distance to travel and an additional manoeuvre is required in order to reach the

entrance into the corridor.

The parameters of the algorithms remain the same as in the previous experiment.

The only difference is the time limit for LBKPIECE and RRTConnect. For this

experiment we set it to be 10 seconds as the task is much harder. Iteration limit for

STOMP-Industrial and STOMP-New is set to 200. The same 8 DOF are involved

in this planning task. The experiment consists of 100 planning attempts for each

difficulty for each algorithm. Obtained average runtime and success rate are shown
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(a) “Easy” - the arm is in front of the entrance
to the corridor.

(b) “Hard” - the arm is extended downwards
and is pulled away from the entrance to the cor-
ridor.

Figure 6.5: Two variants of the start configuration for the corridor experiment.
Black: start pose; Yellow: goal pose.

Table 6.3: Comparison of the success rate and the average runtime of a trajectory
optimization in the corridor experiment.

Difficulty level
Easy Hard

Algorithm
success

rate
runtime [s]

success
rate

runtime [s]

LBKPIECE 0.65 6.97 ± 2.58 0.50 7.82 ± 2.58
RRTConnect 0.08 9.64 ± 1.27 0.06 9.71 ± 1.56

STOMP-Industrial 0.00 2.82 ± 0.07 0.00 2.85 ± 0.08
STOMP-New 0.78 1.89 ± 1.44 0.18 3.64 ± 1.29

in Table 6.3.

RRTConnect and STOMP-Industrial performed equally bad in both variations

of the experiment with a success rate close to 0. For the “Easy” experiment,

STOM-New shown the best success rate and average runtime. This is because in

this scenario a linear interpolation which is used as initial trajectory is quite close to

the desired path, so that STOMP-New is able to find a valid solution. LBKPIECE

shown similar success rate, but the runtime was much larger. However, in the

“Hard” scenario, relative performance of these two algorithms changed drastically.

With a bad initialization STOMP-New was not able to find a valid solution reliably

resulting in a low success rate of 18%. At the same time the performance of

LBKPIECE decreased in much lower proportion, staying at a fair 50% level. The
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(a) Viewed from the side. (b) Viewed from behind.

(c) Viewed from the front.

Figure 6.6: A feasible trajectory (green) for the corridor experiment in “Hard”
variation, viewed from different sides of the scene. Black: start pose; Yellow: goal
pose. Green line: trajectory of the end-effector.

example of a successful trajectory, obtained by STOMP-New for the “Hard” case

is shown in Figure 6.6.

This experiment demonstrates that the performance of STOMP-New depends

on the initial trajectory. Thus, in case of a hard tasks it does not provide a valid

solution reliably, without being provided with an initial trajectory which is close

to a feasible trajectory.. However, STOP-New shown a significant improvement

in comparison to the STOMP-Industrial version which was not able to solve the

problem at all. Overall, this experiment shows that our method is capable of

solving hard tasks given an initialization close to a feasible solution.
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Figure 6.7: Comparison of trajectories obtained with/without torque optimiza-
tion. The robot is assumed to hold 5 kilograms. Red: without torque optimization;
Green: with torque optimization. (a) Trajectories of the end-effector. Black: start
pose; Yellow: goal pose. With torque optimization the robot first rotates the torso
and only than extends the arm, which results in lower torque. (b) Magnitude of
the total torque. Without optimization (upper line) the torque grows faster and
reaches unnecessary high values. While with optimization (lower line) total torque
grows slower.

6.3.3 Duration and Torque Optimization

In this subsection we analyze the performance of a torque minimization as well as

a new feature of our modification: trajectory duration optimization. In addition,

we also demonstrate the capabilities of the system of flexible weights, which is

utilized in our cost function.

Torque Optimization

In order to demonstrate how toque minimization influences the resulting trajectory,

an optimization is performed. The initial configuration is a default position of the

robot with bended elbow. A final configuration in contrast has fully extended arm

and the torso is rotated in a direction of the arm extension. There are no obstacles

in the scene, which ensures that nothing restricts the movement of the robot. The

weight of the end-effector is being increased by 5 kilograms which imitates the

heavy object being held by the robot. The optimization is performed two times:

without torque minimization and with torque minimization, in order to emphasize

the difference. The obtained trajectories are depicted in Figure 6.7.

It is possible to see that there is a significant difference between two obtained tra-
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jectories. Without torque minimization the resulting trajectory moves uniformly

all the joints towards the goal, as this makes the trajectory smooth and quick

to execute. However, with torque minimization turned on, the trajectory follows

other policy. The arm in extended forward state experiences higher torques due

to the gravity force. That is why the optimizer avoids this effect by rotating the

torso first and keeping the arm bended. When this movement is finished, the arm

is extended by following the shortest path, which allows to overcome the problem-

atic region quickly. For instance, such movement is natural for a human moving a

heavy barbell.

In Figure 6.7(b) one can observe that the trajectory (red) which is not opti-

mized with respect to torques has total torque growing faster (upper line) than

total torque of optimized trajectory (lower line), which happens due to completely

extended arm. At the same time with torque minimization turned on, the total

torque is growing slower.

Duration Optimization

In order to demonstrate an effect of the duration cost component, an optimization

for a simple obstacle-free task is performed firstly. The optimization is done two

times: in the first case both initial and final velocities are set to 0 rad/s; in the

second case, start velocity is set to 0.7 rad/s and final velocity is 0 rad/s. This

simple experiment demonstrates an ability of our algorithm to be used not only

for usual cases, when the robot is still in the beginning of the motion, but also for

cases when the robot is already moving. This feature allows to use it in a frequent-

replanning manner in order to solve tasks in dynamic environments. In this and

the following demonstrations we consider continuous trajectory execution. The

resulting trajectories as well as planned velocities are shown in Figure 6.8. The

darker a segment of a trajectory is, the lower the velocity is.

One can observe that in both cases the velocity smoothly grows towards its

maximum allowed value, which is 1.0 rad/s in this case. After that, it stays on

this level for some time and than starts to go down until the target value is reached.

The trajectory which starts with 0.7 rad/s velocity has smaller duration, than the

trajectory which starts with 0 rad/s, which is an expected result. The trajectory

with 0 velocity has duration of 3.81 seconds, meanwhile the trajectory with non-

zero initial velocity has duration of 2.78 seconds, which results in a 1.03 seconds

surplus.

In order to show another interesting property of our cost function, we pick a

task, similar to one from the shelf experiment. We consider a continuous control

in this example as well. The velocity in the start, as well as in the end is 0 rad/s.
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(a) Trajectory with both start and goal ve-
locities being 0 rad/s.
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(b) Velocity vs time for (a).

(c) Trajectory with start velocity being 0.7
rad/s and goal velocity being 0 rad/s.
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(d) Velocity vs time for (c).

Figure 6.8: Example of a duration optimization for continuous trajectory exe-
cution. Black: start pose; Yellow: goal pose. The grey-scale lines represent the
trajectories of the end-effector. The brighter the segment is, the larger is the ve-
locity during that segment. In the first case (a) the initial and the goal velocity
are 0 rad/s. In the second case (c) the initial velocity is 0.7 rad/s. In both cases
the optimizer attempts to reach the maximum velocity and keep it as long as pos-
sible, before starting deceleration in order to minimize the overall duration of the
trajectory. However, as in (c) the velocity is high initially, there is less time spent
for acceleration, and hence, the overall duration is smaller.

The obtained trajectory is shown in Figure 6.9. It is possible to see that in the

final part of the trajectory the robot must move close to the obstacle. In order

to provide an additional level of safety, the optimizer decreases the velocity near

obstacles, which can be seen as a dark region in the end of the trajectory.

57



6 Evaluation and Results

(a)

0 1 2 3 4 5 6 7 8
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

ci
ty

 [r
ad

/s
]
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Figure 6.9: Duration optimization in a presence of obstacles. In the final part
of the trajectory the robot is forced to move close to the obstacle. In order to
make the movement safer, the optimizer chooses lower velocities in that region.
This makes an earlier deceleration necessary, which results in a trajectory with
longer duration, but with a higher safety level. (a) The grey-scale line represents
the trajectory of the end-effector. The brighter the segment is, the larger is the
velocity during that segment. It is possible to see darker segments in the end,
which correspond to deceleration near the obstacle. Black: start pose; Yellow:
goal pose. (b) Velocity vs time. It is possible to see a longer deceleration part
in the end, which is the outcome of a required lower velocities in the end of the
trajectory.

Cost Importance Weights

Finally, we demonstrate how all cost components work together orchestrated by

cost importance weights. In the first example we take typical task from the shelf

experiment described in Subsection 6.3.1. We change the weight of the obsta-

cle cost component in order to obtain trajectories with different levels of safety.

The obtained trajectories are shown in Figure 6.10. While the trajectory with

the value of obstacle cost weight 1.0 is the safest, as it moves the arm very far

from the obstacles, this trajectory involves the highest amount of movement and

is potentially the longest to execute. At the same time the trajectory with lowest

obstacle weight is the fastest to execute, but includes movements close to the ob-

stacles. Note that this experiment is performed with a simple cost to demonstrate

the behavior of the obstacle cost component. If done with full cost and non-zero

duration importance weight, the algorithm would avoid the obstacle with decent

margin, as movements close to the obstacles must be performed with low velocity,

which affects the duration negatively.
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Figure 6.10: Trajectories obtained with different obstacle cost importance weight.
Red: 0.0; Blue: 0.5; Green: 1.0. The larger the weight is, the larger distance to
the obstacles is being kept by the robot. Black: start pose; Yellow: goal pose.

In the next example, we take the task described earlier in this subsection. This

is the task for torque minimization, where the robot is holding a heavy object.

We change the weights for the torque and duration cost components and observe

different trajectories, which are shown in Figure 6.11.

With high torque importance cost weight and low duration cost weight, the

trajectory is the safest for the robot. However it is also the slowest, as torque

minimization avoids high accelerations, and as a consequence, high velocities. The

trajectory with both high duration and torque weights sacrifices torque minimiza-

tion in order to deliver the robot arm to its destination as fast as possible, but

still preserves torque limits.

Overall, the duration and torque cost components shown that they influence

trajectories in an expected way, allowing to achieve desired results. A system of

flexible cost weights provides even more freedom to the algorithms of higher level,

or to human operator in a sense that it is possible to choose different combination

of weights depending on a particular situation in order to obtain trajectories with

different features.
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Figure 6.11: Trajectories obtained with different torque/duration cost impor-
tance weights. Left: 1.0 torque, 1.0 duration; Right: 1.0 torque, 0.0 duration. The
grey-scale lines represent the trajectories of the end-effector. Black: start pose;
Yellow: goal pose. The darker a segment of a trajectory is, the lower is the velocity
during this segment.

Performance of Simplified and Full Cost

In order to estimate a runtime slow-down as well as possible success rate degrada-

tion when using full cost instead of simplified cost, we perform the shelf experiment

one more time using full cost. To remind, the simplified cost only includes obsta-

cle, joint limit and constraint components only and it is used in both shelf and

corridor experiments. We perform the experiment in the same fashion as it was

done first time. The comparison of the obtained runtimes is shown in Table 6.4.

A success rate remains the same as in the experiment with simplified cost, thus

we do not show it in the table. However, there is a difference in runtime, caused by

additional computations necessary to calculate additional cost components. For

both “Easy” and “Hard” unconstrained tests, the runtime grew for around 30%.

At the same time, in case of the test with orientation constraints, the runtime

growth reached 71% which is explained by many disjoint local minima caused by

the constraints, which requires more iterations to overcome. Overall, the runtime

growth is not critical and do not limit the cases in which our modification may
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Table 6.4: Comparison of average runtime for the shelf experiment using simpli-
fied and full costs.

Difficulty level

Easy Hard
Hard

constrained
Simplified cost 0.09 ± 0.02 0.18 ± 0.11 0.28 ± 0.21

Full cost 0.12 ± 0.04 0.23 ± 0.19 0.48 ± 0.32
Mean runtime growth 33% 28% 71%

be applied. The runtime with full cost is still lower than runtime of compared

methods which is shown in Table 6.1.

6.3.4 Real Robot

In order to prove that proposed method can be applied in reality, an experiment

with a real robot was performed. As well as in simulation, the Momaro robot was

used. An optimization with simplified cost only was performed, as fluid continuous

trajectory execution was not implemented at the time when the experiment was

performed. A distance field which represents the environment is computed from

data which is obtained from a laser scanner which is situated on the top of the

robot body.

The setup is shown in Figure 6.12(a). The robot is situated in front of a table,

with opened left hand. The left arm of the robot is in a default configuration,

which was used in previous experiments. The task is to reach a pre-grasp pose in

order to consequently grasp the blue object. However, the arm is positioned below

the surface of the table. Moreover, the occlusion of a direct way to the blue object

is increased even more by the yellow object. Thus, the optimizer has to construct

a manoeuvre in order to safely bypass the obstacles and successfully reach the blue

object. The execution of a constructed trajectory is shown in Figure 6.12.

An interesting feature is how the robot uses the torso yaw in order to obtain a

safer motion. It is possible to see in Figure 6.12(d) that the torso is rotated in

a direction of the arm extension. This allows to occupy a safer position before

reaching the pre-grasp pose and to minimize the risk of fingers colliding with the

blue object while approaching the pre-grasp pose. In Figure 6.12(e) it is possible

to see that the torso is rotated back to the neutral state, as it was defined by

the goal position. Finally, in Figure 6.12(f) it is depicted how the object is being

grasped and lifted from the table. Note, that the grasp motion and lifting motion

were executed manually and were not part of the planned trajectory. Our method

was used to plan the trajectory to reach the pre-grasp pose. Pre-grasp pose was
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(a) Initial position. (b) Trajectory execution.

(c) Trajectory execution. (d) Trajectory execution.

(e) Reached pre-grasp pose. (f) Successfully grasped and lifted object.

Figure 6.12: The trajectory of the left arm executed on the real robot.
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defined manually by a human.

This experiment shown that our method can be used on the real robot and

is capable of planning a feasible trajectories which allow to successfully perform

objective tasks.

6.4 Discussion

Overall, the results of the experiments shown that modifications which we intro-

duced in this work improve the STOMP performance and capabilities. A decreased

runtime gives an opportunity to utilize frequent replanning technique in order to

act in dynamic environments. At the same time, an improved cost function allows

to obtain more sophisticated solutions.

The first experiment with a shelf has shown that our modification of STOMP

is capable of holding the same high success rate as RRTConnect and LBKPIECE

have. At the same time, STOMP-New has a smaller runtime. Moreover, as

STOMP is optimization-based method, final trajectories are smoother and do not

include any redundant movements, which makes them to be ready for immedi-

ate execution on a real robot. This experiment demonstrated that for tasks with

moderate difficulty STOMP-New is able to find reliably a feasible solution even

when it is initialized with a naive straight interpolation between start and goal

configurations.

Second experiment with a tight corridor demonstrates the importance of an ini-

tialization for the STOMP algorithm. For tasks with a high difficulty, initialization

close to a feasible solution is needed for STOMP-New in order to solve a prob-

lem reliably. Our modification shown good performance with good initialization.

Moreover, even with not feasible initialization it was able to find a solution in

18% cases. With both good and bad initialization, our modification shown better

results than STOMP-Industrial. These two experiments demonstrate both strong

and weak sides of our modification.

Finally, duration and torque cost components together provide additional pos-

sibilities for the planning. While they do not affect the runtime significantly,

trajectories obtained with account for these components can be very helpful. In

particular, these components are required to effectively perform tasks which re-

quire manipulations with large weights. Moreover, duration optimization allows

to execute tasks faster, which is essential for any autonomous robot with limited

battery power. However, one should be aware of the fact that such a complex cost

which includes many components may lead to several different solutions of the

same problem with equal cost. In order to reliably obtain solutions which have
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desired properties, the costs should be prioritized distinctly with a help of cost

weights, as it was shown in the last series of the experiments.

The experiments show that our modification of STOMP is a feasible algorithm,

which can be used not only to optimize collision-free trajectories, but also to plan

trajectories from scratch effectively. Additional cost components introduce higher

flexibility and extend the range of tasks which can be solved by our method.
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To conclude the results of our work, first we the summarise contributions of this

thesis, then we discuss known limitations, and, finally, we present possibilities for

the future work.

7.1 Summary

In this thesis a manipulation trajectory planning problem has been investigated.

A method for efficient multicriteria arm trajectory optimization based on the

STOMP [1] algorithm is proposed. The proposed method has been evaluated

during series of experiments and its performance was compared against several

planning algorithms.

In order to speed up a cost computation and introduce additional criteria for

trajectory cost evaluation, the method of cost computation has been changed. In

original STOMP a cost of a trajectory is a sum of costs of all keyframes which

form the trajectory. This requires substantially large amount of keyframes in order

to reliably cover whole trajectory. In our work we propose to compute the cost

of the trajectory as a sum of costs of consequent transitions between keyframes.

This allows to avoid unnecessary computations, increase reliability and incorporate

additional criteria into the cost function. We introduce a duration cost which

allows to optimize a duration of a trajectory. We add an additional dimension

into configuration space, which represents a velocity of a joint with largest path

within a trajectory. This velocity acts as an additional instrument for influencing

the duration. As a result, the algorithm is capable of choosing optimal path and

velocity in order to minimize the duration. The algorithm is capable of minimizing

torque along the trajectory as well. This is of high importance for any task which

involves manipulation with substantial masses.

We design our own cost function, which consists from following components:

obstacle cost, constraint cost, torque cost and duration cost. In case when there is

no severe violations, such as collisions or violations of joint limits, etc., cost com-

ponent has a value in range [0, 1], which allows to scale the relative importance

of cost components using weights. This gives an opportunity to change proper-

65



7 Conclusion

ties of optimized trajectories based on a current situation and characteristics of

performed task.

Proposed method was evaluated in simulation and its performance was com-

pared against the following algorithms: RRTConnect, LBKPIECE and STOMP-

Industrial. We evaluated several criteria, including: success rate, runtime, trajec-

tory length and overall quality of a solution. Our method shown sufficient speed-up

in comparison to other evaluated algorithms, meanwhile maintaining high success

rate. The runtime was 4 to 5 times lower than the runtime of the fastest com-

pared method. At the same time, the trajectories obtained by our approach have

better quality, as it is optimization-based: trajectories obtained by our approach

are smooth and are shorter than the ones obtained by compared methods which

do not involve an optimization. In addition, we analyzed how the duration and

torque costs influence optimized trajectories, and observed the expected effects.

We measured the runtime growth caused by the additional costs and expansion of

the configuration space by the velocity dimension. For unconstrained tasks, the

observed growth is about 30% only, however in presence of orientation constraints,

the optimization was performed up to 71% slower. Nevertheless, the average run-

time of our approach is still smaller than average runtime of compared algorithms,

and it should be possible to utilize frequent-replanning approach. In addition, we

performed an experiment with a real robot, which shown that our method can be

successfully involved in real-world missions.

Overall, the presented approach demonstrated good performance and shown

several interesting effects in trajectory optimization. However, there are certain

limitations, some of which can be mitigated in future work.

7.2 Limitations

As STOMP [1] is an optimization-based algorithm, our modification inherits this

property. That is why the probability of finding a feasible solution as well as

computational time necessary, heavily depends on the initialization. In our exper-

iments we have shown that our modification may be used to plan from scratch

in case of tasks of moderate difficulty, using naive straight interpolation between

start and goal configurations as initialization. However, it was shown that for

tasks of higher complexity, a success depends on a quality of the initialization.

Another inherited feature of the original STOMP is a way of approximating

a robot. In order to speed up a collision checking, a set of spheres is used to

represent a geometry of the robot. Usually it is not possible to represent all the

details of robot geometry with a reasonable amount of spheres. Meanwhile in most
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situations it is acceptable, in cases when high precision of a robot model is needed,

this model may be insufficient.

In this work we assume that an environment around a robot, as well as the base

of the robot itself remain static during a trajectory optimization and its consequent

execution. This is insufficient in dynamic environments. Currently a possible way

to overcome this problem is to utilize a frequent-replanning technique, which can

be done according to estimated average runtime of our method.

In our modification a velocity for a single joint is optimized. Absence of velocities

and accelerations for each joint makes the torque estimation less precise than when

full velocities and accelerations are available.

7.3 Future Work

In order to mitigate some of the limitations discussed in the previous section, and

to improve the overall performance of presented method, several possibilities for

future work are proposed.

It is possible to increase a precision of a robot approximation by using more

complex geometric primitives than spheres. This would allow to extend a range

of tasks which can be solved reliably. Use of more complex shapes will increase a

computational complexity of a collision checking, and, hence, the overall runtime.

However, if the collision checking is performed using modern GPUs, the runtime

growth can be minimized.

Another aspect of world representation which may be improved is a distance

field, which represents a static part of the environment. Currently a fixed reso-

lution is used for the whole distance field. However, same as in case of a robot

approximation, in certain situations higher resolution is required. Unfortunately,

if applied to the whole distance field, such an operation will increase exponentially

the runtime needed to compute the distance field. In order to avoid this effect, it is

possible to utilize a multiresolutional distance field, where regions close to obstacles

have high resolution, meanwhile obstacle-free regions have lower resolution.

In order to make torque estimation more realistic, it is possible to estimate

velocities and accelerations for all the joints. Given the optimized velocity for

the joint x with longest path, one can use the duration necessary to execute a

transition for joint x as a bound for execution of other joints which travel for the

shorter path. This approach would allow to obtain more realistic velocities and

accelerations for the torque estimation.

Current implementation of our method uses single core. However, a cost com-

putation process may be parallelized, as cost of a trajectory consists of costs for
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transitions between keyframes, which can be computed independently. Potentially,

parallelization can decrease the average runtime of our method.

Overall, we consider several directions for possible improvement of our method

which may allow to mitigate some of the limitations.
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