
Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Robot Motion Planning with Value Iteration
Networks on Multiple Levels of Abstraction

Author:
Daniel Schleich

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Prof. Dr. Maren Bennewitz

Date: January 11, 2019

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract
While traditional motion planning approaches tend to extensive searches in com-
plex scenes, learning-based methods are promising to speed up the planning process
due to an increased scene understanding. Value Iteration Networks (VINs) learn
goal-directed behavior and generalize well to unseen domains. However, they do
not scale well to larger state spaces. This thesis aims to improve the scalability of
VINs by extending them to incorporate multiple levels of abstraction. In particu-
lar, only the vicinity of the robot is represented in full detail, while more distant
areas are represented in a coarser resolution. Information loss due to coarser rep-
resentations is compensated by the introduction of additional descriptive features.

We apply our method to 2D grid world planning tasks. Different design choices
are evaluated and our approach is compared against VINs and Hierarchical VINs.
The results show that our method improves the performance on large 2D grid
worlds.

To evaluate the applicability of our approach to real robot motion planning
tasks, we extend our method to 3D locomotion planning. We consider a robot
that can perform omnidirectional driving and has a certain footprint. Different
methods how to adapt our approach to this task are evaluated and the best net-
work architecture is integrated into a planning pipeline for the Centauro robot.
Experiments show that our method enables VINs to solve 3D locomotion planning
tasks.

Contents

1. Introduction 1

2. The Motion Planning Problem 3
2.1. Definition . 3
2.2. Evaluation Metrics . 3

3. Related Work 5
3.1. Traditional Planning Approaches 5
3.2. Learning-based Planners . 6

3.2.1. Markov Decision Processes and Value Iteration 8
3.2.2. Value Iteration Networks . 9
3.2.3. Hierarchical Value Iteration Networks 11

3.3. Abstraction . 12

4. Value Iteration Networks on Multiple Levels of Abstraction 13
4.1. Choice of Software Architecture . 13
4.2. Multiple Levels of Abstraction . 14
4.3. Network Architecture . 15

4.3.1. Abstraction Module . 16
4.3.2. Reward Module . 17
4.3.3. VI Module and Reactive Policy 19

4.4. Training Details . 20
4.5. Path Generation . 22

5. Adaption to 3D Locomotion Planning 23
5.1. Network Architecture . 23

5.1.1. Full 3D Architecture . 25
5.1.2. Independently Processed Orientation Channels 26
5.1.3. 2D Input . 27
5.1.4. 2D Input With Abstract Orientations 28

5.2. Training Details . 28

vii

Contents

6. Evaluation 31
6.1. 2D Grid Worlds . 31

6.1.1. Design Choices . 32
6.1.2. Final Results . 36
6.1.3. Path Generation with History 44

6.2. 3D Locomotion Planning . 46
6.2.1. Design Choices . 47
6.2.2. Integration For Centauro 49

7. Conclusion 53

Appendices 63

A. Detailed Test Results 63

viii

1. Introduction
Robot motion planning is a challenging problem for large or high-dimensional
configuration spaces. Traditional planning approaches, such as A* or RRT, become
computationally expensive for such queries since they do not understand the scene
and tend to extensive searches. Using learning-based planners in such cases is a
promising idea. They extract and process relevant information to assess a given
scene and derive a suitable action instead of searching through a large amount of
states which may result in shorter planning times.

In recent years, many works applied standard CNN architectures to robot motion
planning tasks by directly mapping a given scene to actions. However, these
networks simply react to their input by using convolutional layers to extract certain
features from the input map, and map these features via fully connected layers to
action probabilities. Thus, they have difficulties in understanding the goal-directed
behavior and generalizing to unseen domains.

Value Iteration Networks (VIN) address this issue by embedding an explicit
planning module into a neural network. This planning module is based on Value
Iterations and enables VINs to generalize better to unseen environments than
standard CNN architectures. However, VINs do not scale well to larger state
spaces since the number of required iterations within the planning module depends
on the state space size. Training time and memory requirement is increased for
larger state spaces. Hence, VINs are only suitable for small or low-dimensional
scenarios which does mostly not account to real world applications.

A common approach to deal with large and high-dimensional configuration
spaces is abstraction. It has been successfully applied to many different planning
approaches, such as planners based on A*-search or reinforcement learning. This
thesis aims to improve the performance of VINs to solve more complex problems
by extending it to employ an environment representation on multiple levels of ab-
straction. In particular, a detailed representation of the environment is only used
in the vicinity of the robot while more distant areas are described in a more ab-
stract representation. Here, abstraction is achieved by encoding the environment
map at a coarser resolution, while each cell is equipped with additional features
to compensate the information loss due to the coarser representation.

Describing distant areas of the environments at a more abstract level is an intu-

1

1. Introduction

itive approach, since detailed information about the environment is usually only
available in the vicinity of the robot and less detailed information is provided for
more distant areas. Additionally, using neural networks as a planning system may
decrease the system runtime by using parallel GPU computations. Furthermore,
this thesis investigates, whether VINs can be adapted to be used for real robot
motion planning tasks.

After giving a definition of the motion planning problem in Chapter 2 we dis-
cus related work, and give a detailed explanation of VINs and the underlying
fundamentals in Chapter 3.

In Chapter 4 we propose the new network architecture which combines VINs
with multiple environment representations on different abstraction levels and apply
it to 2D grid world planning tasks to compare against original VINs.

We offer different solutions to adapt our method to a 3D robot locomotion
planning task in Chapter 5. We consider a robot that can perform omnidirectional
driving and has a certain footprint, while possible actions are to move to one of
the eight adjacent neighbor states with fixed orientation, or to turn to the next
discrete orientation with fixed position.

Our proposed architecture and the different design options for applying the
method to 2D grid world and 3D robot locomotion planning are evaluated in Chap-
ter 6. Furthermore, we integrate the network architecture which achieves the best
performance for the 3D locomotion planning task into a planning pipeline for the
Centauro robot.

Finally, Chapter 7 gives a conclusion and points out possible future work.

2

2. The Motion Planning Problem

In this chapter, we give a definition of the motion planning problem and state
simplifications considered in this work. Furthermore, we give a definition of the
metrics used to evaluate the performance of the considered planning systems.

2.1. Definition
The general problem of motion planning can be posed as follows: Given the initial
robot pose s and the goal pose g, as well as geometric descriptions of the robot
and the environment, the planning system should output a sequence of consecutive
actions a0, . . . , aT which move the robot from s to g on a collision-free path. As
there may be multiple solutions, we are interested in those which minimize a given
cost function.

In this thesis, we consider a locomotion task with discrete state and action spaces,
where the environment information is given as an occupancy map. Furthermore, we
do not provide the system explicit information about the start pose but define that
the robot is initially located at the center of the map. This is no constraint to the
result as different start positions can be realized by shifting the map accordingly.
However, this enables us to reduce the resolution of the map dependent on the
distance from the robot as described in Section 4.2.

The planning system only outputs the next optimal action. A whole optimal
path towards the goal can be generated by iteratively calling the planner, each
time updating the input map according to the previously predicted action.

Figure 2.1 shows the general structure of the planning system.

2.2. Evaluation Metrics
To compare the performance of our approach against other learning-based planners,
we consider different evaluation measures:

Most important is the success rate, which describes whether the planner is able
to generate a successful path to the goal. Here, a path is considered successful if it

3

2. The Motion Planning Problem

Goal state

Environment map
(robot centered)

Planner First action

Figure 2.1: Setting of the planning system for a 2D grid world task.

reaches the goal without hitting any obstacles and within no more than twice the
number of actions compared to an optimal path, as determined by an A* planner.

We further evaluate the accuracy as a measure for the individual decision qual-
ity. Since our system is designed to learn form an expert planner, the accuracy
measures, how often the system chooses the same next action as the expert. Mind
that in many cases there is more than one optimal next action. Hence, there
occur cases in which the output of the network is different to the output of the
expert planner but the network still unrolls an optimal path although the accu-
racy measures a mistake. Nevertheless, we consider the accuracy to increase the
comparability to other works, which also consider this performance measure.

To evaluate the quality of the generated paths, we consider the difference be-
tween its length and the optimal path length. The path difference describes how
much longer the generated paths are in average compared to optimal paths. To be
able to compare between different environment sizes, the path difference is taken
relative to the path length. Here, we only consider successful paths.

Furthermore, we compare the runtime and graphics memory consumption for
training the planning systems.

4

3. Related Work

In this section, we discuss related planning approaches. We start by giving an
overview over traditional planners. Since these tend to extensive searches for
large and high-dimensional configuration spaces, we subsequently discuss possible
approaches to address this problem, i.e., learning-based planners and abstraction.
Value Iteration Networks, which are the starting point for the method proposed
in this work, are described in more detail.

3.1. Traditional Planning Approaches
Robot motion planning is often done using search-based or sampling-based ap-
proaches. A common method is to discretize the configuration space into a grid
and use graph-based search algorithms to obtain an optimal path. The A* al-
gorithm (Hart, Nilsson, and Raphael 1968) is an informed search algorithm com-
monly used for such tasks. It is an extension of Dijkstra’s algorithm (Dijkstra
1959) which uses a heuristic function to expand the most promising nodes first,
thus guiding the search towards the goal. While discretizing the configuration
space into a fine-resolution grid results in large search spaces and thus in huge
memory consumption and runtime, using grids of coarse resolution may result in
suboptimal solutions or existing paths may not even be found due to discretiza-
tion errors. Cell decomposition methods (as in Kambhampati and Davis 1986) and
multi-resolution approaches (Behnke 2003) discretize the environment into cells of
multiple sizes. This results in smaller search spaces and speeds up the planning
process.

Sampling-based methods quickly explore large and complex configuration spaces
by connecting randomly sampled configurations to form graphs representing free
paths. Probabilistic road maps (PRM) (Kavraki et al. 1996) generate this graph,
which is called a road map, by sampling nodes in the configuration space and
connect them, if possible, to nearby nodes of the road map. Optimal paths are
found by searching this road map, e.g., using the A* algorithm. Rapidly exploring
random trees (RRTs) (LaValle 1998) connect the samples using a tree structure.
Therefore, no additional graph-based search algorithm is necessary since paths can

5

3. Related Work

directly be extracted from the tree. In contrast to PRMs, RRTs do not require to
completely connect already existing nodes to the sampled configuration. Instead,
they only grow the tree from the nearest node slightly towards the sample. Thus,
RRTs can be directly applied to nonholonomic and kinodynamic planning tasks,
while finding a complete connection between to configurations, as required for
PRMs, is challenging for such tasks. However, the paths obtained by RRTs usually
are not optimal. Karaman et al. introduce RRT* (Karaman and Frazzoli 2011)
which addresses this problem by locally rebuilding the tree every time new nodes
are inserted. Thus, optimal paths can be extracted.

Potential Field Methods (Khatib 1985) model the current robot configuration
as a particle which is influenced by a potential field. This potential field is a com-
bination of forces which attract the particle towards the goal and forces repulsing
it from obstacles. Planning can be done by performing gradient descent. However,
this may lead to sub-optimal local minima.

3.2. Learning-based Planners
Traditional planning approaches tend to extensive searches due to a lack of scene
understanding. One approach to increase the scalability is to increase this scene
understanding. Convolutional neural networks (CNN) have shown promising re-
sults for tasks such as image classification (Krizhevsky, Sutskever, and Hinton
2012) and robot perception (Schwarz et al. 2018). In recent years, CNNs have also
been applied to motion planning tasks. They have been used to directly derive
actions from state observations. In Bojarski et al. 2016, a CNN is trained to map
raw images to steering commands for an autonomous driving car.

Reinforcement learning (Sutton and Barto 1998) offers frameworks to handle
inaccuracies in motion execution and uncertainties in the environment. Further-
more, it enables robots to learn complex motions which are difficult to define
manually, i.e., learning robust controllers for an autonomous helicopter (Bagnell
and Schneider 2001). Reinforcement learning methods aim at generating a pol-
icy, i.e., a mapping from the current state to the next action, which achieves
a high long-term reward. Similar to search-based and sampling-based planning
approaches, reinforcement learning methods suffer from the curse of dimensional-
ity and do not scale well to larger state spaces and higher-dimensional problems.
Therefore, CNNs have also been used in the context of reinforcement learning.
Deep Q-networks (DQN) (Mnih et al. 2015) directly map state observations to
the expected long-term rewards for each action and thus learn to play Atari games
from visual input. In Levine et al. 2016, the policy is represented by a CNN, which

6

3.2. Learning-based Planners

is trained to map raw images to robot motor torques for real-world manipulation
tasks.

Although the results of these applications are impressive, such approaches sim-
ply react to their input by using convolutional layers to extract certain features
from the input map and map these features via fully connected layers to action
probabilities. Thus, they lack the capability of including long-term goal directed
behavior and generalization to unseen domains. To address this problem, explicit
planning modules can be embedded into the network.

Universal Planning Networks (UPN) (Srinivas et al. 2018) learn useful latent
state representations from images of the current scene and the desired goal scene.
They infer motion trajectories by performing gradient descent planning and iterat-
ing over action sequences in the learned internal representations. UPNs are capable
of solving robot motion planning tasks, even with more than two dimensions. How-
ever, considered environments are rather small since the gradient descent planner,
which is embedded in the forward pass of the network, is time consuming. This
causes long training times and hinders scaling to larger environments. Impres-
sively, UPNs are able to generalize to modified robot morphologies.

Tamar et al. propose Value Iteration Networks (VIN) (Tamar et al. 2016) which
embed an explicit planning module based on the Value Iteration algorithm into
the network. In the supplementary material of their work, Tamar et al. propose
Hierarchical Value Iteration Networks (HVIN) which perform Value Iteration on
different resolution levels to increase the performance on larger map sizes. Since
VINs are the starting point of the network architecture discussed in this work, we
will give a more detailed description of the underlying fundamentals and of VINs
and HVINs in Section 3.2.1 to 3.2.3.

VINs have also been applied in other domains. In Niu et al. 2017, Generalized
Value Iteration Networks are proposed, which work on arbitrary irregular graph
structures and can be applied to real world data like street maps. Gupta et al.
propose a Cognitive Mapper and Planner (CMP) (Gupta et al. 2017) to plan
actions from first person views. They combine a neural network, which processes
first person images to build up a latent representation map of the environment,
with an hierarchical planning module based on VINs, which plans on multiple
spatial scales. Khan et al. propose Memory Augmented Control Networks (Khan
et al. 2017) which apply VINs to partially observable environments. VINs are
applied to local observations to generate local policies. A global controller network
learns a history representation that is stored in external memory and combined
with the local policies to predict actions. QMDP-nets (Karkus, Hsu, and W. S.
Lee 2017) also handle partially observable environments. Similar to VINs, they
express value iteration through a CNN. Additionally, they combine it with a second

7

3. Related Work

neural network which implements a Bayesian filter to update the current belief of
the agent state.

3.2.1. Markov Decision Processes and Value Iteration
In this section we describe the underlying fundamentals for VINs. Markov Deci-
sion Processes (MDPs) are standard models for decision making and planning in
stochastic environments (Bellman 2013 [1957]). An MDP is a tuple (S,A,R,P , γ),
consisting of the following components:

• A set of states S,

• a set of actions A,

• a reward function R : S × A → R which assigns each state-action pair a
real-valued reward,

• transition probabilities P , where P(s′|s, a) denotes the probability of the
next state s′ given the current state s and action a, and

• a discount parameter γ ∈ [0, 1].

The goal is to find a policy π, i.e., a mapping from current state to next action,
which results in high long-term rewards. One common algorithm to find such
an optimal policy is Value Iteration (VI) (Bellman 1957). For each state s a
state value V π(s) is calculated which denotes the expected long-term reward when
starting in state s and following the policy π:

V π(s) := Eπ

[
∞∑
t=0

γtR(st, at)|s0 = s

]
. (3.1)

Here, the use of the discount parameter γ enables to weight immediate obtained
rewards stronger than future rewards. The VI algorithm approximates the optimal
value function V π∗ , i.e., the value function corresponding to the policy π∗ which
results in the highest possible expected long-term rewards:

V π∗
(s) := max

π
V π(s). (3.2)

This is done by iteratively applying the Bellman equation: Regarding the optimal
policy, the expected long-term reward for a state equals the expected long-term
reward for taking the optimal action in this state. Following this idea, an arbitrary

8

3.2. Learning-based Planners

initial policy π is chosen and two steps are alternated: First, each action is eval-
uated by doing a one-step lookahead to compute the expected long-term reward
Q when starting in state s with action a and afterwards following the policy π,
which is

Q(s, a) = R(s, a) + γ
∑
s′

P(s′|s, a)V π(s′). (3.3)

Here, the sum runs over all possible states s′ to which the application of action
a in state s may lead. Second, following the idea of the Bellman equation, the
expected reward for the state s is set to the expected reward of the best action for
this state, i.e.,

V π(s) = max
a∈A

Q(s, a). (3.4)

In the following, we will refer to the application of Equation (3.3) followed by
Equation (3.4) as one Bellman update. It is known that the state-value function
V and the action-value function Q converge to the optimal state-value and action-
value functions V π∗ and Q∗ after several Bellman updates. The optimal policy π∗

can then be obtained by always moving to the state with the highest state value,
i.e., choosing

π∗(s) = argmax
a∈A

Q∗(s, a). (3.5)

3.2.2. Value Iteration Networks

Value Iteration Networks (Tamar et al. 2016) mimic the VI algorithm by rewriting
it as a CNN. The neighborship relation of the state space S is assumed to follow
a grid structure. Hence, the state-value function V can be expressed as a map.
Instead of generating rewards that depend on state and action, we compute re-
wards that are obtained for entering a state independent of the performed action.
Therefore, we have one reward per state and can also write the reward function as
a map R. If we assume the transition probabilities P to be spatially invariant, we
can regard Equation (3.3) as a convolution over the old state-value estimates V

with the convolution kernel γP . This results in the action-values Q where we have
one channel per action. Updating the state-value estimates according to Equa-
tion (3.4) then corresponds to a max pooling operation over the action channel.
These two steps are iterated several times. Figure 3.1 (a) shows the VI Module,
which is the VI algorithm depicted as a CNN: Reward and state-value images are
stacked and fed through a convolutional layer resulting in action-values Q, from
which updated state-values are obtained via a max pooling operation over the ac-
tion channel. These are stacked with the reward image and the whole process is
iterated several times to obtain an approximation of the optimal state-values.

9

3. Related Work

(a) VI Module (b) VIN structure

Figure 3.1: Value Iteration Networks. Left: The VI Module expresses the VI algorithm
as a convolution and max pooling operation. Right: The complete VIN
architecture. From Tamar et al. 2016.

Expressing the VI algorithm as a CNN has the advantage that the whole oper-
ation is fully differentiable. Hence, it can be embedded into a neural network ar-
chitecture which can be trained end-to-end using standard backpropagation. This
enables us to learn the parameters of the VI algorithm, such as reward function
and transition probabilities.

Figure 3.1 (b) shows how the VI Module is embedded into a neural network
resulting in the complete VIN architecture: Input is an observation of the environ-
ment which is fed into a neural network to obtain the reward map R. This is used
within the VI Module to generate approximate state-values V . The transition prob-
abilities correspond to the convolution kernels of the VI Module. Subsequently, an
attention mechanism is used to extract the state-values for the relevant states, e.g.,
the neighboring states of the start state. These relevant state-values are finally
passed through another neural network which maps them to action probabilities.

VINs achieve good results for planning motion trajectories for simple environ-
ments of limited size like for the 2D grid navigation task presented in the original
VIN paper (Tamar et al. 2016). Although VINs have been applied to several
problems such as continuous control tasks or web page navigation, we only apply
VINs to discrete grid navigation tasks in this thesis. The experiments of Tamar
et al. show that, due to the embedded planning operation, VINs generalize well to
unseen environments. However, they have only been evaluated on grid sizes up to
28 × 28 cells. For real robot motion planning tasks, the planning system usually
has to deal with significantly larger and higher-dimensional state spaces. In order
to successfully predict the next action, the reward information has to be conveyed
from the goal to the start state. If the shortest motion trajectory between start
and goal state consists of k actions, at least k Bellman updates are needed since

10

3.2. Learning-based Planners

Figure 3.2: Hierarchical Value Iteration Networks with two levels. From the supplemen-
tary material of Tamar et al. 2016.

each update only passes reward information from one state to its next neighbors.
For large and high-dimensional grids, this leads to large computation graphs for
the gradients during backpropagation, resulting in long training times and high
memory consumption. Therefore, the number of states within the VI module is
limited.

3.2.3. Hierarchical Value Iteration Networks
To reduce the number of necessary Bellman updates, Tamar et al. propose Hierar-
chical Value Iteration Networks (HVIN) in the supplementary material of Tamar
et al. 2016. Value iteration is first performed on a down-sampled copy of the in-
put map to generate rough state-value estimates, which are up-sampled and used
as initialization for another value iteration module working on the full resolution.
Mind that only the state-value map but not the reward map is up-sampled. To
be able to successfully avoid collisions, a different reward map for each resolution
level is generated. For the highest resolution level, the used reward map is learned
from the full resolution input map. Figure 3.2 shows the structure of HVINs for
two levels, though this model can be extended to multiple hierarchical levels. The
lowest resolution level uses the same number of Bellman updates as proposed for
original VINs with a similar number of cells. Since no details for the number of
Bellman updates for the higher resolution levels are given by Tamar et al. , we
decided to choose it equal to the down-sampling factor. Thus, we ensure that the
reward information from all neighbors of a lower level cell is conveyed to all its
refined cells.

Especially for larger grid sizes, HVIN need significantly less Bellman updates
compared to VINs. However, down-sampling the input image results in informa-
tion loss. In contrast to the method proposed in this thesis, this is not compen-

11

3. Related Work

sated. Furthermore, all levels operate on the whole environment size resulting in
only slightly decreasing memory requirements.

3.3. Abstraction
For complex and high-dimensional tasks, traditional planning approaches tend
to extensive searches resulting in huge memory consumption and runtime. One
possible method to increase the scalability of such approaches is to reduce the
state space size. Abstraction is an established method to achieve this, while keep-
ing the resulting information loss small. Abstract states unify multiple detailed
states. This can be realized through coarser resolutions or lower-dimensional rep-
resentations. In contrast to multi-resolution approaches, the loss of information is
compensated by additional features which increase the representation’s semantics.
In Klamt and Behnke 2018 the search-based approach for the high-dimensional
problem of hybrid driving-stepping locomotion planning (Klamt and Behnke 2017)
is extended to plan on multiple levels of abstraction which results in significantly
shorter planning times while the result quality stays comparable.

Abstraction is also used in the field of reinforcement learning. In Kulkarni et
al. 2016, temporal abstraction is used to generate an efficient space to explore
complicated environments.

12

4. Value Iteration Networks on
Multiple Levels of Abstraction

In this chapter, we describe the general method of extending VINs to incorporate
multiple levels of abstraction. We introduce the chosen network architecture and
motivate the design decisions for applying the method to 2D grid world planning
tasks.

4.1. Choice of Software Architecture
To decide which learning-based planning approach to use as a starting point for
the method proposed in this thesis, we implemented VINs and Universal Planning
Networks (UPNs) for 2D grid world path planning tasks. For this task, we do not
consider the robot orientation or the footprint. Thus, a robot pose corresponds to
a single grid cell.

We adapted VINs such that the start pose always is located at the center of the
map. As in the original VIN paper, information about the goal pose is given by a
one-hot goal map. Additionally, we employed VINs with three levels of abstraction
consisting of one, two and six features. We stacked the three abstraction maps
and corresponding goal maps and applied the VIN architecture to the resulting
map. However, within the VI Module, the max pooling operation over the action
channel was performed independently for each abstraction map.

We trained VIN and their extension to three abstraction levels on 35000 different
training scenes which were generated by placing obstacles of random number, size
and position into grid worlds of size 32 × 32. The test set consisted of 5000
different scenes. This experiment showed that VINs are capable of solving the
tasks we address in this work and that they can profit from using multiple abstract
environment representations.

UPNs are designed to learn from environment images and to solve continuous
control tasks. Input for the original implementation are RGB-images of the initial
scene and the goal scene, with a resolution of 84 × 84 each. For each, initial and
goal scene, we used the occupancy map stacked with a one-hot map where the

13

4. Value Iteration Networks on Multiple Levels of Abstraction

robot position is marked, and up-sampled them to a resolution of 64 × 64. We
applied UPNs to the same task as VINs but they did not learn successful paths for
our generated input data. Therefore, we also tested UPNs on grids of size 8 × 8,
which is similar to the grid world task of the original UPN paper (Srinivas et al.
2018). However, they did not learn successful paths for this task, too. There are
two possible reasons:

First, during training, the provided expert actions describe movements to one of
the eight adjacent grid cells. Since UPNs are designed to solve continuous control
tasks, it it possible that these movements are too large to be correctly predicted
by our UPN implementation.

Second, the runtime per training epoch of UPNs is significantly higher compared
to the runtime of VINs. This is due to the iterated gradient computation within
the forward pass of UPNs. Furthermore, the structure of UPNs is more complex
resulting in an increased number of trainable parameters. Therefore, a larger
amount of training data and more training iterations may be necessary. It is
possible that UPNs generate better results for significantly increased amounts of
training data and training time.

However, as VINs showed promising results and outperform UPNs with respect
to result quality, runtime and data efficiency, we decided to use VINs as a starting
point for our work.

4.2. Multiple Levels of Abstraction
As already stated in Section 3.2.2, VINs do not scale well to larger state space sizes
due to the increased number of necessary Bellman updates. To be able to plan for
larger environment sizes while keeping the number of states small, we introduce
additional, abstract environment representations. In the vicinity of the robot,
the planner needs precise environment information at a high spatial resolution to
avoid collisions when planning the next robot action. For more distant areas, less
detailed information is sufficient: Instead of knowing the precise obstacle position
within these distant areas, we only need to know whether we can traverse the area
in a certain direction. Thus, we encode the environment information for more
distant areas at a coarser and more abstract resolution.

We define three levels of abstraction with a constant number of cells but de-
creasing resolution. Level-1 has the original input resolution but only covers the
vicinity of the robot. For Level-2, the resolution is halved resulting in a four times
larger covered area. This step is repeated to obtain Level-3. Hence, Level-3 covers
an area which is 16 times larger than the Level-1 area. The spatial arrangement

14

4.3. Network Architecture

Level-1 Level-2 Level-3

Resolution

Features

Figure 4.1: The areas covered by the different abstraction maps.

of the three representations is depicted in Figure 4.1.
In contrast to HVINs, the information loss due to coarser representations in

higher abstraction levels is compensated by introducing additional features for
each abstract cell. While each Level-1 cell only carries the information whether
the cell is occupied or not, we could encode additional features for each Level-2
cell, describing the possibility to traverse the cell in different directions and even
more features for traversing possibilities of each Level-3 cell. However, instead
of manually defining such features, we let the network learn them. Each cell of
Level-2 and Level-3 can be represented at full detail using four and sixteen features,
respectively. However, we are interested in coding the cells in a more compact way.
Thus, we define the number of features for each cell of Level-1, Level-2, and Level-3
to be one, two, and six, respectively.

4.3. Network Architecture
In this section, we apply our method to plan shortest paths for a point-like agent
in 2D grid worlds. As actions, the agent can move to one of the eight adjacent
neighbor cells. This planning task is similar to the one from the original VIN
paper (Tamar et al. 2016) and is used to evaluate our approach against VINs and

15

4. Value Iteration Networks on Multiple Levels of Abstraction

1@8×8
1@8×8
1@8×8

Multilevel goal maps

Abstract environment
maps

6@8×8
2@8×8

1@8×8

Reward
Module

Goal
map

Occupancy
map

32× 32

32× 32

Abstraction
Module

6@8×8
2@8×8

1@8×8

Multilevel
reward maps

VI
Module

Reactive
Policy

Action
probabilities

1@8×8
1@8×8
1@8×8

Multilevel
state value maps

Figure 4.2: Network architecture for 2D grid world planning.

HVINs in Chapter 6.
Input to the network is an occupancy map of the environment and an equally

sized one-hot goal map, which only contains zeros except for the goal cell. In
contrast to original VINs, we do not provide the system explicit information about
the start pose, but define that input maps are always robot centered. Thus, we are
enabled to keep the spatial arrangement of the different abstraction levels constant.
The network structure is depicted in Figure 4.2. In the following, we give a detailed
explanation of the different modules.

4.3.1. Abstraction Module
In a first step, the Abstraction Module processes the input environment map to
three, equally sized abstract environment maps. The Level-1 map is extracted as a
patch around the center of the occupancy map. A convolution generates the Level-
2 representation with halved resolution from the input map. While the Level-2
map is again extracted from the map center, the whole Level-2 representation
is processed by another convolution to obtain the Level-3 map. The goal map
is processed similarly. However, we do not use convolutions but max pooling
operations with the same kernel size and stride. For each abstraction level, we
thus obtain a one-hot goal map with one channel, which has the same resolution

16

4.3. Network Architecture

Level-3 Map
6@ 8× 8

Level-2 Map
2@ 8× 8

2@16×16

Occupancy Map

Level-1 Map
1@ 8× 8

1@32×32

conv. conv. 6@8×8

Figure 4.3: Abstraction Module. Both convolutions use kernels of size 2×2 with a stride
of 2. The goal map is processed using max pooling operations with the same
parameters instead of the convolutions.

and covers the same area as the corresponding abstraction map. The Abstraction
Module is depicted in Figure 4.3.

4.3.2. Reward Module
Subsequently, the abstract environment maps and the multilevel goal maps are fed
into the Reward Module (Figure 4.4) to generate rewards for each state. Since the
transition probabilities learned by VINs are spatially invariant, the information
about valid actions for a given state cannot be represented by these transition
probabilities. Instead, VINs overcome this issue by learning suitable rewards which
punish the choice of invalid actions, i.e., moving to occupied cells, and therefore,
discourages the network to choose those actions. However, this relies on the fact
that the validity of an action only depends on the target state. For the cells within
our higher-level abstraction maps, this is not true. Since we have multiple features
per abstract cell, it might, e.g., be possible that an abstract map cell can be entered
from one direction but not from another which is encoded in the features. Same
applies to the action start cell which may only allow actions to certain directions.
Hence, the validity of an action depends on both, target and start state. Following
the idea of punishing invalid actions, we need rewards that consider the multiple
features of the start and target cell of an action. We model this by extending the
reward map to the number of features of the corresponding abstraction map.

There are two different options how to process the abstraction maps to rewards:
Processing each abstraction level independently or allowing information flow be-

17

4. Value Iteration Networks on Multiple Levels of Abstraction

Multilevel
reward map

6@8×8

2@8×8
1@8×8

stack conv.
Kernel:
3×3

6@8×8 9@8×81@8×8

Environment &
goal maps

conv.
Kernel:
1×1

6@8×8150@8×8

Max
pool

pad
(zeros)

1@4×4 1@8×8
2 conv.
Kernels:
3×3, 1×1

1@8×8
1@8×8 1@8×8

stack 2 conv.
Kernels:
3×3, 1×1

2@8×8
4@8×81@8×8

2@8×8 2@8×8

pad
(zeros)

2@4×4
Max
pool

Figure 4.4: Reward Module. The green parts are used to enable information flow be-
tween the different abstraction levels. They are omitted for the independent
processing variant. Level-1 maps are shown in black, red parts belong to
Level-2 and blue parts to Level-3. Wherever two convolutions are depicted
in one step, the first maps to 150 features and the second to the depicted
number of channels, as shown for Level-3.

tween the different levels. Both approaches are described in the following and they
are compared against each other in Section 6.1.1.

We first consider the independent input processing approach. For each ab-
straction level, we stack the respective environment and goal map and process
them with two convolutions resulting in the reward map of the respective abstrac-
tion level. The advantage of this method is that the depth, i.e., the number of
layers, for the reward module is kept small. This may facilitate the training process
since the error information only has to be backpropagated through two layers.

However, not all available information is used to generate the reward maps when
processing each abstraction level independently. The area covered by the center
of higher abstraction maps is described in more detail by the lower abstraction
maps. Thus, by enabling information flow between the abstraction levels,
we can use the more detailed representation from lower abstraction levels when
generating the reward maps for higher levels.

It is important to understand that information encoded at the same cell of
different abstraction maps refers to different locations in the environment. We
support the network in understanding this relation with the following method:
The Level-1 reward map is obtained by stacking the respective environment and
goal maps and processing them with two convolutions. These convolutions use a

18

4.3. Network Architecture

Level l
State-Value

Map
K recurrence

conv.
Kernel:
3×3

Max
pool

Level l
Reward Map

old State-Value
Map (Level l)

pad

Figure 4.5: Value Iteration Module. The depicted operations are performed for each
abstraction level in parallel. The padding operation is used to enable infor-
mation flow between the levels and is described in Figure 4.6.

1
2
3
4
5
6

1
2

3

4

5
6

2

3
4

5

Figure 4.6: Padding the map of abstraction level l (right) to allow information flow from
the map of level l + 1 (left) to level l. The numbers indicate which values
are copied where.

padding to keep the map size constant. Thus, the relation between cell position
and environment location stays constant, too.

To enable information flow between levels, the Level-1 reward map is also used to
generate the Level-2 reward map. A max pooling operation matches the resolution
of the Level-1 map to the Level-2 resolution. The result is padded with zeros to
match the size of the Level-2 map. This procedure ensures that information at the
same cell position in both maps describe the same environment location.

Subsequently, the stacked Level-1 and Level-2 maps are processed as described
above to obtain the Level-2 reward map and provide the result to the Level-3
reward map generation.

4.3.3. VI Module and Reactive Policy
Similar to original VINs, the reward maps are input to the VI Module (Figure 4.5)
where they are processed to state-values. Each iteration of the Bellman update is
represented through a convolution and subsequent max pooling operation. The ker-
nel is chosen such that it covers the set of possible actions and thus can propagate

19

4. Value Iteration Networks on Multiple Levels of Abstraction

state values through the map, respectively. Unlike the reward maps, state-value
maps consist of only one channel as they describe the expected long-term reward
for a pose. At the beginning of each iteration, we apply a padding to the input
maps as shown in Figure 4.6 to enable information flow between the different ab-
straction levels. The padded area contains values of the neighboring cells of the
next higher abstraction level. However, the reward maps consist of an increasing
number of channels for higher abstraction levels. Therefore, we have to reduce the
number of features for the cells of the higher-level reward map before we can use
their values as a padding for the lower-level map. To achieve this, we consider two
different methods.

First, one possibility is to use the average over all features of one cell of the
higher level map as the padding value for all respective cells in the lower level
map. However, this method does not pay attention to the meaning of the different
features and leads to information loss.

The second option is to enable the network to learn a mapping from higher-
level to lower-level features which learns the transformation of these features. We
therefore extend the padding operation within the VI Module as follows: For all
higher-level cells whose values shall be used as a padding, we feed the corresponding
feature vector through a fully-connected layer mapping it to the feature vectors
of the corresponding lower-level abstraction cells, which we subsequently use as
a padding. Since this method is able to learn to understand the meaning of the
features, it preserves more information than the mean-padding method. However,
this comes at the cost of a more complex architecture and an increased number
of parameters that have to be learned. Both methods are compared against each
other in Section 6.1.1.

Output of the VI Module is the Level-1 state-value map, which is processed by
a Reactive Policy. First, the state-values of all neighbors of the start state are
extracted. These are subsequently mapped to probabilities over actions through a
fully-connected layer.

4.4. Training Details
The networks are trained using the RMSprop optimizer as proposed by Geoffrey
Hinton in his lecture (Tieleman and Hinton 2012) which was also used in the
original VIN publication. Trying different learning rates, we found that the best
training performance was achieved using a learning rate of 0.001, independent of
the grid world size. During training, we validate the network every 20 epochs.
Subsequently, we choose for each network architecture the state which achieves

20

4.4. Training Details

the highest success rate on the validation set. The final results are obtained by
evaluating these network states on the evaluation set.

Training data is generated by placing obstacles of random number, size and
position into a grid world. Here, the maximum obstacle size is 3 × 3. However,
larger occupied areas are possible if multiple obstacles are placed next to each other.
To achieve a similar obstacle density across different grid world sizes, the number
of obstacles scales with the number n of grid cells. For each grid, the number
of obstacles is sampled between 0.03n and 0.1n. In the original VIN paper, 50
obstacles of maximum size 2× 2 are used for grids of size 28× 28. Our sampling
methods generates 24 to 78 obstacles of maximum size 3 × 3 for the same grid
world size.

While the start state is defined to be in the map center, seven different goals
are placed randomly into each grid. Subsequently, we use Dijkstra’s algorithm on
each environment to simultaneously generate optimal paths to all goal states.

Overall, we generated 5,000 environments, resulting in 35,000 different training
scenes. The validation and evaluation sets both consist of 715 additionally gen-
erated environments with seven planning tasks each, resulting in 5,005 different
scenes for each set. Training, validation and evaluation set are pairwise disjoint.

We consider two different methods how to label our training data: First, as
described in the original VIN paper, each scene is assigned the optimal next action
as generated by the expert planner. Since the problem can be regarded as a
classification problem, Cross Entropy is used as a loss function. However, there
may be multiple optimal actions. If the network predicts an optimal action which
is not the one predicted from the expert planner, it will be considered as an error.
This may affect the training performance.

Therefore, we introduce a second method, where each scene is assigned all op-
timal next actions. While the network architecture remains unchanged in this
case, we have to use a different loss function during training. Since we want the
network to output all optimal actions, we can regard the setting as a multi-label
classification problem. The probabilities for predicting a certain action should be
independent from the other action probabilities. This is achieved by composit-
ing a sigmoid function with the Cross Entropy Loss. The resulting loss function,
also known as Binary Cross Entropy Loss, is a standard choice for multi-label
classification problems. Both methods are evaluated in Section 6.1.1.

To increase data efficiency during training, we do not only use the whole expert
paths but randomly chosen sub-paths. Hence, the network is not only trained
on the full paths but on many segments of every expert path which significantly
increases the amount of training data. For single-action labels these segments
are generated by randomly placing the start and goal poses on the expert path.

21

4. Value Iteration Networks on Multiple Levels of Abstraction

However, for multi-action labels, this method has to be adapted. We still keep
one example optimal path from which we sample the start position. However, the
goal position has to be kept constant. Otherwise, the set of optimal actions for a
given state may change.

Having a look at the annotated training examples, we found that the action
labels are not equally distributed. Therefore, we weight the losses for the different
actions by the inverse action frequencies.

4.5. Path Generation
The network does not directly output the next action but confidence values de-
scribing which action is the optimal next one. We choose the predicted action
by selecting the one with the highest confidence score. Thus, we only obtain the
first action of an optimal path towards the goal. To generate the whole path, we
iteratively predict the next action, move the robot accordingly and update the
input maps. It may happen that the robot oscillates between multiple states and
thus never reaches the goal. For example, the network may predict a wrong action
which does not lead to a collision. If it realizes the error when predicting the next
action, it will choose to return to the previous state. Since the network output is
deterministic, the same wrong action is predicted again. Therefore, the robot oscil-
lates between the two states. To address this problem, we introduce an additional
method to generate whole paths. We remember all states from which we return
to their direct predecessor and all states that are visited at least twice. When
choosing the next action, we check whether the action with the highest confidence
value leads to such a state. If this is not the case, we choose this action, otherwise
we consider the action with the second highest value and iterate. The effect of this
method is evaluated in Section 6.1.3.

22

5. Adaption to 3D Locomotion
Planning

To investigate whether our approach is capable of handling problems of higher
complexity and whether it can be applied to real robot motion planning tasks,
we apply it to a 3D robot locomotion planning task. We consider a robot that
can perform omnidirectional driving and has a certain footprint. Possible actions
(Figure 5.1) for the agent are:

• Move to one of the eight adjacent neighbor states with fixed orientation, and

• turn to the next discrete orientation (16 equal orientation steps) with fixed
position.

We represent the robot orientation in 16 discrete orientations of equal angular
distance.

When generating training data and evaluating the network, collision checking
is done by checking if any cell which is occupied by the robot footprint is also
occupied by an obstacle. Hence, for robots with modular footprints, it is possible
to, e.g., take obstacles between their legs.

5.1. Network Architecture
The architecture for the 3D locomotion planning tasks (Figure 5.2) is based on
the one described in Section 4.3. In the following, we state different methods how

(a) (b)

Figure 5.1: Possible actions for 3D robot locomotion planning. Left: Drive to an adja-
cent neighbor state with fixed orientation. Right: Turn to the next discrete
orientation with fixed orientation.

23

5. Adaption to 3D Locomotion Planning

1@8×8
1@8×8
1@8×8

Multilevel goal maps

Abstract environment
maps

10@8×8
5@8×8

1@8×8

Reward
Module

Goal
map

Occupancy
map

32× 32

32× 32

Abstraction
Module

10@8×8×4
5@8×8×8

1@8×8×16

Multilevel
reward maps

Start
orientation

VI
Module

Reactive
Policy

Action
probabilities

1@8×8×4
1@8×8×8
1@8×8×16

Multilevel
state value maps

Figure 5.2: Network architecture for 3D locomotion planning. The general structure of
the network is similar for each proposed method. However, the start ori-
entation is only provided as explicit input for the approaches introduced
in Section 5.1.3 and 5.1.4. The sizes and dimension of the maps differ de-
pending on the method. As an example, we depict the map sizes for the
approach presented in Section 5.1.4.

24

5.1. Network Architecture

(a) (b)

Figure 5.3: Preprocessing the occupancy map. Left: The original 2D occupancy map of
the environment with one example robot footprint (red). Right: Slice along
the depicted orientation of the corresponding preprocessed 3D occupancy
map. The red cell corresponds to the footprint marked in the left picture.

to adapt the Abstraction and Reward Module to the 3D locomotion task. The
different methods are evaluated in Section 6.2.1.

5.1.1. Full 3D Architecture
A first adaption extends the Abstraction and Reward Modules to handle 3D input
maps. In a preprocessing step, we generate a 3D occupancy map (Figure 5.3)
whose third dimension represents the orientations. Hence, for each orientation, we
have a 2D map, which are stacked to generate the 3D occupancy map. Each cell
of this map represents one possible robot configuration and describes whether this
configuration is valid or results in a collision. The goal map is also extended to
three dimensions. Again, only the goal configuration is marked.

Due to the cyclic neighborhood relation of orientations, we can cyclically per-
mute the orientation dimension of our input maps. We do this, to ensure that
the start configuration is located at the map center, not only with respect to the
spatial dimensions but also with respect to the orientation dimension.

As in the 2D case, the input maps are processed by the Abstraction Module.
However, we use 3D kernels for the convolution and max pooling operations. Thus,
we do not only achieve abstraction for the robot position but also for the orienta-
tion. To generate the next higher abstraction level, not only the spatial resolution
is halved but also the number of orientations. While we distinguish 16 orientations
in the Level-1 representation, only 8 and 4 abstract orientations are represented in

25

5. Adaption to 3D Locomotion Planning

θ = 0
θ = 15
θ = 14

θ = 1
θ = 0
θ = 15

. . .

Figure 5.4: Orientation padding during 3D VIs to emphasize that the orientations θ = 15
and θ = 0 are neighbors.

Level-2 and Level-3, accordingly. To ensure that all three abstraction maps consist
of the same number of cells, we crop a patch around the center of the Level-2 and
Level-3 maps. Mind that we do not only crop along the spatial dimensions but
also along the orientation dimension. Since we represent more lower-level states by
a single higher-level state than in the 2D case (eight instead of four), we increase
the number of features for Level-2 to five and for Level-3 to ten.

For the convolutions within the Reward Module and the VI Module, we also use
3D kernels. Same applies to the max pooling operations within the Reward Module.
However, the one-dimensional max pooling operation within the VI Module is not
adapted since it is applied to the action channel. As for the 2D grid world task,
we pad the reward and state-value maps with values from neighboring cells of
the next higher abstraction level to enable information flow between the different
abstraction levels (see Figure 4.6). Mind that this padding method is used along
all three dimensions of the reward and state-value maps. Since the neighborhood
relation for the orientation is cyclic, we introduce an additional padding: The
Level-3 reward and state-value maps are padded on the orientation channel on
each end with the values of the opposite end (Figure 5.4). Mind that this is not
necessary for the Level-1 and Level-2 map since they do not contain all orientations
but only the ones near to the start orientation.

Finally, the Reactive Policy extracts the state-values of the neighbor states of
the start state and maps it to action probabilities similar to the 2D task. However,
the network outputs probabilities for eleven actions instead of eight.

5.1.2. Independently Processed Orientation Channels
While the method described above is an intuitive generalization of our proposed
method to 3D locomotion planning, it suffers from the disadvantage of a signifi-

26

5.1. Network Architecture

cantly increased amount of parameters that have to be learned. The 3D convo-
lutions within the VI Module are necessary since the convolution kernel has to
cover all possible actions. However, we do not need to process the input using
three dimensional convolution and max pooling kernels. Instead, we introduce
the idea to process each orientation channel of the input independently within the
Abstraction and Reward Module.

As for the method described above, we provide the system with 3D occupancy
and goal maps. First, we slice the input maps along the orientation dimension.
For each orientation, the resulting 2D slice is processed with exactly the same
Abstraction and Reward Module as for the 2D grid world task. Afterwards, the
resulting 2D reward maps are stacked along a new dimension to generate a 3D
reward map. Mind that this way, we only achieve abstraction for the spatial
positions but not for the orientations. Therefore, within the VI Module, only the
spatial dimensions of reward and state-value maps are padded as for the 2D grid
world tasks. The cyclic padding is not only applied to the orientation channel of
the Level-3 maps but to all abstraction maps.

This method effectively decreases the amount of parameters for the Abstraction
and Reward Module. Furthermore, it enables us to initialize the parameters of
those two modules with the pretrained ones obtained from the 2D grid world task.
This may facilitate and speed up the training progress, since the VI Module is
provided with meaningful reward maps from the training start.

5.1.3. 2D Input
Above, we stated that we can process 3D input maps using the 2D architecture for
the Abstraction and Reward Module. Therefore, the question arises whether we
actually need three dimensional input. We propose a method which is provided
with 2D occupancy maps of the environment and extends the state representation
to three dimensions within the Reward Module by learning independent rewards
for each orientation.

Since we provide our system 2D occupancy and goal maps, we need to find a
new way to encode information about the start and goal orientation. The start
orientation is fed into our system as an additional parameter. It is only used
within the Reactive Policy to select those state-values which belong to neighbor
poses of the start pose. The goal orientation is encoded in the goal map in which
all cell entries are 0, except for the goal cell which carries the index of the discrete
orientation (1− 16).

The Abstraction Module processes the input as in the 2D case. However, since
the Reward Module shall learn orientation dependent rewards and therefore needs

27

5. Adaption to 3D Locomotion Planning

more information than in the 2D case, we use five and ten features for Level-2 and
Level-3, respectively.

Within the Reward Module, we increase the number of channels of the reward
maps of each abstraction level by a factor of 16. Thus, by rearranging the channels,
we obtain a 3D reward map. Furthermore, we increase the number of convolu-
tions within the Reward Module by two additional convolutions for processing the
Level-1 map and one additional convolution for the Level-2 map. To consider the
robot footprint, we transform the reward map at the end of the Reward Module:
For each possible robot base pose, we sum over the four cells corresponding to the
wheel positions and assign the result to the cell corresponding to the robot base
pose.

The VI Module and Reactive Policy are left unchanged, compared to the previ-
ous method.

5.1.4. 2D Input With Abstract Orientations
For the methods described in Section 5.1.2 and 5.1.3, we do not use any abstraction
with respect to orientations. This leads to large state spaces since each abstraction
map covers all 16 orientations. We address this issue by reducing the number of
orientations for higher abstraction levels. We therefore adapt the above method by
setting the number of orientation channels within the Reward Module for Level-1,
Level-2, and Level-3 to be sixteen, eight, and four, respectively.

5.2. Training Details
The network architectures presented above are trained on grid worlds of size 32×32,
which are generated similar to the 2D planning task. However, we randomly place
fewer but larger obstacles into these grids. The maximum obstacle size is 5 × 5

and the number of obstacles is sampled between 5 and 20.
As for the 2D grid world task, we generate three pairwise disjoint sets, one for

training, validation end evaluation each. The training set consists of 5,000 environ-
ments with seven planning tasks each, resulting in 35,000 different training scenes.
The validation and evaluation sets both consist of 715 additionally generated en-
vironments with seven planning tasks each, resulting in 5,005 different scenes for
each set.

Expert paths are generated using Dijkstra’s algorithm. We choose a footprint
configuration with a longitudinal and lateral distance of four cell widths between
the wheels. This footprint is chosen since it corresponds to a stable driving position
for the Centauro robot (see Section 6.2), when using a grid resolution of 0.2m.

28

5.2. Training Details

0 48 120 228 390 633 998
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
·10−3

Epoch

Le
ar
ni
ng

R
at
e

Figure 5.5: Cyclic learning rate.

Collision checking is done by checking if any cell which is occupied by the robot
footprint is also occupied by an obstacle.

For the 2D grid world task, we do not use any learning rate scheduling since we
evaluate our approach against original VINs which do not use it either. However,
for the 3D locomotion planning task, we consider to use a learning rate scheduler.

To reduce the probability that the network converges to sub-optimal local min-
ima, we combine RMSprop with the cyclic learning rate scheduler proposed in
Loshchilov and Hutter 2016: The learning rate is decreased using a cosine anneal-
ing scheme. After several training epochs, we reset the learning rate to a higher
value. We call the time between learning rate resets a learning rate cycle. Initially,
the length of a learning rate cycle is set to 48 epochs and the learning rate is 0.001.
After each cycle the cycle length increases to 150% of the previous length while
the initial learning rate decreases to 95% of the previous one. The evolution of the
learning rate is depicted in Figure 5.5.

29

6. Evaluation

In this chapter, we evaluate the methods proposed in Chapter 4 and 5. All ex-
periments are done on a system equipped with an Intel Core i7-8700K@3.70GHz,
64GB RAM and an NVidia GeForce GTX 1080Ti with 11GB memory.

VINs — and also their extensions considered in this work — are sensitive to
weight initialization, which has been previously reported in L. Lee et al. 2018.
Different training runs of the same network can lead to significantly different per-
formances. This makes it difficult to evaluate different design decisions. To reduce
the influence of random weight initialization, we train each network architecture
several times and consider mean and standard deviation as well as the median,
which is more robust to far outliers than the mean. Although more training runs
allow a more accurate evaluation, we restrict ourselves to five training runs per
network architecture due to time limitations. The detailed results of the single
training runs can be found in Appendix A.

To furthermore reduce the influence of the random data sampling during train-
ing, we initialize the pseudo-random number generator between network initial-
ization and training start with the same seed for each network architecture, while
using different seeds for different training runs. Thus, we ensure that each network
architecture is presented the same training examples in the same order.

The different network architectures are implemented using Python 2.7 and Py-
Torch 0.4.1. Our implementation is based on the work of Kent Sommer1.

6.1. 2D Grid Worlds

In this section we evaluate our approach for the 2D grid world planning task (Chap-
ter 4). First, we compare the different design decisions. The method achieving
the best performance is subsequently compared against VINs and HVINs.

1https://github.com/kentsommer/pytorch-value-iteration-networks

31

https://github.com/kentsommer/pytorch-value-iteration-networks

6. Evaluation

Table 6.1: Evaluation of different implementations of the Reward Module. The
configuration of the other components uses mean-padding, weighted
class losses and single-action labels.

Independent Processing Information Flow
mean median std dev mean median std dev

Success 94.44% 94.00% 1.96% 96.94% 97.40% 1.43%
Accuracy 81.64% 82.00% 1.54% 84.96% 85.30% 2.37%

Path difference 1.39% 1.41% 0.34% 0.87% 0.73% 0.25%
Graphics memory 763 MB 765MB
Time (per epoch) 22 sec 22 sec

6.1.1. Design Choices

Subsequently, we evaluate the different design decisions concerning the network
architecture (Section 4.3) and training method (Section 4.4) on medium-sized grid
worlds with 64 × 64 cells. Since we do not have enough time to evaluate all
possible combinations of the proposed designs, we follow the decision tree depicted
in Figure 6.1. We start by evaluating the different designs for the first component
while choosing the designs for the other components arbitrarily but fixed. For the
first component, we then fix the design that achieves the best performance and
continue to evaluate the different options for the next component.

Reward Module First, we evaluate the two different options for implementing the
Reward Module (Section 4.3.2): Processing each abstraction level independently
or allowing information flow between the levels. The configuration of the other
components is chosen as follows: The VI Module uses the mean-padding method.
During training, we use single-action labels and weight the losses corresponding
to the label frequencies.

As expected, enabling information flow between abstraction levels achieves sig-
nificantly better results than processing each level independently (see Table 6.1).
It outperforms the other approach with respect to success rate, accuracy and path
length. Runtime and memory consumption are similar for both methods. The
generation of higher-level reward maps profits from using the already processed
more detailed information about areas also encoded in the lower-level abstraction
maps. All subsequent experiments therefore are done with enabled information
flow within the Reward Module.

32

6.1. 2D Grid Worlds

Reward Module
(?, mean padding,

weighted loss, single-action labels)

Independent
levels

Information flow
between levels

VI Module
(information flow,?,

weighted loss, single-action labels)

Class Imbalance
(information flow,mean padding,

?, single-action labels)

Class labels
(information flow,mean padding,

weighted loss, ?)

mean paddinglearn feature
mapping

unweighted
loss

weighted
loss

only expert actionall optimal actions

(information flow, mean padding,
weighted loss, single-action labels)

Figure 6.1: Evaluating the design decisions of our proposed method for the 2D grid world
planning task. The green edges indicate which configuration achieves better
results for the current decision. We start by evaluating the different designs
for the first component while choosing the designs for the other components
arbitrarily but fixed. For the first component, we then fix the design that
achieves the best performance and continue to evaluate the different options
for the next component.

33

6. Evaluation

Table 6.2: Evaluation of the padding method within the VI Module. The Reward
Module uses information flow between the abstraction levels and during
training single-action labels and weighted class losses are used.

Mean Padding Learned Padding Layer
mean median std dev mean median std dev

Success 96.94% 97.40% 1.43% 92.88% 91.60% 2.22%
Accuracy 84.96% 85.30% 2.37% 81.44% 80.40% 2.89%

Path difference 0.87% 0.73% 0.25% 1.72% 1.67% 0.77%
Graphics memory 765 MB 767MB
Time (per epoch) 22 sec 23 sec

VI Module Subsequently, we evaluate the padding method within the VI Module
(Section 4.3.3). During training, we still use single-action labels and weighted
class losses. On the one hand, introducing the padding layer increases the network
capabilities to transfer useful information between the abstraction levels. The
network may learn to average the features as in the mean-padding method, but
also more useful feature mappings are possible. On the other hand, introducing
the padding layer increases the network complexity and the number of adjustable
parameters. This may affect the training performance.

The results depicted in Table 6.2 show that this negative influence dominates the
benefits of the padding layer. Runtime and memory consumption is similar for both
approaches. However, compared to the padding-layer method, the mean padding
method achieves higher success rates and accuracies, and lower deviation between
the optimal path lengths and the length of the predicted paths. Furthermore, the
standard deviation between the five different training runs is smaller.

To give a possible explanation, we assume that the network encodes different
kinds of cell traversals in the different reward features. We use the same fully-
connected layer for determining the padding values for the left/ right borders as
for the upper/ lower borders of the reward maps. Therefore, the padding layer has
to learn a method mapping the two Level-2 features of a given cell to its single
Level-1 feature without prior knowledge of the direction from which we enter the
cell. For each cell, the best method is to take the expected reward for entering this
cell. Without prior knowledge, the probabilities of the actions leading to a given
cell are uniformly distributed. Hence, the expected reward corresponds to the
mean over the Level-2 features. Thus, the padding-layer should learn to average
the Level-2 features, which is exactly what the mean-padding method does. As
a result, introducing the padding-layer increases the network complexity but does

34

6.1. 2D Grid Worlds

Table 6.3: Evaluation of weighting the losses for predicting wrong actions with the
inverse of the action frequencies. The Reward Module uses information
flow between the abstraction levels, the mean-padding method is used
within the VI Module and during training single-action labels are used.

Unweighted Weighted
mean median std dev mean median std dev

Success 94.12% 94.70% 1.95% 96.94% 97.40% 1.43%
Accuracy 82.42% 83.20% 3.51% 84.96% 85.30% 2.37%

Path difference 1.67% 1.65% 0.36% 0.87% 0.73% 0.25%

not improve the information flow from Level-2 to Level-1. In the following, we use
the mean-padding method for all experiments.

Class Imbalance After evaluating the different network architectures above, we
consider the different training methods (Section 4.4). Since these have no influence
on the runtime and memory consumption, we do not state the resource consump-
tion for these experiments. First, we address the problem of imbalanced action
labels. We penalize wrong predictions of less frequent actions more than wrong
predictions of more frequent actions by weighting the losses with the inverse of
the label frequencies. Table 6.3 shows that this indeed improves the training per-
formance. It outperforms the method with unweighted losses with regard to all
performance measures. Thus, we use weighted action losses for all subsequent
experiments.

Class labels Finally, we evaluate whether the training performance can be in-
creased by providing the network not only with the optimal action chosen by the
expert planner but with all optimal actions for each training example. Mind, that
we use a different sampling method to extract sub-paths from expert paths in the
case of multi-action labels. The adapted sampling method results in a reduced
number of training examples compared to the training data used in the previous
experiments. To ensure that performance differences between the different label
types are not caused by this, we use the adapted sampling method in this exper-
iment for both, single-action labels and multi-action labels. Table 6.4 shows the
results.

Comparing the performance of the single-action labels with the adapted sam-
pling method to the performance of the previous experiments, we see that changing
the sampling method does not effect the performance significantly. The slight dif-

35

6. Evaluation

Table 6.4: Evaluation of different methods how to label the training data.

Single-action Multi-action
mean median std dev mean median std dev

Success 95.52% 94.20% 2.40% 72.00% 86.50% 21.48%
Accuracy 86.44% 86.40% 1.23% 92.08%2 94.30%2 3.49%2

Path difference 0.73% 0.70% 0.08% 0.60% 0.55% 0.36%

ferences that can be observed are not larger than the variance between different
training runs. However, using multi-action labels results in lower success rates
and significantly larger standard deviation between different training runs. Mind
that the increased accuracy of multi-action labels is due to the fact that, in this
case, we measure whether the predicted action is one of the optimal next actions
and not only whether it is the one predicted by the expert planner. A possible
explanation for the lower success rate of multi-action labels is the following: The
Reactive Policy should predict the action leading to the state with the highest
state-value. In theory, if there are multiple optimal actions, the state-values of the
corresponding target states are equal. Due to numerical inaccuracies and since we
are using approximations of the optimal state-values, we cannot expect that this is
true for the state-values generated by the VI Module. Therefore, it is difficult for
the Reactive Policy to decide how many and which actions are optimal. A more
complex Reactive Policy with multiple layers may perform better by learning a
threshold for the state-value differences between target states of multiple optimal
actions.

6.1.2. Final Results
In this section, we compare our method against original VINs and HVINs. Similar
to our approach, we use three hierarchical levels for HVINs, each halving the
resolution of the previous level. The lowest resolution level uses the same number
of Bellman updates (K) as proposed for original VINs with a similar number of
cells. This coarse state-value initialization is then refined twice by two Bellman
updates on the map with medium resolution and two consecutive Bellman updates
on the map with fine resolution.

2In the case of multi-action labels, the accuracy does not measure whether the action predicted
by the network is the one predicted by the expert planner, but whether the predicted action
is one of the optimal next actions.

36

6.1. 2D Grid Worlds

(a) (b)

Figure 6.2: Patches of grid worlds including the optimal path (black) and the paths
predicted by VIN (red), HVIN (orange), and our approach (blue). Left:
Patch form a 64× 64 grid world. Right: Patch form a 128× 128 grid world.

HVIN HVIN (4 Layers)
AVIN AVIN (4 Layers)
VIN

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Epoch

Su
cc
es
s

32× 32 grid worlds

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Epoch

64× 64 grid worlds

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Epoch

128× 128 grid worlds

Figure 6.3: Training performance of original VINs, HVINs and our approach on the
validation set. For each network architecture, the best performance out of
five training runs is depicted.

37

6. Evaluation

Coarse 2D Grid Worlds In the original VIN paper (Tamar et al. 2016), tests were
performed on 2D grid worlds of sizes from 8×8 to 28×28. Since we are interested
in applying learning-based planning approaches to more complex problems, we
evaluate on grid sizes from 32 × 32 to 128 × 128 cells. Some example paths are
depicted in Figure 6.2.

Figure 6.3 shows the training performance of our approach and compares it
to original VINs and HVINs. It can be seen that our approach obtains better
success rates than VINs and HVINs on the validation set for map sizes of 32× 32

and 64 × 64 cells. In addition, our approach converges faster and with a higher
stability. Especially on larger maps, original VINs show large instabilities in their
training behavior. On 128 × 128 maps, we achieve a better performance than
VINs. However, HVINs even achieve a higher success rate. We will refer to this
observation in more detail below.

The results over multiple training runs are shown in Table 6.5. On 32 × 32

grid worlds, our approach outperforms VINs and HVINs in terms of a better
success rate. Furthermore, we obtain paths that are closer to the optimal paths.
For grid worlds of size 64 × 64, the performance differences even increase. Our
approach achieves significantly higher accuracies and success rates, while the path
lengths are significantly shorter. On the 128× 128 grid worlds, our approach still
outperforms VINs. However, HVINs achieve higher success rates and shorter paths.
The performance drop of our approach can be explained since the abstraction
maps have a size of 32× 32 for input maps of size 128× 128. This seems to be a
critical threshold, above which the performance of VINs rapidly decreases. Since
we employ VINs on each abstraction level, the performance of our approach drops
significantly. HVINs also start by employing VINs on a 32×32 map. Subsequently,
they improve the result by iteratively refining the resulting state-value map up to
the original input resolution. This refinement process seems to be less sensitive
to large input maps and may recover some errors introduced by applying VINs to
the 32× 32 map in the first step.

Above, we evaluated the result quality of the different network architectures.
However, the graphics memory consumption and necessary training time is also
important since too large resource requirements make it difficult to scale the meth-
ods to more complex tasks. Memory consumption and runtime are depicted in Fig-
ure 6.4 and Table 6.5. The graphics memory consumption of VINs rapidly grows
with increasing map sizes. Since all levels of HVINs operate on the whole envi-
ronment size, they only slightly decrease memory requirements. Our approach
outperforms VINs and HVINs on all grid world sizes.

Regarding the training time per epoch (right side of Figure 6.4), our approach
outperforms VINs significantly on larger grid sizes due to the reduced state space

38

6.1. 2D Grid Worlds

Table 6.5: Evaluating our approach against VINs and HVINs on the 2D grid world
path planning task. For all networks, single-action labels and weighted
losses are used.

Grid Success Accuracy
size Method mean median std dev mean median std dev

32×32
VIN 91.72% 94.90% 8.15% 80.38% 83.60% 10.31%

HVIN 93.84% 93.90% 1.35% 80.08% 81.00% 1.78%

AVIN 96.84% 96.60% 0.38% 83.40% 82.80% 1.31%

64×64
VIN 71.98% 79.70% 20.86% 70.08% 74.90% 12.98%

HVIN 86.82% 89.80% 8.90% 77.42% 77.90% 2.29%

AVIN 96.94% 97.40% 1.43% 84.96% 85.30% 2.37%

128×128
VIN 31.56% 34.00% 11.13% 55.96% 55.90% 5.96%

HVIN 83.24% 82.60% 6.05% 76.50% 76.40% 2.17%

AVIN 80.34% 78.60% 5.13% 80.86% 80.40% 3.59%

Grid Path diff. Graphics Time
size Method mean median std dev memory (per epoch)

32×32
VIN 2.48% 2.09% 1.98% 761MB 8 sec

HVIN 2.23% 2.07% 0.79% 739MB 5 sec

AVIN 1.73% 1.84% 0.39% 561 MB 11 sec

64×64
VIN 2.94% 2.42% 1.59% 1815MB 34 sec

HVIN 2.55% 2.20% 1.06% 1399MB 10 sec

AVIN 0.87% 0.73% 0.25% 765 MB 22 sec

128×128
VIN 8.46% 7.18% 5.33% 8247MB 247 sec

HVIN 2.09% 2.08% 0.49% 4085MB 35 sec

AVIN 2.48% 2.81% 0.59% 1731 MB 63 sec

39

6. Evaluation

HVIN HVIN (4 Layers)
AVIN AVIN (4 Layers)
VIN

16 32 64 128
0

2,000

4,000

6,000

8,000

Size

G
ra
ph

ic
s
M
em

or
y
[M

B]

Graphics Memory

16 32 64 128
0

50

100

150

200

250

Size

T
im

e
[se

c]

Time per epoch

Figure 6.4: Graphics memory consumption and runtime of VINs, HVINs and our ap-
proach dependent on the grid size.

size and thus fewer Bellman updates. On 32 × 32 grid worlds, the additional
runtime needed to create and process the different abstraction maps dominates
this effect, which results in faster training times for VINs for this and smaller map
sizes. However, we do not match the runtime of HVINs since the refinement process
is much faster than performing full value iterations for all abstraction maps.

Additionally, we compare the planning time of our approach against an A*
planner. Within the A* planner, we use the euclidean distance as a heuristic
to estimate the remaining costs from the current position to the goal position.
Figure 6.5 shows that the A* planner significantly outperforms our approach. Since
the planning time needed to predict one action is significantly higher four our
approach than for the A* planner, the performance difference even increases on
larger grid worlds.

Four Abstraction Levels To further investigate the performance drop of our
approach on 128 × 128 grid worlds, we add an additional abstraction level (with
10 features) to our method, extending it to four levels. Thus, the size of each
abstraction map is reduced to 16×16. Additionally, we also extend HVINs to four
hierarchical levels. As before, we use the same random seed for both architectures
when sampling the training data. The results are depicted in Table 6.6.

With four abstraction levels, our approach outperforms HVINs with respect to
accuracy and path length. However, the average success rate is lower compared
to HVINs and even lower compared to our approach with three abstraction levels.
This is due to the fact that one of the five training runs only achieved a success rate

40

6.1. 2D Grid Worlds

32 64 128
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Size

Pl
an

ni
ng

tim
e
[se

c]

A*
AVIN

AVIN (4 layers)

Figure 6.5: Planning times of our approach and an A* planner for 2D grid world path
planning.

Table 6.6: Using four abstraction levels for 128× 128 grid worlds.

Success Accuracy
mean median std dev mean median std dev

HVIN 83.24% 82.60% 6.05% 76.50% 76.40% 2.17%
HVIN (4 Levels) 84.00% 85.20% 2.34% 78.04% 78.70% 1.50%

AVIN 80.34% 78.60% 5.13% 80.86% 80.40% 3.59%
AVIN (4 Levels) 78.14% 83.90% 23.33% 80.06% 80.10% 5.30%

Path diff. Graphics Time
mean median std dev memory (per epoch)

HVIN 2.09% 2.08% 0.49% 4085MB 35 sec
HVIN (4 Levels) 2.80% 2.42% 0.64% 4049MB 34 sec

AVIN 2.48% 2.81% 0.59% 1731MB 63 sec
AVIN (4 Levels) 1.81% 1.51% 0.60% 887 MB 32 sec

41

6. Evaluation

of 38.2% due to bad weight initialization. However, the best training run for our
approach achieved a success rate of 94.8%, while the best success rate for HVINs
is 86.3% (see Figure 6.3). If we omit the training run with the worst performance
for each method, our approach achieves an average of 88.13%, while HVINs only
achieve 84.85%. This indicates that in general, our approach achieves better results
then HVINs when using four abstraction levels on 128× 128 grid worlds and that
it also achieves better results than our approach with three levels. While the
performance of both methods is increased by using four levels for 128× 128 grids,
our approach benefits more from the additional level than HVINs. Introducing
an additional level results in a coarser resolution for the lowest level of HVINs. A
possible reason why HVINs benefit less from the additional level than our approach
is, that this coarser resolution may result in information loss which the refinement
process of HVINs does not compensate. Our approach seems to compensate the
information loss better since it enriches the coarse resolution map with additional
features.

Furthermore, using four abstraction levels for 128×128 grid worlds significantly
reduces the memory consumption and training time for our approach, while the
resource requirements of HVINs do not change significantly (see Figure 6.4 and Ta-
ble 6.6). The memory requirements for our approach are only 10.8% of original
VINs and 21.9% of HVINs and we achieve a similar runtime as HVINs. Fur-
thermore, using four abstraction levels significantly reduces the planning time of
our approach (see Figure 6.5), although it is still significantly slower than an A*
planner.

2D Mazes Above, we evaluated our approach, VINs, and HVINs on grid worlds
which are larger than the ones used in the original VIN paper but which have
a similar density of obstacles. To investigate how the different approaches can
handle more complex environments, we additionally evaluate them on mazes. Each
corridor has a width of one cell and each goal position is connected to the start
position only by one single path. Since path planning for theses mazes is much
more difficult than for the grid worlds considered above, we use maze sizes from
16 × 16 to 64 × 64. The number of training examples and the training method
are the same as for the previous 2D grid world experiments. Table 6.7 shows the
corresponding performances and some example paths are depicted in Figure 6.7.

This experiment effectively shows, how much information is preserved in the
abstract representations. Since VINs consider the complete map at full resolution,
they achieve the best results independent of the maze size. For each maze size, the
high standard deviation of the success rate of VINs is due to one single training run
with a bad weight initialization. Our approach looses information due to the more

42

6.1. 2D Grid Worlds

Table 6.7: Evaluating our approach against VINs and HVINs on 2D maze worlds.

Maze Success Accuracy
size Method mean median std dev mean median std dev

16×16
VIN 94.48% 99.60% 11.51% 94.42% 99.30% 9.61%

HVIN 87.42% 89.70% 3.36% 87.20% 88.90% 3.24%

AVIN 83.00% 82.80% 0.74% 82.52% 82.60% 0.83%

32×32
VIN 82.10% 97.20% 31.58% 85.60% 95.50% 19.13%

HVIN 48.54% 47.30% 3.84% 69.94% 69.60% 2.55%

AVIN 71.30% 71.00% 3.14% 82.76% 83.10% 1.89%

64×64
VIN 78.02% 90.40% 27.63% 84.58% 85.90% 11.15%

HVIN 14.22% 14.20% 1.26% 58.82% 58.50% 0.94%

AVIN 57.06% 56.00% 5.74% 80.62% 80.50% 1.82%

Maze Path diff. Graphics Time
size Method mean median std dev memory (per epoch)

16×16
VIN 0.51% 0.06% 0.72% 569MB 4 sec

HVIN 1.16% 1.11% 0.31% 575MB 3 sec

AVIN 2.05% 2.04% 0.21% 531 MB 7 sec

32×32
VIN 0.88% 0.57% 0.96% 761MB 8 sec

HVIN 2.02% 1.91% 0.44% 739MB 5 sec

AVIN 1.10% 1.10% 0.14% 561 MB 11 sec

64×64
VIN 1.49% 1.32% 0.87% 1815MB 34 sec

HVIN 1.99% 1.93% 0.24% 1399MB 10 sec

AVIN 0.58% 0.58% 0.07% 765 MB 22 sec

43

6. Evaluation

16 32 64
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size
Pl
an

ni
ng

tim
e
[se

c]

A*
AVIN

Figure 6.6: Planning times of our approach and an A* planner on 2D mazes.

abstract representations. The features of the higher abstraction level cells cannot
encode all necessary information to match the performance of VINs. However, we
significantly outperform HVINs on the larger maze sizes, which indicates that our
approach nevertheless learns useful abstract representations.

On 16 × 16 mazes, HVINs perform better than our approach. For this maze
size, the area described at full resolution within our planner only covers 4×4 cells,
which may be to small.

Interestingly, VINs achieve better results for mazes than for the grid worlds of
the previous experiment. Here, we compare the median to reduce the influence of
far outliers, which significantly reduce the mean success rates for VINs on the maze
planning task. When training on mazes, all training examples contain obstacles
next to the current agent position. Thus, VINs learn more effectively to avoid
obstacles, which results in a better performance.

Compared to the previous grid world experiments, training time and memory
consumption do not change since these only depend on the map size but not on
concrete obstacle configurations. The difference between the planning times of our
approach and an A* planner (Figure 6.6) is also similar to the previous experiment.

6.1.3. Path Generation with History
For the 2D grid worlds with coarse obstacle distribution, the most frequent reason
that a predicted path does not successfully lead to the goal state are collisions.
However, for the 2D mazes, paths often are not successful since they contain
circles. Thus, the agent alternates between two or more states and never reaches
the goal. An example is shown in Figure 6.8 a). Our approach (depicted in blue)
predicts a wrong action and corrects the mistake when predicting the next action

44

6.1. 2D Grid Worlds

(a) (b) (c)

Figure 6.7: Patches of 32 × 32 mazes including the optimal path (black) and the paths
predicted by VIN (red), HVIN (orange), and our approach (blue). Left: Only
VIN successfully reaches the goal. Middle: Our approach and VIN predict
optimal paths, while HVIN does not find a path. Right: VIN predicts an
optimal path, HVIN successfully reaches the goal, while our approach leads
to a collision.

(a) (b)

Figure 6.8: Different path generation methods. Depicted is a patch of a 64 × 64 maze
including the optimal path (black) and the paths predicted by VIN (red),
HVIN (orange), and our approach (blue). Left: Always choosing the action
with highest score. Right: Improved path generation method (Section 4.5).

45

6. Evaluation

Table 6.8: Success rates of the two different path generation methods on maze
worlds. The path generation method which considers the history (Sec-
tion 4.5) improves the success rates for all architectures and maze sizes.

Maze Without history With history
size Method mean median std dev mean median std dev

16×16
VIN 94.48% 99.60% 11.51% 95.46% 99.70% 9.43%

HVIN 87.42% 89.70% 3.36% 90.58% 92.10% 3.15%

AVIN 83.00% 82.80% 0.74% 87.26% 87.60% 0.96%

32×32
VIN 82.10% 97.20% 31.58% 82.72% 97.50% 30.85%

HVIN 48.54% 47.30% 3.84% 55.40% 53.90% 3.45%

AVIN 71.30% 71.00% 3.14% 75.42% 75.60% 4.02%

64×64
VIN 78.02% 90.40% 27.63% 79.24% 91.40% 26.68%

HVIN 14.22% 14.20% 1.26% 17.25% 17.20% 2.78%

AVIN 57.06% 56.00% 5.74% 59.42% 58.60% 5.66%

by returning to the previous position. Sine the network output is deterministic,
this results in alternating between the two states. In Section 4.5, we introduced
a path generation method that addresses this problem. Figure 6.8 b) shows how
the paths change if this method is applied. After undoing the wrong action, our
planner now successfully reaches the goal. However, the path predicted by HVIN
(orange) is not improved since the network does not immediately realize the error.

We apply the new path generation method to re-evaluate the networks from the
maze path planning task of the previous section. Table 6.8 shows that this indeed
increases the success rates. Especially, our approach and HVIN benefit from the
new path generation method.

6.2. 3D Locomotion Planning
Since we are interested in applying learning-based planners to real robot mo-
tion planning tasks, we investigate in this section, how well our approach can be
adapted to 3D locomotion planning. We plan for Centauro (Klamt, Rodriguez, et

46

6.2. 3D Locomotion Planning

Figure 6.9: The Centauro robot.

al. 2018) which is a centaur-like robot consisting of a hybrid legged-wheeled lower
body and an anthropomorphic upper body (Figure 6.9). It is developed to solve a
wide range of mobile manipulation tasks in search and rescue environments. Each
leg ends in a 360° steerable actively driven wheel which allows omnidirectional
driving.

In the following, we evaluate the different design choices for 3D locomotion
planning introduced in Chapter 5. Afterwards, we integrate the method which
achieves the best performance into a planning pipeline for Centauro.

6.2.1. Design Choices

In this section, we evaluate the different methods presented in Chapter 5 how to
adapt our method to the 3D robot locomotion planning task on grid worlds of
size 32 × 32. We choose a footprint configuration with a longitudinal and lateral
distance of four cell widths between the wheels. For a grid resolution of 0.2m, this
corresponds to a stable driving position for Centauro with 0.8m longitudinal and
lateral distance between the wheels. Hence, the same footprint configuration can
be used for the Centauro experiment in Section 6.2.2.

First, we evaluate the cyclic learning rate scheduler described in Section 5.2. To
do this, we compare the performance of the network from Section 5.1.3 trained
with and without using the scheduler. The corresponding training performances
for one training run for each method are depicted in Figure 6.10. One clearly sees
the different learning rate cycles. Due to the cosine annealing scheme, the training
error rapidly decreases within each cycle. At the end of each cycle, a lower training
error is achieved compared to the cycles before. When using the cyclic learning
rate scheduler, the network converges faster and achieves lower training error and
a higher success rate.

47

6. Evaluation

no learning rate scheduler cyclic learning rate scheduler

0 200 400 600 800 1,000

0.4

0.6

0.8

1

1.2

1.4

Epoch

Lo
ss

Training Loss

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Epoch

Su
cc
es
s

Success Rate

Figure 6.10: Evaluation of the cyclic learning rate scheduler. The success rate for train-
ing with the cyclic learning rate scheduler is evaluated at the end of each
learning rate cycle and thus less frequent then when training with no sched-
uler.

Table 6.9 shows the final results over multiple training runs. Although higher
accuracies are achieved by not using a learning rate scheduler, the more important
success rates are higher when using the cyclic scheduling method. Furthermore,
the cyclic scheduler achieves shorter paths.

When using no scheduler, the network converges to sub-optimal local minima.
During the cyclic learning rate scheduling, we reset the learning rate several times
to higher values before decreasing it again. This enables the network to leave
local minima and therefore achieves better results. The ability to step out of local
minima — which may be reached due to bad initial weights — also explains why
the cyclic learning rate scheduler is less sensitive to weight initialization. This
can be seen, since the standard deviation between the different training runs is
smaller when using the scheduler compared to using no learning rate scheduling.
All subsequent experiments use the cyclic scheduling scheme.

Subsequently, we evaluate the different network architectures presented in Sec-
tion 5.1. The results are depicted in Table 6.10.

The Full 3D architecture achieves the lowest success rates. It does not learn
to successfully predict paths since it consists of too many adjustable parameters
due to the 3D convolutions. However, it achieves the lowest runtime and graphics
memory consumption. This is due to the fact that the Full 3D architecture uses
abstraction for both, the spatial position and the orientation.

Processing the orientation channels of the input maps independently by regard-
ing them as 2D maps, results in a better performance since the complexity of Ab-
straction Module and Reward Module is decreased. However, no abstraction with

48

6.2. 3D Locomotion Planning

Table 6.9: Evaluating the cyclic learning rate scheduling against no learning rate
scheduling. For both cases, the network architecture from Section 5.1.3
is used.

No scheduling Cyclic scheduling
mean median std dev mean median std dev

Success 64.18% 64.30% 1.11% 67.58% 67.60% 0.29%
Accuracy 67.06% 67.20% 1.74% 66.74% 66.90% 1.41%

Path difference 2.71% 2.41% 0.64% 1.85% 1.87% 0.25%

respect to orientations is used resulting in higher runtime and graphics memory
consumption. Initializing the weights for Abstraction and Reward module with
the pretrained weights from the 2D network does not increase the performance.
Contrarily, the performance decreases. A possible reason is that the preprocessed
occupancy maps for the 3D task significantly differ from the ones considered in
the 2D task, i.e., they contain much larger obstacles (see Figure 5.3). Therefore,
the pretrained weights do not generalize well to the new input maps. A better way
to pretrain those weights probably is to train them directly on the 2D slices of the
3D input maps, which was not realized within this work due to time limitations.

Using 2D input maps and expanding to 3D reward maps within the Reward
Module, achieves even better results. However, since this method does not use
abstraction for representing orientations, runtime and graphics memory consump-
tion are still high. By reducing the number of orientations for higher abstraction
levels, runtime and memory consumption is effectively reduced. Furthermore, this
method achieves the highest success rates and accuracies. This shows that reduc-
ing the state space size using abstraction facilitates the training process and thus
results in a better performance.

6.2.2. Integration For Centauro
Subsequently, we employ our approach to generate 3D locomotion plans for Cen-
tauro. Since it achieves the highest success rates on the synthetically generated
32 × 32 grid worlds, we use the network architecture described in Section 5.1.4
for the subsequent experiments. In particular, we use the network state with the
highest success rate across five training runs.

We choose a fixed leg configuration for Centauro with 0.8m longitudinal and
lateral distance between the wheels. A 3D rotating Velodyne Puck laser scanner
at the robot head with spherical field-of-view perceives the environment. Measure-

49

6. Evaluation

Table 6.10: Evaluating the different methods how to adapt our method to 3D
robot locomotion planning on maps of size 32 × 32. For all methods,
the cyclic learning rate scheduler is used.

Success Accuracy
Method mean median std dev mean median std dev

Full 3D 21.56% 21.90% 3.83% 64.16% 63.60% 1.29%

Ind. orientations 55.76% 61.40% 11.37% 63.84% 66.30% 5.18%

Ind. orientations 54.26% 52.90% 7.62% 62.84% 64.50% 6.63%(pretrained)

2D input 67.58% 67.60% 0.29% 66.74% 66.90% 1.41%

2D input 73.72% 73.50% 1.75% 71.14% 71.00% 0.98%abstract orient.

Path diff. Graphics Time
Method mean median std dev memory (per epoch)

Full 3D 1.60% 1.36% 0.61% 793 MB 22 sec

Ind. orientations 2.43% 1.06% 3.27% 1431MB 37 sec

Ind. orientations 2.66% 1.35% 3.19% 1431MB 37 sec(pretrained)

2D input 1.85% 1.87% 0.25% 1073MB 39 sec

2D input 1.65% 1.61% 0.22% 821MB 27 secabstract orient.

50

6.2. 3D Locomotion Planning

I)

VII)

III)

VI)

IX)

IV)

V)

II)

VIII)

Figure 6.11: 3D Locomotion planning experiment. Left: Gazebo arena with Centauro.
Right: The corresponding occupancy map with the nine chosen goals and
one example result path.

ments are processed to registered point clouds while the robot is localized using
the method of Droeschel, Schwarz, and Behnke 2017. Finally, occupancy maps
with a resolution of 0.2m are generated from these point clouds and are used as
input to our network. Robot perception and control is implemented in C++ and
the communication with the network is realized using ROS.

Experiments are performed in the Gazebo simulation environment. For this, we
designed a test environment with cluttered terrain, in which we placed nine differ-
ent goal poses (Figure 6.11). A video with additional footage of the experiments
is available online2.

To evaluate the performance of our approach, we compare it against the A* plan-
ner. The heuristic used for the A* planner consists of the sum of the Euclidean
distance to the goal and the distance between the current orientation and the goal
orientation. In particular, let (p, θ) be the current pose, where p is a 2-dimensional
vector representing the base location and θ denotes the current orientation. Anal-
ogously, let (pgoal, θgoal) describe the goal pose. We estimate the remaining costs
as

h = ∥pgoal − p∥2 + |θgoal − θ|
√(rl

2

)2

+
(rw
2

)2

,

where rl and rw denote the length and width of the robot footprint.
Table 6.11 shows the results of our approach and the expert A* planner for the

tasks depicted in Figure 6.11. For most tasks, our planner generates optimal or
close to optimal paths. It successfully considers the robot footprint and thus is

2https://www.ais.uni-bonn.de/videos/ICRA_2019_Schleich

51

https://www.ais.uni-bonn.de/videos/ICRA_2019_Schleich

6. Evaluation

Table 6.11: Results of our approach and the A∗-planner for the tasks depicted
in Figure 6.11.

AVIN A∗-planner
Path length Planning Time Path length Planning Time

I) 24.59 0.420 sec 23.41 0.131 sec
II) Not found 24.14 0.754 sec
III) 17.90 0.312 sec 17.90 0.080 sec
IV) 18.80 0.355 sec 18.80 0.265 sec
V) Not found 27.76 1.630 sec
VI) 17.01 0.292 sec 17.01 0.133 sec
VII) 14.16 0.271 sec 13.33 0.046 sec
VIII) 24.67 0.438 sec 22.92 0.177 sec
IX) 22.13 0.417 sec 22.13 0.615 sec

able to plan paths where obstacles have to be taken between the legs (e.g., III and
VII). One example path is depicted in Figure 6.11. However, our planner does not
find successful paths for II and V. For both tasks, the generated path results in a
collision.

The planning times of our approach have a lower variation than for the A*
planner. In most of the cases, the A* planner achieves the best planning times.
However, for IX, it is outperformed by our approach.

To give a more reliable comparison of the runtime of both planning systems,
we also evaluate the planning times on the synthetically generated test set, which
was used in the previous section. Here, we only consider test scenes, where our ap-
proach generates a successful path. Thus, we average the planning times over 3792
different tasks. While the A* planner needs 0.309 sec on average, our approach is
marginally better with an average planning time of 0.268 sec. Interestingly, the
runtime of our approach is lower on the synthetically generated scenes compared
to the Centauro experiment (Table 6.11). This may be due to the fact that the
synthetically generated scenes contain randomly placed goals, which may be closer
to the initial robot pose than the goals depicted in Figure 6.11.

As shown previously in Figure 6.5 and 6.6, on the less complex 2D grid world
task, the A* planner significantly outperforms our approach with respect to plan-
ning times. However, for 3D locomotion planning, the runtime of our approach is
similar to the runtime of the A* planner. This indicates, that for more complex
planning tasks than 3D locomotion planning, learning-based planners, like the one
presented in this work, are able to achieve lower planning times than traditional
planners. However, the success rate of these planners does not reach the quality
of traditional planners for more complex tasks yet.

52

7. Conclusion
This thesis presents a method how to extend VINs to incorporate multiple levels
of abstraction. We evaluated different design decisions and compared our method
against VINs and HVINs on 2D grid worlds. Our experiments show that our
method improves the applicability of VINs on large grids with coarse obstacle dis-
tribution and stabilizes the training process. Our approach successfully reduces
the state space size compared to VINs, which is indicated by a reduced graph-
ics memory consumption and lower training times of our approach for large map
sizes. This facilitates scaling to larger environments. Although we use abstract
environment representations, our method achieves significantly better results with
respect to success rates and path quality than original VINs. This may be ex-
plained since, by providing the highest information density for the Level-1 area,
our method places the focus of the planner on the vicinity of the robot, which is
the most important area for determining the next action.

However, due to information loss within higher abstraction levels, we do not
reach the performance of VINs on complex environments like 2D mazes. Never-
theless, our experiments show that in general, the information loss can be reduced
by the introduction of additional descriptive features. This is indicated by the fact
that our method significantly outperforms HVINs on complex 2D mazes. However,
HVINs achieve surprisingly good results on large 128×128 grid worlds with coarse
obstacle distribution.

Furthermore, we applied our method to 3D robot locomotion tasks. Different
methods how to adapt our method to this task have been evaluated and the best
one was integrated into a planning pipeline for the Centauro robot. Our system
generates optimal or near to optimal paths and even matches the planning time
of an A* planner. In the future, the planning time of our approach may even be
further decreased by using all approximate state-values from the Level-1 map to
predict a short action sequence instead of a single next action.

For the 2D grid world task, there are huge differences between the planning
time of our approach and the planning time of the A* planner, which is signifi-
cantly faster. However, this difference is reduced for the more complex 3D loco-
motion planning task and, depending on the scene complexity, both approaches
even achieve similar planning times. This confirms our initial assumption that the

53

7. Conclusion

performance of learning-based planners depends less on the problem complexity
than the performance of traditional planners. However, the success rates of our
method for 3D locomotion planning are significantly lower compared to the success
rates for the less complex 2D grid world planning tasks. Although our method en-
ables VINs to solve the 3D locomotion planning tasks considered in this work, this
points out current limitations of learning-based planners. Thus, the applicability
to more complex and higher-dimensional problems is uncertain.

Keeping the state space small, e.g., through abstraction, is essential for achieving
good results with planners based on VINs. This is shown by our comparison of
three and four abstraction levels for large 128×128 gird worlds. It is also indicated
by our evaluation of different methods for the 3D locomotion planning task, where
the best results are achieved by using abstract representations for both, position
and orientation.

Usually, large parts of the environment map are not needed to predict successful
paths. Therefore, it might be interesting to embed a module into the network
architecture, which reduces the state space size by predicting a region of interest.
Instead of planning on the whole environment map, the planner can subsequently
be applied to this region.

To be able to scale to larger and more complex state spaces, it may be interesting
to use hierarchical versions of the method proposed in this thesis. On a global low
resolution map, subgoals might be determined which are locally connected by the
planning system.

All in all, we have increased the applicability of learning-based motion planners
to real world problems.

54

List of Figures
2.1. Setting for 2D grid world path planning 4

3.1. Value Iteration Networks . 10
3.2. Hierarchical Value Iteration Networks 11

4.1. The areas covered by the different abstraction maps 15
4.2. Network architecture for 2D grid world planning 16
4.3. Abstraction Module . 17
4.4. Reward Module . 18
4.5. Value Iteration Module . 19
4.6. VI Module Padding . 19

5.1. Actions for 3D robot locomotion task 23
5.2. Network architecture for 3D locomotion planning 24
5.3. Preprocessing the occupancy map 25
5.4. Orientation padding during 3D VIs 26
5.5. Cyclic learning rate . 29

6.1. Design decisions 2D . 33
6.2. 2D grid world results . 37
6.3. Training performance 2D grid worlds 37
6.4. Resource consumption 2D grid worlds 40
6.5. Planning times on 2D grid worlds 41
6.6. Planning times on 2D mazes . 44
6.7. Example paths mazes . 45
6.8. Path generation with history . 45
6.9. The Centauro robot . 47
6.10. Evaluation cyclic learning rate . 48
6.11. 3D Locomotion planning experiment 51

55

List of Tables
6.1. Design decision: Reward Module 32
6.2. Design decision: Padding . 34
6.3. Design decision: Imbalanced Data 35
6.4. Design decision: Action labels . 36
6.5. Evaluation on 2D grid worlds . 39
6.6. Using four abstraction levels . 41
6.7. Evaluation on 2D mazes . 43
6.8. Evaluation of path generation methods 46
6.9. Design decision: Cyclic learning rate 49
6.10. 3D Architectures . 50
6.11. 3D locomotion planning for Centauro 52

A.1. Detailed results: 2D design choices 63
A.2. Detailed results: 2D mazes . 64
A.3. Detailed results: 2D mazes with history 65
A.4. Detailed results: 2D grid worlds . 66
A.5. Detailed results: 3D locomotion . 67

57

Bibliography
Bagnell, J. A. and J. G. Schneider (2001). “Autonomous helicopter control using

reinforcement learning policy search methods”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA).

Behnke, S. (2003). “Local multiresolution path planning”. In: Robot Soccer World
Cup. Springer, pp. 332–343.

Bellman, R. (1957). “A Markovian decision process”. In: Indiana University Math-
ematics Journal 6 (4), pp. 679–684.

– (2013 [1957]). Dynamic programming. Courier Corporation.
Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al. (2016). “End to end learning for
self-driving cars”. In: arXiv preprint:1604.07316.

Dijkstra, E. W. (1959). “A note on two problems in connexion with graphs”. In:
Numerische Mathematik 1.1, pp. 269–271.

Droeschel, D., M. Schwarz, and S. Behnke (2017). “Continuous mapping and lo-
calization for autonomous navigation in rough terrain using a 3D laser scanner”.
In: Robotics and Autonomous Systems 88, pp. 104–115.

Gupta, S., J. Davidson, S. Levine, R. Sukthankar, and J. Malik (2017). “Cognitive
mapping and planning for visual navigation”. In: arXiv preprint:1702.03920 3.

Hart, P. E., N. J. Nilsson, and B. Raphael (1968). “A formal basis for the heuris-
tic determination of minimum cost paths”. In: IEEE Transactions on Systems
Science and Cybernetics 4.2, pp. 100–107.

Kambhampati, S. and L. Davis (1986). “Multiresolution path planning for mobile
robots”. In: IEEE Journal on Robotics and Automation 2.3, pp. 135–145.

Karaman, S. and E. Frazzoli (2011). “Sampling-based algorithms for optimal mo-
tion planning”. In: The International Journal of Robotics Research 30.7, pp. 846–
894.

Karkus, P., D. Hsu, and W. S. Lee (2017). “QMDP-Net: Deep learning for plan-
ning under partial observability”. In: Advances in Neural Information Processing
Systems, pp. 4694–4704.

Kavraki, L., P. Svestka, J.-C. Latombe, and M. H. Overmars (1996). “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces”. In: IEEE
Transactions on Robotics and Automation 12.4, pp. 566–580.

Khan, A., C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee (2017).
“Memory augmented control networks”. In: arXiv preprint:1709.05706.

Khatib, O. (1985). “Real-time obstacle avoidance for manipulators and mobile
robots”. In: IEEE International Conference on Robotics and Automation (ICRA).

59

Bibliography

Klamt, T. and S. Behnke (2017). “Anytime hybrid driving-stepping locomotion
planning”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

– (2018). “Planning hybrid driving-stepping locomotion on multiple levels of ab-
straction”. In: IEEE International Conference on Robotics and Automation
(ICRA).

Klamt, T., D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko, D. Droeschel,
and S. Behnke (2018). “Supervised autonomous locomotion and manipulation
for disaster response with a centaur-like robot”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “ImageNet classification
with deep convolutional neural networks”. In: Advances in Neural Information
Processing Systems (NIPS).

Kulkarni, T. D., K. Narasimhan, A. Saeedi, and J. Tenenbaum (2016). “Hierarchi-
cal deep reinforcement learning: integrating temporal abstraction and intrinsic
motivation”. In: Advances in Neural Information Processing Systems (NIPS).

LaValle, S. M. (1998). Rapidly-exploring random trees: a new tool for path planning.
Lee, L., E. Parisotto, D. S. Chaplot, and R. Salakhutdinov (2018). LSTM Iter-

ation networks: an exploration of differentiable path finding. url: https://
openreview.net/forum?id=ryF9WtyDf.

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end training of deep
visuomotor policies”. In: The Journal of Machine Learning Research (JMLR)
17.1, pp. 1334–1373.

Loshchilov, I. and F. Hutter (2016). “SGDR: Stochastic gradient descent with
warm restarts”. In: arXiv preprint:1608.03983.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). “Human-
level control through deep reinforcement learning”. In: Nature 518.7540, p. 529.

Niu, S, S. Chen, H. Guo, C. Targonski, M. C. Smith, and J. Kovacevic (2017).
“Generalized value iteration networks: life beyond lattices”. In: Arxiv preprint:
1706.02416.

Schwarz, M., A. Milan, A. S. Periyasamy, and S. Behnke (2018). “RGB-D object
detection and semantic segmentation for autonomous manipulation in clutter”.
In: The International Journal of Robotics Research (IJRR) 37.4-5, pp. 437–451.

Srinivas, A., A. Jabri, P. Abbeel, S. Levine, and C. Finn (2018). “Universal plan-
ning networks”. In: arXiv preprint:1804.00645.

Sutton, R. S. and A. G. Barto (1998). Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge.

Tamar, A., Y. Wu, G. Thomas, S. Levine, and P. Abbeel (2016). “Value iteration
networks”. In: Advances in Neural Information Processing Systems (NIPS).

Tieleman, T. and G. E. Hinton (2012). Lecture 6.5-rmsprop: divide the gradient by
a running average of its recent magnitude. Available at https://www.coursera.

60

https://openreview.net/forum?id=ryF9WtyDf
https://openreview.net/forum?id=ryF9WtyDf
https://www.coursera.org/lecture/neural-networks/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude-YQHki
https://www.coursera.org/lecture/neural-networks/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude-YQHki

Bibliography

org/lecture/neural- networks/rmsprop- divide- the- gradient- by- a-
running-average-of-its-recent-magnitude-YQHki.

61

https://www.coursera.org/lecture/neural-networks/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude-YQHki
https://www.coursera.org/lecture/neural-networks/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude-YQHki
https://www.coursera.org/lecture/neural-networks/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude-YQHki

A. Detailed Test Results

Table A.1: Detailed results for the different design choices on 64× 64 grid worlds.
Depicted are five different training runs as well as mean, median, and
standard deviation. All values are expressed in percentages.

Training run
0 1 2 3 4 mean median std

(Ind. levels,
mean padding,
weighted loss,
single-action)

Success 93.4 94.2 94.0 92.8 97.8 94.44 94.0 1.96
Accuracy 79.7 80.4 83.2 82.0 82.9 81.64 82.0 1.54
Path diff 21.68 1.64 1.41 1.39 0.84 1.39 1.41 0.34

(Information flow,
mean padding,
weighted loss,
single-action)

Success 98.8 97.4 95.5 97.5 95.5 96.94 97.4 1.43
Accuracy 87.8 85.8 81.3 85.3 84.6 84.96 85.3 2.37
Path diff 0.68 1.15 0.73 0.65 1.14 0.87 0.73 0.25

(Information flow,
padding layer,
weighted loss,
single-action)

Success 93.3 91.5 91.6 96.6 91.4 92.88 91.6 2.22
Accuracy 82.3 80.4 80.0 86.0 78.5 81.44 80.4 2.89
Path diff 1.27 2.90 1.67 0.85 1.92 1.72 1.67 0.77

(Information flow,
mean padding,
unweighted loss,

single-action labels)

Success 94.9 96.4 94.7 91.2 93.4 94.12 94.7 1.95
Accuracy 80.8 86.4 84.4 77.3 83.2 82.42 83.2 3.51
Path diff 1.96 1.56 1.14 1.65 2.05 1.67 1.65 0.36

(Information flow,
mean padding,
weighted loss,
single-action)

adapted sampling

Success 99.3 96.5 94.0 93.6 94.2 95.52 94.2 2.40

Accuracy 88.2 86.4 85.8 86.9 84.9 86.44 86.4 1.23

Path diff 0.63 0.70 0.80 0.82 0.70 0.73 0.70 0.08
(Information flow,
mean padding,
weighted loss,
multi-action)

Success 86.5 87.3 47.8 49.2 89.2 72.00 86.5 21.48
Accuracy1 94.7 94.8 87.6 89.0 94.3 92.08 94.3 3.49
Path diff 0.36 0.55 1.04 0.88 0.17 0.60 0.55 0.36

1In the case of multi-action labels, the accuracy does not measure whether the action predicted
by the network is the one predicted by the expert planner, but whether the predicted action
is one of the optimal next actions.

63

A. Detailed Test Results

Table A.2: Detailed results on 2D mazes. Depicted are five different training runs
as well as mean, median, and standard deviation. All values are ex-
pressed in percentages.

Training run
0 1 2 3 4 mean median std

16
×
16

VIN
Success 73.9 99.6 99.8 99.8 99.3 94.48 99.6 11.51
Accuracy 77.4 99.3 99.3 99.7 96.4 94.42 99.3 9.61
Path diff 1.70 0.06 0.06 0.02 0.70 0.51 0.06 0.72

HVIN
Success 83.4 89.9 90.0 84.1 89.7 87.42 89.7 3.36
Accuracy 83.2 89.9 89.8 84.2 88.9 87.20 88.9 3.24
Path diff 1.61 0.88 0.87 1.33 1.11 1.16 1.11 0.31

AVIN
Success 82.6 83.6 82.10 83.9 82.8 83.00 82.8 0.74
Accuracy 82.6 83.7 81.5 82.8 82.0 82.52 82.6 0.83
Path diff 2.19 1.74 2.04 2.30 1.99 2.05 2.04 0.21

32
×
32

VIN
Success 25.8 97.2 91.8 97.6 98.1 82.1 97.2 31.58
Accuracy 52.1 95.9 87.3 95.5 97.2 85.60 95.5 19.13
Path diff 2.52 0.22 0.90 0.19 0.57 0.88 0.57 0.96

HVIN
Success 45.3 55.2 47.8 47.1 47.3 48.54 47.3 3.84
Accuracy 66.7 73.5 69.6 71.1 68.8 69.94 69.6 2.55
Path diff 2.67 1.51 1.91 1.83 2.20 2.02 1.91 0.44

AVIN
Success 73.6 74.6 66.5 70.8 71.0 71.30 71.0 3.14
Accuracy 84.3 84.5 79.9 82.0 83.1 82.76 83.1 1.89
Path diff 1.00 0.95 1.28 1.19 1.10 1.10 1.10 0.14

64
×
64

VIN
Success 90.8 28.7 90.4 87.5 92.7 78.02 90.4 27.63
Accuracy 91.1 65.7 85.9 85.9 94.3 84.58 85.9 11.15
Path diff 1.32 2.78 1.70 1.27 0.36 1.49 1.32 0.87

HVIN
Success 15.8 14.2 12.3 14.6 14.2 14.22 14.2 1.26
Accuracy 60.2 58.5 57.8 59.3 58.3 58.82 58.5 0.94
Path diff 2.16 2.28 1.65 1.93 1.91 1.99 1.93 0.24

AVIN
Success 61.6 56.0 52.1 51.3 64.3 57.06 56.0 5.74
Accuracy 80.5 80.9 80.2 78.2 83.3 80.62 80.5 1.82
Path diff 0.61 0.47 0.58 0.67 0.58 0.58 0.58 0.07

64

Table A.3: Detailed results on 2D mazes using path generation with history. De-
picted are five different training runs as well as mean, median, and
standard deviation. All values are expressed in percentages.

Training run
0 1 2 3 4 mean median std

16
×

1
6

VIN Success 78.6 99.7 99.8 99.8 99.4 95.46 99.7 9.43
Path diff 7.67 0.11 0.60 0.03 0.77 1.84 0.60 3.28

HVIN Success 86.6 93.4 93.0 87.8 92.1 90.58 92.1 3.15
Path diff 4.76 4.36 4.98 5.59 3.75 4.69 4.76 0.69

AVIN Success 86.5 88.2 86.0 88.0 87.6 87.26 87.6 0.96
Path diff 5.82 6.44 5.65 6.59 6.74 6.25 6.44 0.48

32
×

32

VIN Success 27.7 97.5 92.3 97.9 98.2 82.72 97.5 30.85
Path diff 7.66 0.34 1.09 0.35 0.58 2.00 0.58 3.18

HVIN Success 53.6 61.3 55.5 53.9 52.7 55.40 53.9 3.45
Path diff 12.11 6.74 9.84 8.60 7.63 8.98 8.60 2.09

AVIN Success 78.8 79.1 69.2 74.4 75.6 75.42 75.6 4.02
Path diff 3.85 3.56 2.86 3.03 3.40 3.34 3.40 0.40

64
×

64

VIN Success 91.7 31.6 91.4 88.5 93.0 79.24 91.4 26.68
Path diff 1.45 4.43 1.88 1.50 0.42 1.94 1.50 1.50

HVIN Success 20.9 18.8 13.6 17.2 15.8 17.25 17.2 2.78
Path diff 13.30 12.80 4.33 7.20 5.16 8.56 7.20 4.24

AVIN Success 64.1 58.6 53.5 54.6 66.3 59.42 58.6 5.66
Path diff 1.23 1.25 1.05 1.98 1.23 1.35 1.23 0.36

65

A. Detailed Test Results

Table A.4: Detailed results on 2D grid worlds. Depicted are five different training
runs as well as mean, median, and standard deviation. All values are
expressed in percentages.

Training run
0 1 2 3 4 mean median std

32
×

32

VIN
Success 77.4 94.9 93.6 97.8 94.9 91.72 94.9 8.15
Accuracy 62.8 83.6 81.8 90.0 83.7 80.38 83.6 10.31
Path diff 5.81 1.51 2.09 0.62 2.37 2.48 2.09 1.98

HVIN
Success 95.1 93.9 95.0 91.8 93.4 93.84 93.9 1.35
Accuracy 81.6 81.5 81.0 78.0 78.3 80.08 81.0 1.78
Path diff 1.56 2.93 1.42 3.16 2.07 2.23 2.07 0.79

AVIN
Success 97.2 97.3 96.6 96.6 96.5 96.84 96.6 0.38
Accuracy 85.6 83.6 82.6 82.8 82.4 83.40 82.8 1.31
Path diff 1.84 1.10 1.61 2.02 2.07 1.73 1.84 0.39

64
×

64

VIN
Success 34.8 83.2 79.3 82.9 79.7 71.98 79.7 20.86
Accuracy 47.2 74.9 73.1 79.2 76.0 70.08 74.9 12.98
Path diff 5.74 2.12 2.56 1.87 2.42 2.94 2.42 1.59

HVIN
Success 88.5 91.5 89.8 93.1 71.2 86.82 89.8 8.90
Accuracy 76.6 78.5 80.1 77.9 74.0 77.42 77.9 2.29
Path diff 2.68 2.12 2.20 1.48 4.28 2.55 2.20 1.06

AVIN
Success 98.8 97.4 95.5 97.5 95.5 96.94 97.4 1.43
Accuracy 87.8 85.8 81.3 85.3 84.6 84.96 85.3 2.37
Path diff 0.68 1.15 0.73 0.65 1.14 0.87 0.73 0.25

12
8
×

12
8

VIN
Success 16.9 46.5 35.1 25.3 34.0 31.56 34.0 11.13
Accuracy 49.9 55.9 51.5 57.4 65.1 55.96 55.9 5.96
Path diff 6.42 7.18 16.85 9.41 2.43 8.46 7.18 5.33

HVIN
Success 89.0 79.3 75.7 89.6 82.6 83.24 82.6 6.05
Accuracy 79.0 78.1 75.5 73.5 76.4 76.50 76.4 2.17
Path diff 2.08 2.66 2.51 1.67 1.55 2.09 2.08 0.49

HVIN
4 Levels

Success 85.2 85.3 82.6 86.3 80.6 84.00 85.2 2.34
Accuracy 78.9 78.7 79.7 76.4 76.5 78.04 78.7 1.50
Path diff 2.31 2.42 3.16 2.34 3.76 2.80 2.42 0.64

AVIN
Success 82.1 75.4 77.2 88.4 78.6 80.34 78.6 5.13
Accuracy 81.7 76.3 79.7 86.2 80.4 80.86 80.4 3.59
Path diff 2.86 2.21 2.95 1.56 2.81 2.48 2.81 0.59

AVIN
4 Levels

Success 38.2 94.6 94.8 83.9 79.2 78.14 83.9 23.33
Accuracy 72.6 85.5 84.6 77.5 80.1 80.06 80.1 5.30
Path diff 1.51 1.43 1.22 2.37 2.54 1.81 1.51 0.60

66

Table A.5: Detailed results for the 3D locomotion planning task. Depicted are five
different training runs as well as mean, median, and standard deviation.
All values are expressed in percentages.

Training run
0 1 2 3 4 mean median std

Full 3D
Success 19.6 16.3 26.3 21.9 23.7 21.56 21.9 3.83
Accuracy 66.0 65.0 63.0 63.2 63.6 64.16 63.6 1.29
Path diff 2.13 0.87 2.33 1.30 1.36 1.60 1.36 0.61

Independent
orientations

Success 64.0 36.4 54.8 61.4 62.2 55.76 61.4 11.37
Accuracy 67.4 54.9 63.8 66.3 66.8 63.84 66.3 5.18
Path diff 1.12 8.28 0.92 1.06 0.78 2.43 1.06 3.27

Independent
orientations
(pretrained)

Success 59.9 52.9 43.3 62.9 52.3 54.26 52.9 7.62
Accuracy 67.4 64.5 51.3 67.1 63.9 62.84 64.5 6.63
Path diff 0.99 1.61 8.35 1.35 0.99 2.66 1.35 3.19

2D input
Success 68.0 67.6 67.2 67.5 67.6 67.58 67.6 0.29
Accuracy 68.2 65.5 68.0 66.9 65.1 66.74 66.9 1.41
Path diff 1.62 1.87 1.57 2.06 2.11 1.85 1.87 0.25

2D input
(without

lr scheduler)

Success 65.5 64.3 64.7 62.5 63.9 64.18 64.3 1.11
Accuracy 66.0 67.2 69.3 68.0 64.8 67.06 67.2 1.74
Path diff 3.79 2.21 2.41 2.37 2.79 2.71 2.41 0.64

2D input
(abstract

orientations)

Success 73.5 74.1 71.3 73.5 76.2 73.72 73.5 1.75
Accuracy 71.8 71.0 69.9 70.6 72.4 71.14 71.0 0.98
Path diff 1.61 1.77 1.44 1.47 1.96 1.65 1.61 0.22

67

	Introduction
	The Motion Planning Problem
	Definition
	Evaluation Metrics

	Related Work
	Traditional Planning Approaches
	Learning-based Planners
	Markov Decision Processes and Value Iteration
	Value Iteration Networks
	Hierarchical Value Iteration Networks

	Abstraction

	Value Iteration Networks on Multiple Levels of Abstraction
	Choice of Software Architecture
	Multiple Levels of Abstraction
	Network Architecture
	Abstraction Module
	Reward Module
	VI Module and Reactive Policy

	Training Details
	Path Generation

	Adaption to 3D Locomotion Planning
	Network Architecture
	Full 3D Architecture
	Independently Processed Orientation Channels
	2D Input
	2D Input With Abstract Orientations

	Training Details

	Evaluation
	2D Grid Worlds
	Design Choices
	Final Results
	Path Generation with History

	3D Locomotion Planning
	Design Choices
	Integration For Centauro

	Conclusion
	Appendices
	Detailed Test Results

