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Abstract

Robots working in human environments must be able to use a variety of tools

and objects. Using these tools requires manipulation information such as grasp

poses or trajectories. However, even within the same class, objects express some

variation in their shape. This means that each individual instance of an object

must be trained or manually annotated with its own manipulation information.

It is often time-consuming or impractical to program or train a robot for every

instance of an object. By using registration methods, a transformation between

a previously-trained shape and a newly-observed shape can be found, and ma-

nipulation information from the previously-trained instance can be transferred to

the observed instance, facilitating the observed object’s use. Previous methods

work by directly registering the two shapes, but these methods are sensitive to

the shapes’ initial alignments and lack robustness to noise, occlusions, and self-

occlusions. Because these methods lack class-level knowledge of the object, there

is no way to infer what parts of an observed object are noise or occlusions nor

can hidden parts be inferred. To overcome these limitations, this thesis proposes

a method for non-rigid registration using class-level information combined with

subspace methods. Rather than directly searching the entire space of transforma-

tions between two shapes, the proposed method first defines a canonical shape and

finds a set of transformations which deform it to match other known instances of

the same class. Then PCA is applied to this set to find a lower-dimensional latent

space of transformations. Inference on novel fully- or partially-observed objects is

done by minimizing an energy function by concurrently searching the latent space

of transformations and fitting a single rigid transformation. By restricting the

search space around transformations relevant to the class of objects, the proposed

registration method increases the robustness to many of the problems of previous

methods and gains some ability to infer hidden or self-occluded parts. This thesis

will demonstrate the registration accuracy of our method on fully- and partially-

observed shapes and demonstrate its robustness to poor initial alignment, noise,

and occlusions.
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1. Introduction

1.1. Motivation

A human can be given a screwdriver they have never observed before, and they

will immediately know how to grasp and operate it. The handle might be wider,

the shank might be shorter, and there can be other variations in the shape, but

the human will still instantly know where to grasp it and how to operate it. A

human does not need to re-learn how to use every instance of a tool; they can

simply adapt any previous manipulation knowledge to the changes in shape of the

new instance and transfer over this manipulation information. This allows them

to immediately make use of a novel instance of a tool just as well as they could

with any previous and more familiar instances.

And while such a feat is trivial for humans, this is not the case for robots.

The variance of shapes of objects even within the same class is often enough

that previous manipulation knowledge a robot may have may not be immediately

applicable to a novel instance of an object. The robot must therefore learn or be

taught how to use every instance of a tool, regardless of any previous experience it

may have with other instances from the same class. This can be time-consuming, it

can require human interaction, and, in many scenarios, it can be simply impossible.

Rather than just discarding the manipulation information a robot may have from

a similar object, the manipulation knowledge can be modified to be applicable to

the novel instance. Stueckler et al. (2011) proposed a method for manipulation

skill transfer using non-rigid registration. The registration finds a non-rigid trans-

formation between a prior instance where manipulation information - such as grasp

poses or motion trajectories - was available and a novel instance from the same

class. The transformation is given as a dense deformation field: i.e. for any point

in the space of the first shape, the deformation field gives a vector which trans-

forms that point into the space of the second. For any manipulation knowledge

defined in the space of the first instance, the deformation field is applied to this

knowledge as well, transforming it into the space of the newly observed instance

and facilitating the object’s use.

However, there are practical issues which affect the results of non-rigid regis-

tration. There are problems such as noise from sensors, occlusions from camera

1



1. Introduction

(a) (b) (c) (d)

Figure 1.1.: A prior template shape (red) matched against a partially-occluded
target observed shape (blue) and the resulting registration matches (green). Left:
Coherent Point Drift (c), right: our method (d). Notice that while the general
model (CPD) has collapsed the occluded far wall in to match with the observed
wall, our learned method maintains a mug-like shape more consistent with the
true shape of the partially-hidden object.

Figure 1.2.: Novel samples of mugs from a latent space of mug transformations
using linear combinations of previously observed transformations.

2



1.2. Problem Definition and Objectives

perceptive or from other objects in the scene (such as the robot’s own manipula-

tors), and initial misalignments between the template and target shapes. These

problems can lead to incorrect correspondences between points and incorrect trans-

formations. In particular, occlusions lead to missing data, which can be hard or

even impossible to infer from the point data alone. For methods which rely on the

accuracy of the registration results, this can be very problematic.

While a general model has no concept of the objects being registered and thus

can only rely on heuristics such as smoothness or motion coherence, a learned

model can leverage information based on previously observed transformations be-

tween other objects of the same class. We propose a learned non-rigid registration

method which is robust to these issues by incorporating class-level information.

Our method automatically finds and learns the transformations which are most

common to a class of objects, creating a class-specific non-rigid registration model.

We show that incorporating this information not only increases the robustness

of the registration for noisy and partially occluded objects, but also allows some

ability to infer hidden or occluded parts. Rather than attempting to match the

two point sets directly, our method tries to find a transformation linearly interpo-

lated and extrapolated from other transformations found within the class which

best matches the observed point set. This results in more likely shapes, as we re-

strict the transformations to be more closely resemble ones which we have actually

observed during training. Fig. 1.1 demonstrates our method’s ability to handle

occlusions. Additionally, using these learned transformations, our method can be

used to generate novel instances such as those in Fig. 1.2.

In the next section, we give a more concrete definition of the registration prob-

lem. In Chapter 2, we cover background work which serves as a basis and context

for our own work as well as cover recent contributions which are similar to our

work. In Chapter 3, we outline our method. In Chapter 4, we describe our exper-

iments and present our results. And in Chapter 5, we provide our conclusions and

present ideas for future work.

1.2. Problem Definition and Objectives

The point set registration problem is defined as: given two sets of points, find

the underlying transformation which maps one point set to the second. More

formally: given two sets of D-dimensional points, Y = (y1, ..., yM)T and X =

(x1, ..., xN)T , find a transformation T that when applied to the set Y , minimizes the

distance between corresponding points in the set X. In general, a transformation

T can be any function which takes in a set of N D-dimensional input points

3



1. Introduction

(a) (b) (c) (d)

Figure 1.3.: A 2-D example of the registration problem. We seek to find the
underlying transformation between the round and square points. (a) shows the
two shapes, (b) shows a possible transformation linking the first shape to the
second, (c) shows the result of the transformation, and (d) shows the transformed
shape overlayed onto the reference shape.

and produces a set of N D-dimensional output points in the same order. The

points are D-dimensional and need not represent only spacial locations, but can

instead be higher dimensional feature vectors. The challenge is that not only is the

true underlying transformation unknown, but so are the correspondences between

points. Indeed, if we knew the correspondences, the transformation would be

simple to estimate, and if we knew the transformation, we could easily estimate

the correspondences. We must therefore estimate not only the transformation, but

also the correspondences.

For any class of transformations which can be represented by a parameteri-

zation, each transformation can be thought of as a point in the space of all

transformations. Within this space, for any set of transformations, there exists

a linear subspace which approximately contains those transformations. During

inference, rather than directly estimating the transformation between two shapes,

our method searches this linear subspace for the transformation. Doing so restricts

the transformations the shape can undergo to linear combinations of ones which

were previously observed, adding robustness against noise and occlusion.

Our method is divided into two phases: a learning phase and an inference phase.

In the learning phase, the objective is to create a class-specific linear model of the

transformations a class of objects can undergo. We do this by first selecting a

single model to be a canonical instance of the class, and then we find the trans-

formations relating this instance to all other instances of the class using Coherent

Point Drift (CPD) (Myronenko and Song, 2010). We then find a linear subspace

of these transformations, which becomes our transformation model for the class.

In the inference phase, the objective is, given a newly observed instance, search

this subspace of transformations to find the transformation which best relates the

canonical instance to the observed instance.

The transformations are represented by a single rigid transform, which accounts

4



1.2. Problem Definition and Objectives

for small global misalignments, and a dense deformation field, which gives a trans-

formation for every point in the space of the transforming shape. This allows

points defined in the space of the canonical shape, such as manipulation infor-

mation, to be transformed into the space of an observed instance. These points

do not need to be known a priori and can be added at any time, even after the

registration has completed. We also give an equation for estimating the inverse

transformation, which allows applications such as taking manipulation knowledge

gained in the space of the observed instances and transferring it back into the

canonical space. This can then be used to aggregate and train on data collected

after interactions with different instances. Additionally, the transformation model

created in the training phase can be used to interpolate and extrapolate between

instances to create novel instances of the class.

We summarize the objectives of our work:

1. Propose a learned non-rigid registration method which finds a low-dimensional

space of deformation fields which can be used to interpolate and extrapolate

between instances of a class of objects to create novel instances

2. and when given a coarsely-aligned partially- or fully-observed shape, finds

a transformation which models the non-rigid deformation and alignment re-

lating the shapes while being robust to noise and occlusion.

5





2. Related Work

2.1. Registration

Several solutions have been proposed for the problem of rigid registration. Chen

and Medioni (1992) proposed the Iterate Closest Point algorithm, which alternates

associating every point in one set with the closest point in the other set and

then applying the rigid transformation which minimizes the distance between the

corresponding points until a local minimum is reached. Since then, there have been

numerous variants proposed (Rusinkiewicz and Levoy, 2001), including several

variants which use non-rigid transformations (Brown and Rusinkiewicz, 2004, 2007;

Haehnel et al., n.d.). These methods typically only find a local minimum, but for

rigid transformations, recently Yang et al. (2016) proposed a method for finding

the global optimum using branch-and-bound methods.

For non-rigid registration, we need to impose some a priori restrictions or regu-

larization on the motion or deformation of the points between sets or else we have

no way of establishing correspondences or estimating a transformation. Different

transformation priors such as isometry (Bronstein et al., 2006; Ovsjanikov et al.,

2010; Tevs et al., 2009), elasticity (Haehnel et al., n.d.), conformal maps (Kim

et al., 2011; Lévy et al., 2002; Zeng et al., 2010), thin-plate splines (Allen et al.,

2003; Brown and Rusinkiewicz, 2007), and Motion Coherence Theory (Myronenko

and Song, 2010) have been used to allow for or to penalize different types of trans-

formations. Additionally, the error function and correspondence search method

have several variants as well (Rusinkiewicz and Levoy, 2001).

A significant portion of registration research is dedicated specifically to the hu-

man body. There exist many methods for non-rigid registration of human body

parts such as hands (Oikonomidis et al., n.d.; Qian et al., 2014), faces (Blanz and

Vetter, 1999; Bolkart and Wuhrer, 2015, 2016), and whole bodies (Allen et al.,

2003; Hasler et al., 2009). In many of these cases, specialized shape or motion

templates are learned or manually created.

Many techniques focus on general articulated shapes (Anguelov et al., 2004;

Chang and Zwicker, 2009), focusing on matching the intrinsic shape of the ob-

ject instead of or in addition to the extrinsic shape. Anguelov et al. (2004) use a

joint probabilistic model over all point-to-point correspondences and the geodesic

7



2. Related Work

distance metric over the mesh between points to create a non-rigid registration

method that works well even over large deformations of an articulated model with-

out any prior shape or deformation dynamics knowledge. It functions even when

one of the scans is only a partial view and can even be used to automatically

recover the unknown underlying articulated skeleton. Another method focusing

on articulated shapes is proposed by Chang and Zwicker (2009), who model an

object’s motion between scans as a reduced deformable model (RDM), where the

object’s motion is given by only a small set of parameters. The deformation

model and surface representation are decoupled, with the articulation modeled by

the RDM and the surface modeled by a linear blend skinning model. They show

their method can deal with severe occlusions and missing data.

The medical field is a large contributor of non-rigid registration methods, par-

ticularly for the registration of images (Bernard et al., 2016; McInerney and Ter-

zopoulos, 1996; Rohlfing and Maurer, 2003; Rohlfing, Maurer, et al., 2004; Rueck-

ert, Frangi, et al., 2003; Rueckert, Sonoda, et al., 1999). Recently, Bernard et al.

(2016) proposed using shape priors in the form of statistic shape models (SSM) to

increase the robustness and accuracy of the registration and to deal with sparse

data. Rohlfing and Maurer (2003) use parallelization to significantly speed up

the nonrigid registration process, allowing it to be more widely applied to clinical

situations where fast execution is required.

Many methods use non-rigid registration for surface reconstruction (Li, Adams,

et al., 2009; Li, Sumner, et al., 2008; Newcombe et al., 2015; Süßmuth et al., 2008;

Wand, Adams, et al., 2009; Wand, Jenke, et al., 2007). Methods such as Brown and

Rusinkiewicz (2007) and Li, Sumner, et al. (2008) present surface reconstruction

methods for global non-rigid registration. Methods such as Li, Adams, et al. (2009)

and Zollhöfer et al. (2014) use a Kinect depth camera to capture an initially low-

resolution 3D surface and use non-rigid registration to continuously add higher

frequency details to the model with each new frame. Li, Vouga, et al. (2013)

use non-rigid registration to create water-tight models of humans. The method is

designed such that users can create 3D models of themselves by themselves, using

non-rigid registration to account for the subtle changes in pose or surfaces such as

clothing or hair while the user turns between scans.

In Newcombe et al. (2015), the authors propose a non-rigid dense surface re-

construction method using dense non-rigid registration. Using a depth camera to

capture a sequence of depth images, they calculate a dense 6-dimensional warp

field between frames. They then undo the transformations between each frame

and then rigidly fuse the scans into one canonical shape using KinectFusion (Izadi

et al., 2011). The dense warp field is estimated by minimizing an energy function

combining a data term and a regularization term which penalizes non-smoothness

8



2.2. Class-Level Shape Spaces

and seeks to create a rigid-as-possible deformation.

Stueckler et al. (2011) develop an efficient real-time non-rigid registration method

using Coherent Point Drift. They use a coarse-to-fine correspondence search and

warp estimation of RBG-D images using their own feature representation called

multi-resolution surfel maps (MRSMaps) (Stückler and Behnke, 2014), a multi-

resolution representation which stores shape and color information in an octree.

2.2. Class-Level Shape Spaces

Several methods exist to create a parameterized space of shapes. Some of these

methods use these shape spaces to add robustness or accuracy to previous methods

or to provide additional versatility or features.

Blanz and Vetter (1999) create a morphable model of faces which can create

novel faces and interpolate between faces using a few parameters. Additionally, it

regularizes the naturalness of the modeled face and avoids faces it considers to be

unlikely. Similarly, Allen et al. (2003) create a shape space of human bodies using

human body range scans with sparse 3D markers. Hasler et al. (2009) extend

this space to include pose, creating a unified space of both pose and body shape.

This allows them to model the surface of a body in various articulated poses more

accurately than previous methods by incorporating body shape information such

as weight or muscularity.

Nguyen et al. (2011) attempt to optimize maps between shapes by creating col-

lections of similar shapes and optimizing the mapping at a global scale. Huang et

al. (2012) also use collections of shapes to enforce global consistency, but also cre-

ates a small collection of base shapes from which correspondences are established

between all other shapes.

Burghard et al. (2013) propose an approach to estimate dense correspondences

on a shape given initial coarse correspondences. They use the idea of minimum

description length to create a compact shape space of related shapes of strongly

varying geometry. By minimizing the the description length of the shape space,

they avoid overfitting and make the model more statistically meaningful. Addi-

tionally, they consider a shape to be an assembly of deformable, dockable parts,

learning an individual shape space for each part, and then seemlessly and contin-

uously merge the parts into a single mesh.

Engelmann et al. (2016) use 3D shape priors as regularization cues to segment

objects and estimate their shape and pose in stereo images. They learn a compact

shape manifold which represents a class’s intra-class shape variance, allowing them

to infer shape in occluded regions or regions where data might be missing or noisy

9



2. Related Work

such as textureless, reflective, or transparent surfaces. They demonstrate that

these shape priors improve scene reconstruction and pose estimation in stereo

images.

2.3. Discussion

Current state-of-the-art non-rigid registration methods give good results but have

limitations. Newcombe et al. (2015) are able to deform a scene in real-time toward

a canonical shape, but use optical flow constraints and thus are not suited for large

deformations or strong changes in illumination and color. Many of the methods

are capable of handling large deformations, but not occlusions. For example, the

method proposed by Burghard et al. (2013) accurately estimates dense correspon-

dences, but does not perform well in the presence of noise or incomplete scans,

such as from occlusions. Methods such as Engelmann et al. (2016) can handle

large occlusions and minor misalignments to uncover the shape and alignment of

the object, but do not give correspondences between points and do not offer any

kind of transformation.

We propose a new method for non-rigid registration, which incorporates class-

level information. By incorporating this information into the registration, we can

avoid unlikely shapes and focus on deformations actually observed in the class.

Furthermore, the space can be used to create novel instances and interpolate and

extrapolate between previous ones. In the next section, we give a detailed overview

of our method.

10



3. Method

3.1. Overview

In this section, we describe our non-rigid registration method. Our method is a

learned method, and thus has an initial training phase in which the transforma-

tion model for a class of objects is built. Once a transformation model is built,

inferencing can be performed to find a transformation which relates one of the

shapes from the class called the canonical shape to fully- or partially-observed

novel instances. The transformation is given as a single rigid transformation plus

a dense deformation field. Sections 3.2, 3.3, and 3.4 explain the steps to building

a trained model, while Section 3.5 explains how to use the model to find transfor-

mations relating the canonical shape and any additional points defined in its space

to an observed shape. Section 3.6 shows how to estimate the inverse deformation,

allowing points in the space of the observed shape to be transformed back into the

space of the canonical shape. Finally in Section 3.7, we present a few variants to

our method. Summaries of the training and inference steps are given by Alg. 1

and Alg. 2 respectively.

Figure 3.1.: Several instances belonging to the class Mug. All the examples are
in the class’s canonical pose: standing upright with the handle to the right.

11



3. Method

3.2. Classes and Shape Representation

In order to make use of class-level information, we must first define the notion

of a class. We define a class as a set of objects which share the same topology

and a similar extrinsic shape. Figure 3.1 demonstrates several instances belonging

to the class Mug. Each class of objects is composed a set of I training example

shapes E. To represent these shapes, we use a point cloud with each point in IR3.

The points are downsampled uniformly-sampled locations on the training objects’

surfaces. For the purposes of equations, an N -point point cloud is considered an

N × 3 matrix.

If starting with a mesh, a point cloud can be generated by ray-casting. Several

viewpoints are selected on a tesselated sphere and rays are cast to the surface of

the object. When a ray collides with the surface, a point is added to a point cloud

for that view. The point clouds generated from each view are then rotated into a

single canonical view and then merged. Finally, a downsampling step is performed

with a voxel grid by merging points which fall into the same voxel. For each

voxel containing points, the points are replaced with a single point whose location

is the average of those points within the same voxel. To maintain information

such as color or vertex connectivity, the original mesh can be kept and then later

transformed using the transformations given by the transformation model just the

same as any other information defined in the same space. However, information

such as surface normals, which depend on the then deformed surface, will need to

be recomputed.

Each class additionally specifies a single instance C ∈ E to represent the canon-

ical shape of that class. This can be chosen by heuristics or chosen as the shape

with the lowest reconstruction energy after finding the deformation field between

all other I − 1 training examples:

C = argminEj
−1

(I − 1)

I∑
i=1

(1− δij) log
1

M

M∑
m=1

1

N

N∑
n=1

exp(
−(‖Di(E

j
m)− Ei

n‖)2

2σ
)

(3.1)

where

δij =

{
1 if i == j

0 otherwise

Ej is the jth training example, Ej
m and Ei

n are the mth and nth points of the jth

and ith training examples, respectively; and Di(E
j
m) represents the deformation

field associated with the ith training example applied to the mth point of the
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3.3. Coherent Point Drift

j training example. σ can be set to any value and exists mostly to increase the

numerical stability of the equation. The process of obtaining the deformation fields

Di(·) is explained in the next section. The remaining shapes are taken as training

instances T = {E−C}.
Additionally, each class must specify a canonical pose and reference frame. The

pose is important for initial alignment and to remove spurious transformations,

and the reference frame is important for correlating transformations and dimension

reduction. For example: for mugs, a sensible pose is one where the top is open

upward with all the handles in the same position, and a sensible reference frame

may be at the bottom-center of the mug’s cylinder; while for chairs, the best

reference frame may be one centered on the seat or at the center of the base of the

legs.

3.3. Coherent Point Drift

Once we have a set of training examples and a canonical shape, we need to find

transformations which map the canonical shape to all other training shapes. Here

we make use of another non-rigid registration method called Coherent Point Drift

(CPD) (Myronenko and Song, 2010). CPD imposes a smoothness constraint on

the deformation of the points in the form of motion coherence, which is based on

Motion Coherence Theory (Yuille and Grzywacz, 1988). The idea is that points

near each other should move coherently and have a similar motion to their neigh-

bors. Rather than a hard assignment of points, such as in ICP (Chen and Medioni,

1992), points are soft-assigned to all other points based on their proximity. The

motion of the point is determined by these soft-assignments and thus points tend

to move like their neighbors.

We choose CPD here for several reasons. CPD provides a dense deformation

field, allowing us to find deformation vectors for novel points, even those added

after the field is created, which in turn allows us to apply the method to manipu-

lation skill transfer as well as several other applications. Additionally, CPD allows

us to create a feature vector representing the deformation field which is of constant

length across training examples and where elements in the vector correspond with

the same elements in another. This allows us to apply Principle Component Analy-

sis (PCA) to these feature vectors in order to find a lower-dimensional deformation

field manifold, which is explained in the next section.

Given two point sets, a template set S[t] = (s
[t]
1 , ..., s

[t]
M)T and a reference point

set S[r] = (s
[r]
1 , ..., s

[r]
N )T , CPD tries to estimate a deformation field mapping the

points in S[t] to S[r]. The points in S[t] are considered centroids of a Gaussian

13



3. Method

Mixture Model (GMM) from which the points in S[r] are drawn. CPD seeks to

maximize the likelihood of the GMM while imposing limits on the motion of the

centroids. Once the field is estimated, a function v gives a deformation vector for

every point in S[t] such that:

S[t∗] = v(S[t]) + S[t] (3.2)

v is defined for any set of N D-dimensional points Z as:

v(Z) = G(S[t],Z)W (3.3)

where GN×M is a Gaussian kernel which is defined element-wise as:

gij(S
[t],Z) = exp

(
−1

2

∥∥∥∥∥Zi − S
[t]
j

β

∥∥∥∥∥
2)

(3.4)

Zi and S
[t]
j represent the ith and jth rows of Z and S[t] respectively, and WM×D

is a matrix of kernel weights. An additional interpretation of W is as a set of D-

dimensional deformation vectors, each associated with one of the M points of S[t].

As a point z ∈ Z grows nearer to a point s
[t]
j ∈ S[t], the more the vector wj ∈W

associated with point s
[t]
j will influence the deformation of z. The parameter β

controls the strength of interaction between points. Note that N can be any

value while D is determined by the field. If Z = S[t], then Eq. 3.2 gives the

transformation relating S[t] to S[r].

The results of G(·, ·) can simply be computed by Eq. 3.4, but the matrix W

needs to be estimated. CPD uses an Expectation Maximization (EM) algorithm

derived from the one used in Gaussian Mixture Models (Bishop, 1995) to find this

matrix.

The energy function we want to minimize is:

E(W) = −
N∑
n=1

log
M∑
m=1

exp(−1

2

∥∥∥∥∥s[r]n − s[t]m − v(s
[t]
m)

σ

∥∥∥∥∥
2

) +
λ

2
tr(WTGW) (3.5)

where here the matrix G is defined as:

G = G(S[t],S[t])

The first term penalizes distance between points after applying the transforma-

tion, and the second term λ
2
tr(WTGW) is a regularization term which enforces

motion coherence. The parameter λ controls the weight between the two penalties.
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3.3. Coherent Point Drift

The parameter σ controls the range of all Gaussian mixture components, with a

smaller σ indicating a more localized range for each Gaussian.

In our method, the parameter σ is given by the equation:

σ =

∣∣∣∣M ∗ tr(S[r]TS[r]) +N ∗ tr(S[t]TS[t])− 2 ∗ sum(S[r]) ∗ sum(S[t]T )

M ∗N ∗D

∣∣∣∣
where the function sum(·) gives the sum of each column, M is the number of

points in S[t], N is the number of points in S[r], and D is the dimensionality of the

points.

From Eq. 3.5, the authors derive an upper bound function:

Q(W) =
N∑
n=1

M∑
m=1

P

∥∥∥S[r]
n − S

[t]
m − v(S

[t]
m)
∥∥∥2

2σ2
+
λ

2
tr(WTGW) (3.6)

The upper bound is reduced by alternating between an E- and M-step until

some convergence criteria is met.

In the E-step, the posterior probabilities matrix P is estimated using the pre-

vious parameter values. To add robustness to outliers, an additional uniform

probability distribution function component is added to the mixture model. The

matrix P is defined element-wise as:

pmn = e
− 1

2

∥∥∥∥S
[t]
m−S

[r]
n

σ

∥∥∥∥2
/

(
(2πσ2)

D
2

a
+

M∑
m=1

e
− 1

2

∥∥∥∥S
[t]
m−S

[r]
n

σ

∥∥∥∥2)
(3.7)

where a defines the support of the uniform pdf.

In the M-Step, the matrix W is estimated by solving the equation:

(diag(P1)G + λσ2I)W = PS[r] − diag(P1)S[t] (3.8)

where 1 represents a column vector of M ones, IM×M is the identity matrix, and

the function diag(·) creates a diagonal matrix.

After each step, deterministic annealing is used to reduce σ in order to simulate

a coarse-to-fine matching strategy:

σ = ασ

The parameter α controls the annealing rate. The authors recommend a value

between [0.92, 0.98].

In our method, we use the canonical shape C for the deforming template shape
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3. Method

S[t] and each training example Ti as the reference point set S[r]. Di(·) is therefore

defined as

Di(C) = vi(C) = GWi

where Wi is the W matrix computed by taking training example Ti as the

reference point set S[r].

3.4. Low-Dimensional Deformation Field Manifold

After finding a deformation field which relates the canonical model to all other

training examples, we need a feature vector to represent each deformation field

so that we can find a manifold containing them. From Eq. 3.3, we see that

the deformation field function is defined by matrices G and W. G is defined by

G(C,C) and therefore is only in terms of the canonical shape and remains constant

for all training examples. The entire uniqueness of the deformation field for each

training example is captured by the matrix W.

For each training example Ti, we take the matrix Wi from its deformation

field and convert it into a row vector. This becomes the feature descriptor of

that deformation field. The vectors are then assembled into a design matrix Y.

Finally, we apply principle component analysis (PCA) on this matrix to find the

lower-dimensional manifold of deformation fields for this class.

PCA finds a matrix Lp×q of principle components that can be used to estimate

a matrix of n observation vectors Y of p features given a small set of q latent

variables such that q < n and q << p:

Y = XLT + Yµ (3.9)

where Yµ is a matrix composed of the mean vector of the training observations

Ȳµ repeated row-wise for the n observation vectors. A lower value of q increases

the generalization capacity at the cost of attributing more of the variance as noise

and discarding it.

The matrix Y can also be converted from observed space into latent space by

the equation:

X = (Y −Yµ)L (3.10)

We find the matrix L using the PCA Expectation Maximization (EM) algorithm

(Roweis, n.d.). We choose this method over more analytical algorithms due to its

superior performance in situations with high dimensions and scarce data and also
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3.5. Inference

because of its greater numerical stability.

Much like with CPD, we alternate between an E- and M-step. The E-Step is

given by the equation:

X = YcL
T (LLT )−1 (3.11)

and the M-Step is given by the equation:

L = (XTX)−1XTYc (3.12)

where Yc = Y −Yµ, i.e. the mean-centered observations.

The method is shown to eventually converge to a local minimum using standard

EM convergence proofs (Dempster et al., 1977). Additionally, it has been shown

that the only stable local extremum is the global maximum (Tipping and Bishop,

1999a,b), meaning the algorithm will always converge to the correct result with

enough iterations.

We use the design matrix created from the set of Ws as vectors as our observed

data Y and apply PCA to estimate the deformation field manifold for the class of

objects, represented by the matrix L and the mean observation vector Ȳµ.

Using Eq. 3.9 and Eq. 3.10, a deformation field can now be described by

only q latent parameters. Any parameters of a transformation W can now be

approximated as a q-dimensional point in space by first converting it into a vector

Ȳ and then applying Eq. 3.10. And similarly, any point X̄ in the space can be

converted into the parameters of a transformation by first applying Eq. 3.9 and

then converting it into a M × 3 matrix W. Moving through the q-dimensional

space linearly interpolates between the transformations.

The matrix L, vector Ȳµ, and canonical shape C together represent the trans-

formation model for a class. Alg. 1 gives a summary of the training steps to build

the transformation model.

3.5. Inference

Once we have built a transformation model with the matrix L, vector Ȳµ, and the

canonical shape C, we can begin to register the canonical shape to novel instances

and estimate the underlying transformation. The parameters of the transformation

are given by the q parameters of the latent vector X̄ plus an additional 7 parameters

of a rigid transformation θ, represented by a position vector and an axis-angle. The

rigid transformation accounts for minor misalignments in position and rotation

between the target shape and the canonical shape at the global level. The method
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3. Method

Algorithm 1: Building the Transformation Model for a Class

Input: A set of training shapes E in their canonical pose and reference
frame

1. Select a canonical shape C via heuristic or Eq. 3.1

2. Estimate the deformation fields between the canonical shape and the other
training examples using CPD

3. Concatenate the resulting set of W matrices from the deformation fields
into a design matrix Y

4. Perform PCA on the design matrix Y to compute the latent space of
deformation fields

Output: A canonical shape C and a latent space of deformation fields
represented by L and Ȳµ

does not model the rotation of points, such as grasp poses, but these rotations can

be estimated. Section C details this process.

For a coarsely-aligned partially- or fully-observed shape O, represented by a

3-dimensional point cloud, we want to find the underlying transformation relating

the canonical model to the shape. We concurrently optimize for shape and pose

using gradient descent. We expect many local minimum, especially with regard

to pose, and therefore require an initial coarse alignment of the observed shape.

Using the processes described in previous sections, the q parameters of X̄ represent

the parameters W of a dense deformation field. The global pose is represented

by the 7 rigid transformation parameters, 3 for position and 4 for the rotation.

In total, there are q + 7 parameters to optimize. Because we cannot estimate the

gradient analytically, we instead compute it numerically.

We want to find an aligned dense deformation field, which when applied to

the canonical shape C, minimizes the distance between corresponding points in

observed shape O. Specifically we want to minimize the energy function:

E(X̄, θ) = − log
1

M

M∑
m=1

1

N

N∑
n=1

exp(
‖(Dm −On)‖2

2σ
) (3.13)

D is the transformed canonical shape given by the equations D = Θθ[C+v(C)],

where the function v is the deformation field created from X̄, and the function Θ

applies the rigid transformation θ by rotating the points via the Rodriquez formula

(Sec. A) and then adding the translation vector.

When a transformation is found that minimizes the energy, we can transform
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3.6. Inverse Deformation

any point or set of points into the observed space by calculating and applying

the deformation vector using Eq. 3.2 and applying the rigid transformation. This

includes the canonical shape itself, which can represented as the point cloud used

to find the transformation or as a mesh or any other representation. Alg. 2

summarizes the inference process. Step 2.a.iv. is for certain variants presented

in a later section which use surface normals for correspondence rejection and is

unnecessary for the base method presented here.

Algorithm 2: Inference with the Transformation Model

Input: Transformation model (C, L, Ȳµ) and observed shape O

1. Compute matrix G = G(C,C) (Eq. 3.4)

2. Use gradient descent to estimate the parameters of the underlying
transformation (X̄ and θ) until the termination criteria is met:

a) Using the current values of X̄ and θ:

i. Use Eq. 3.9 to create vector Ȳ and convert it into matrix W

ii. Use Eq. 3.3 and Eq. 3.2 to deform C

iii. Apply the rigid transformation to the deformed C

iv. (Estimate the normals of the transformed C)

v. Compute the energy using Eq. 3.13

Output: Non-rigid transformation given by deformation field description
W and rigid transform θ

3.6. Inverse Deformation

The inverse of the deformation v−1 is not directly available, but it can be ap-

proximated for a point z in the space of the observed shape using a set of points

Y = (y1, ..., yM)T in the canonical space which deform close to z with the equation:

v−1(z) = −
∑M

i=1G(z, yi + v(yi))v(yi)∑M
i=1G(z, yi + v(yi))

(3.14)

3.7. Variants

We also developed several variants to our inferencing method. The correspon-

dences between points is critical for estimating a transformation, so we explored
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3. Method

a few variations which use correspondence rejection. We also want to find the

transformation between the surfaces of the objects, not necessarily the points rep-

resenting those surfaces, and thus explored a variant that used the point-plane

distance error metric rather than the simpler point-point distance error metric.

And finally, we propose variants which use a robust loss function, which attempts

to reduce the affect of outliers.

3.7.1. Normals Rejection

In many point-set registration methods, it is common to reject correspondences

based on certain criteria. One of the common criteria is normal compatibility. By

changing our energy function to the equation:

E(X̄, θ) = − log
1

M

M∑
m=1

1

N

N∑
n=1

exp

(
−‖Dm −On‖2

2σ

)
∗∆(n̂D

m · n̂O
n ) (3.15)

where

∆(x) =

{
1 if x > 0

0 otherwise

we use the dot product between the normals of each surface between each point

in order to reject points which lie on opposite surfaces. This is to avoid corre-

spondences with surfaces which may not actually be associated, e.g. the inner

and outer walls of a mug. This is particularly a problem in the case of partial

views, where a corresponding surface may be occluded, causing ambiguity with

the surfaces of the canonical shape.

If the canonical shape is generated from a mesh, an initial set of normals for the

shape can be given by assigning each point the surface normal from the surface it

was generated from. We re-estimate the normals of the deformed canonical shape

each step using SVD B. Due to the ambiguity in sign, we flip a normal ni at step

t if is more than 90◦ away from its previous estimation at step t− 1:

n̂
[t]
i =

{
n̂
[t]
i if n̂

[t]
i · n̂

[t−1]
i > 0

−n̂[t]
i otherwise

If O is given without normals, we can estimate them using this technique as

well, but with replacing the conditional with n̂[t] · (vp − pi) > 0 where vp is the

viewpoint and pi is the point the normal corresponds to.
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3.7. Variants

3.7.2. Normals Rejection Plus Point-Plane Distance Metric

Another variant, based on the one presented in the previous section, replaces the

point-point distance error metric with a point-plane distance metric. The energy

function is given by the equation:

E(X̄, θ) = − log
1

M

M∑
m=1

1

N

N∑
n=1

exp

(
−
(
(Dm −On) · n̂O

n

)2
2σ

)
∗∆(n̂D

m · n̂O
n ) (3.16)

where again

∆(x) =

{
1 if x > 0

0 otherwise

and n̂D
m and n̂O

n represents the surface normal associated with the mth and nth

point of the deformed and observed shapes, respectively. The idea is to attempt to

match the surfaces of two shapes rather than the points representing these surfaces.

The surface is considered tangent to the normal, and thus minimizing this distance

minimizes the distance to the plane formed by the point and its normal.

3.7.3. Robust Loss Function

A final variant was to place a robust loss function ρ(·) around the error of each

point. For the original method, the robust energy function is given as:

E(X̄, θ) = − log
1

M

M∑
m=1

1

N

N∑
n=1

ρ

(
exp(
‖(Dm −On)‖2

2σ
)

)
(3.17)

Similarly, for the normals rejection method:

E(X̄, θ) = − log
1

M

M∑
m=1

1

N

N∑
n=1

ρ

(
exp

(
−‖Dm −On‖2

2σ

)
∗∆(n̂D

m · n̂O
n )

)
(3.18)

And finally, for the point-plane method:

E(X̄, θ) = − log
1

M

M∑
m=1

1

N

N∑
n=1

ρ

(
exp

(
−
(
(Dm −On) · n̂O

n

)2
2σ

)
∗∆(n̂D

m · n̂O
n )

)
(3.19)
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ρ(·) is a robust loss function chosen to minimize the effect of outliers, which

can appear in noisy scans or when the object is not perfectly segmented from the

scene. Specifically, we use the Huber Loss function (Huber et al., 1964):

ρ(a) =

{
1
2
a2 if |a| ≤ ε

ε(|a| − 1
2
ε) otherwise

(3.20)

where ε controls the sensitivity to larger values.
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4. Experiments

4.1. Experimental Setup

In this section, we explain our experimental setup and present the results of our

non-rigid registration technique. We tested our method on a set of meshes com-

bined from a subset of the SHREC 2007 dataset (Jayanti et al., 2006) and a free

online CAD database, GrabCad (GrabCad 2017). The meshes were converted into

point clouds as detailed in the previous section. In total, we had 4 classes of ob-

jects: mugs, fish, four-legged animals, and airplanes. Samples (as meshes) from

each class are shown in Fig. 4.1.

We tested our method’s robustness to noise, misalignment, and occlusion and

compared our results against results given by CPD. We tested with various levels of

noise and misalignment. Each test was run on a full view of the object and on ten

different partial views of the object. To obtain partial views, we used ray-casting

using the same process as in the earlier section but from only one viewpoint.

Noise was simulated by randomly sampling a point from a normal distribution

and scaling it by the noise factor and then adding that value to one coordinate

of a point for every coordinate of every point. Misalignment was generated by

uniformly sampling 7 values, scaling them by the misalignment factor, creating a

rigid transformation from these parameters, and then applying it to the observed

shape.

We then registered the canonical shape to the either misaligned or noisy partially-

or fully-observed shape. We are interested in the methods’ ability to find a trans-

formation which matches the shape without occlusions or noise, and so we take the

noiseless fully-observed shape as the ground truth. The misalignment is applied

to both the observed and ground truth shapes.

In all experiments, we used the parameters a = 1, α = 0.98, β = 1, and λ = 3 for

training, and a = 0.1, σ = 0.05, and ε = 1.0 for inferencing. q was set to capture

at least 95% of the variance of each class, and each class’s canonical shape was the

one that gave the least reconstruction error (i.e. selected by Eq. 3.1).

We used two error functions to evaluate each method, an average minimum
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4. Experiments

(a) Mugs

(b) Fish

(c) Four-Legged Animals

(d) Airplanes

Figure 4.1.: Several samples used during our experiments.

24



4.2. Results

Base Noise Misalignment
0.0 0.01 0.02 0.03 0.04 0.1 0.1 0.2 0.3 0.4 1.0

Full
CPD 0.035 0.036 0.037 0.038 0.039 0.051 0.035 0.036 0.036 0.037 0.040
Us 0.068 0.065 0.065 0.067 0.071 0.128 0.071 0.097 0.149 0.340 0.424

Part
CPD 0.121 0.122 0.121 0.120 0.118 0.111 0.121 0.122 0.122 0.123 0.128
Us 0.079 0.079 0.078 0.082 0.084 0.109 0.081 0.104 0.182 0.177 0.433

Table 4.1.: Point error metric
Base Noise Misalignment
0.0 0.01 0.02 0.03 0.04 0.1 0.1 0.2 0.3 0.4 1.0

Full
CPD 0.003 0.003 0.002 0.002 0.002 0.001 0.003 0.003 0.003 0.003 0.004
Us 0.006 0.006 0.004 0.005 0.005 0.014 0.005 0.008 0.014 0.021 0.086

Part
CPD 0.017 0.017 0.016 0.015 0.015 0.009 0.016 0.017 0.017 0.017 0.019
Us 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.008 0.012 0.014 0.059

Table 4.2.: Plane error metric

point distance error:

Epoint(D,O∗) =
1

N

N∑
n=1

minm (‖Dm −O∗
n‖) (4.1)

and an average minimum plane distance error:

Eplane(D,O∗) =
1

N

N∑
n=1

minm
(
(Dm −O∗

n) · n̂[O∗]
n

)
(4.2)

where D is the transformed canonical shape, O∗ is the ground truth shape, and

n̂
[O∗]
n is the normal of nth point of O∗. The results of the experiments are given in

the next section.

4.2. Results

The results of our experiments are given in Tab. 4.1 and Tab. 4.2 and plotted

in Fig. 4.2 and Fig. 4.3. When a shape is fully visible and without any noise,

CPD outperforms our method. This is rather to be expected as CPD is the source

of training data from which we build the registration model. Since our method

searches a subspace created from the results of CPD, these results form an upper

limit on performance in this scenario. However, when the shape becomes partially

occluded, the method begins to outperform CPD, maintaining an error rate similar

to when the entire shape is visible. We show a few examples of our method’s results

on partially-occluded shapes versus the results of CPD in Fig. 4.6.

We find that the variants generally perform quite similar to one another, with

the no normal information version, i.e. the base version, slightly outperforming
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(a) (b)

(c) (d)

Figure 4.2.: Plot of the average point-point error for various noises and misalign-
ments. (a) and (b) represent the average error on fully visible shapes with various
levels of noise and misalignment respectively; while (c) and (d) give the average
error on partially occluded shapes, again for noise and misalignment respectively.
The red Plane method is the variant using the point-plane distance metric and
normal rejection, the green Point method is the variant using the point-point dis-
tance metric and normal rejection, and the blue No Normals method is the base
method using the point-point distance and no normal rejection.
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4.2. Results

(a) (b)

(c) (d)

Figure 4.3.: The same plots as in Fig. 4.2 but with the average point-plane error
instead.

Mugs Fish Animals Planes

Full
CPD 0.0293 0.0307 0.0431 0.0379
Us 0.0521 0.0354 0.0942 0.0887

Part
CPD 0.1401 0.0981 0.1334 0.1125
Us 0.0570 0.0430 0.1053 0.1120

Table 4.3.: Point error metric results by class with zero noise or misalignment

Mugs Fish Animals Planes

Full
CPD 0.0030 0.0024 0.0024 0.0027
Us 0.0112 0.0022 0.0062 0.0027

Part
CPD 0.0286 0.0160 0.0137 0.0090
Us 0.0109 0.0029 0.0067 0.0038

Table 4.4.: Plane error metric results by class with zero noise or misalignment
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(a) (b)

(c) (d)

Figure 4.4.: The same plots as in Fig. 4.2 but with the results of adding the
Huber Loss function to each variant of our method. The loss function results are
given by the dashed lines and circles, with the colors corresponding to the method
used.
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(a) (b)

(c) (d)

Figure 4.5.: The same plots as in Fig. 4.4 but with the average point-plane error
instead.
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4. Experiments

Figure 4.6.: A typical result from each of the classes when registering with
partially-occluded shapes; each result is given from two different views. Left to
right: canonical shapes, observed shapes, CPD’s results, our method’s results.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7.: Several novel shapes from the class Mug created from a transforma-
tion manifold with q = 2.

the other variants in most cases. Though the normal information does appear to

assist in the case of extreme misalignment. The results of adding a robust loss

function are given in the plots in Fig. 4.4 and Fig. 4.5. Again, the results were

basically the same. However, it does add a degree of robustness to noise, but at a

cost of a significant amount of robustness against extreme misalignment.

We also give a class-by-class error in Tab. 4.3 and Tab. 4.4. We noted that

the method performed better when the range of deformations were low, as in the

case of the class Fish, or when there were a large amount of training examples,

as with the class Mugs. Because the method is limited to linear combinations of

previously observed deformations, the method struggles when a class of objects

has a lot of variety and not a lot of training examples, as was the case with the

class Animals, or when the results of CPD were not optimal, as was the case with

the class Planes. However, in the case partial views, our method consistently had

less error than direct CPD.

The transformation manifold learned in the training phase can also be used to

create transformations resulting in plausible novel shapes. We demonstrate a few
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(a) (b) (c)

Figure 4.8.: Texture, segmentations, and grasp poses can be transferred from (a)
to (b); the results of this transfer are seen in (c). Segmentation information (not
visible) are attached to the vertices in the mesh.

Figure 4.9.: Our method’s results on a real mug with data acquired by a depth
camera. Left to right: the canonical shape, the self-occluded and noisy observed
shape, and the transformed canonical shape overlayed onto the observed shape.
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of those shapes in Fig. 4.7. We also illustrate that by choosing different canonical

shapes or annotating it, things such as high frequency features, segmentations,

textures, and semantic information can also be transferred to a novel instance,

such as in Fig. 4.8. And finally we show our method working on real world data

captured with a depth camera in Fig. 4.9.
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5.1. Conclusion

In this work, we presented a novel learned non-rigid registration method, which

works for partially- or fully-observed shapes. We demonstrated its robustness to

noise and occlusion, and gave several examples of applications such as manipula-

tion skill transfer or generating novel instances.

We evaluated our method on several sets of shapes from the SCHREC 2007

dataset and an online CAD repository, GrabCab. We found that while the method

performed slightly worse than conventional CPD on noiseless, fully observed shapes,

when shapes were partially occluded, our method was much more able to recover

the true underlying shape and reported lower error in both point-to-point and

point-to-plane average distances.

We also presented several variants to our method and their results. With the

current implementation, we feel the extra normal information does not appear to

make enough of an impact to justify the extra space and computation time, and in

many cases it performed worse than not using the information at all. The use of a

loss function can slightly improve the robustness of the method against noise, but

severely restricts its robustness against more extreme misalignment. A different

robust loss function might overcome this limitation, such as one that adapts to

the average point distance; we leave this as future work.

5.2. Future Work

Currently the method requires a coarse initial alignment. By adding a stage to

compute coarse correspondences via features, we could incorporate a global align-

ment phase into the method. Additionally, the method is restricted by the diversity

and size of the training data. We think a composite method combining CPD or

another general non-rigid registration method and our method may produce better

inference results. Also, while our initial attempts at incorporating surface infor-

mation in the form of normals did not produce significantly better results than

without, we would also like to continue pursuing enhancing the method to perform
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more surface-to-surface matching rather than the point-to-point matching it does

now.
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A. Rodriguez Formula

A point v can be rotated by the equation:

vrot = vcosθ + (k × v)sinθ + k(k · v)(1− cosθ) (1)

where vrot denotes the rotated point, k the axis of rotation, and θ the angle of

rotation.

B. Estimation of Surface Normals

Algorithm 3: Estimation of a Surface Normal Given a Set of Neighbors X

Input: X = (x1, ..., xn)T

1. Compute plane centroid: m = 1
n

∑n
i=1 xi

2. Subtract the centroid from the points: x∗i = xi −m

3. Compute SVD of X∗: X∗ = USVT

4. A normal to the plane is given by the last column of U: n̂ = U [:, last]

5. Flip the normal if necessary (n̂ = −n̂)

Output: n̂

C. Rotations

While the transformation model does not directly model point rotations, we can

estimate the rotation of a point by formulating it as Wahba’s Problem and solving

it via singular value decomposition (SVD) (“Attitude determination using vector

observations and the singular value decomposition” n.d.). We can estimate the
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rotation matrix R of the point by first creating a set of neighboring points W =

(w1, ..., wk)
T around the point of interest, then apply the transformation model to

the points to get their transformed points V = (v1, ..., vk)
T .

We first obtain the matrix B:

B =
k∑
i=1

wiv
T
i

Then we compute the singular value decomposition of B:

B = USVT

And then the rotation matrix R is given by the equation:

R = UMVT

where

M = diag([1 1 det(U)det(V)])
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