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Abstract
The ability of the robots to autonomously manipulate objects in cluttered real-
world environments depends on the ability to perceive and understand the scene.
In this thesis, we propose a pipeline for fast training of Convolutional Neural
Networks (CNNs) for scene understanding. The pipeline consists of a quick and
eicient turntable capture of new objects with automatic segmentation using back-
ground subtraction, alignment of multiple capture sequences, scene generation for
pose estimation using turntable data and previously captured backgrounds, a se-
mantic segmentation module and a pose estimation module. The semantic seg-
mentation module is based on ReineNet architecture, and the pose estimation
model we propose is a CNN that takes ixed sized crops of the segmented objects
and estimates the 5D pose (x and y of the translation component, and a unit
quaternion for the rotation component). We propose a method for dealing with
invariance in the object’s appearance in order to facilitate the training of pose es-
timation network. We also train the network with synthetically occluded objects
to deal with real-world occlusions.

Some of the components of the pipeline were used by Team NimbRo at the
Amazon Robotic Challenge (ARC), where the robots have to perform picking and
stowing of objects from a cluttered bin. One of the important aspects of the Team
NimbRo’s approach for ARC is the ability to fast train on new objects in a short
span of 45 minutes. We evaluate the complete pipeline on the dataset collected for
ARC, as well as on a disaster response scenario dataset, and assess diferent design
choices for the pose estimation module. Finally, we show a real-world setting where
the pipeline is used in successful grasping of a novel object.
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1 Introduction
Scene understanding is a vast visual problem, and the fact that the ability to un-
derstand a scene from visual inputs comes very natural to humans makes it harder
to formulate the problem of scene understanding precisely. Thus the formulation
of scene understanding is quite general, and a more speciic formulation is often
application dependent. In simple words, the problem of scene understanding can
be deined as extracting as much semantic information as possible from the visual
input of scene. The kind of semantic information that needs to be extracted de-
pends on the application. For example, the information needed for an autonomous
driving system difers from that of an indoor bin picking system. Despite these dif-
ferences, some information is ubiquitous. This information includes what objects
are in the scene, and where the objects are in the scene. In this thesis, we focus
on scene understanding for object manipulation. To enable object manipulation,
in addition to the above-said information, full 6D pose including orientation is
required.

The pipeline we use in this thesis consists of a semantic segmentation module
and a pose estimation module. The input scene is represented as RGB-D im-
ages. The semantic segmentation module estimates the probability of each pixel
in the image belonging to one of the object classes and the pose estimation module
estimates the position and orientation of the objects in the scene. We use Con-
volutional Neural Networks (CNNs) to perform both semantic segmentation and
pose estimation. While Convolutional Neural Networks are the state-of-the-art in
many visual perception tasks, the data hungry nature and time needed for training
the CNNs pose challenges in deploying CNNs in many real-time robotic applica-
tions. In this thesis, we propose faster data acquisition and training mechanisms
to enable eicient usage of CNNs in scene understanding for robotics object ma-
nipulation tasks and provide the results of evaluating the proposed methods at
Amazon Robotics Challenge and in a disaster response scenario.

In chapter 2, we discuss the works related to the individual modules in the
pipeline and the approaches by the teams that performed well in Amazon Picking
Challenge 2016. In chapter 3, we elaborate the data acquisition pipeline along with
the calibration process of the data acquisition setup. In chapter 4 and 5 we discuss
in details the architecture of the semantic segmentation module and the pose
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1 Introduction

estimation module respectively; and the metrics used to evaluate them. In chapter
6, we provide an overview the implementation details reviewing the libraries used.
The chapter 7 is divided into three sections: evaluating diferent aspects of the
pose estimation module, application in cluttered bin-picking scenario, and in a
disaster response scenario1.

Finally, in chapter 8 we discuss the possible future works and conclude the
contributions of the thesis.

The major contributions of this thesis are:

1. A high throughput data acquisition pipeline.

2. A pose estimation module.

3. Using these above modules along with the semantic segmentation module
proposed by Schwarz, Lenz, et al. (2018) to implement a scene understanding
pipeline.

4. Evaluating the pipeline in two diferent scenarios: random bin-picking and
disaster response.

1https://www.centauro-project.eu/
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2 Related Work

We irst describe the works related to each of the individual components in the
scene understanding pipeline, then we describe the works related to the pipeline
as a whole, emphasizing on Amazon Picking Challenge 2016 (APC)1 and Amazon
Robotics Challenge 2017 (ARC)2.

2.1 Semantic Segmentation
Deep learning methods are the most common approach for many computer vision
tasks like image classiication, object detection, semantic segmentation, etc. Before
we review the literature of deep learning methods for semantic segmentation, we
briely discuss the methods used for semantic segmentation before the advent of
deep learning methods.

Graph cut methods that formulate the problem of segmentation as energy min-
imization on a graph representation of an image with pixels as nodes and ainity
measure between the pixels as edges are one of the early methods used for semantic
segmentation. The solution is approximated with maximum low in the graph (Shi
and Malik (2000), Rother, Kolmogorov, and Blake (2004), Y. Boykov and Funka-
Lea (2006), Y. Y. Boykov and Jolly (2001)). Other most prevalent methods are the
probabilistic graphical models such as Conditional Random Fields (CRF). CRFs
works by assigning a class for each pixel (from a classiier), a unary cost for chang-
ing the class assignment, and a binary pairwise potential if two neighboring pixels
are not of same class. The inference algorithm tries to ind the setting of labels
that minimizes total cost (Russell, Kohli, and Torr (2009) Gould, Fulton, and
Koller (2009), Kumar and Koller (2010), Müller and Behnke (2014), Lempitsky,
Vedaldi, and Zisserman (2011), Müller and Behnke (2013)).

Deep learning methods are the state-of-the-art in the task of semantic segmen-
tation (Schulz and Behnke (2012), Girshick et al. (2014) A Milan et al. (2017),
Couprie et al. (2013), He et al. (2017)). Unlike the image classiication task where
the spatial information lost due to the pooling layers has no impact on the per-

1https://www.amazonrobotics.com/#/roboticschallenge
2https://www.amazonrobotics.com/#/roboticschallenge/past-challenges
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2 Related Work

formance of the CNNs, the semantic segmentation performance sufers due to loss
of spatial information. Many recent works address this problem. Most notably,
Fully Convolutional Networks (FCNs) use skip connections to propagate informa-
tion from early layers to the inal layers of the network (Long, Shelhamer, and
Darrell (2015)), L.-C. Chen et al. (2016) use atrous convolutions to enlarge the re-
ceptive ield if the convolutions, and Pohlen et al. (2016) use full-resolution residual
network with two stream information low to make the low level features available
to the all the higher layers.

2.2 Pose Estimation
The most common approach for 6D object pose estimation is to perform object de-
tection or semantic segmentation to extract the points belonging to object, use the
centroid of the points as the origin and initialize the pose using the result from sin-
gular value decomposition of the points (Besl and McKay (1992), Haehnel, Thrun,
and Burgard (2003), Granger and Pennec 2002). Machine learning approaches like
deformable parts-based model for object pose estimation from a single RGB im-
age (Zhu et al. (2014)), voting-based approach employing color point pair feature
Choi and Christensen (2016) for pose estimation from RGB-D image, regression
forest for pose estimation from RGB image(Hara and Chellappa (2014)), Hough
forests based pose estimation from synthetic RGB-D images(Badami, Stückler,
and Behnke (2013)) (Kouskouridas et al. (2016)), CNN based feature extraction
for estimating the yaw angle of objects placed in a table (Schwarz, Schulz, and
Behnke (2015)) have been proposed. Kendall, Grimes, and Cipolla (2015) used
CNNs based regression to predict 6D pose of camera for visual localization from
RGB images collected from a hand-held mobile phone camera in a large urban
scene. Koo et al. (2017) used CNN based regression the pose of individual chain
links from a pile using RGB-D images.

A diferent approach compared to the above mentioned methods for 6D pose es-
timation based on analysis-by-synthesis framework by (Yuille and Kersten (2006))
using deep learning methods was proposed in Krull et al. (2015). The pipeline
proposed by the authors is shown in Fig. 2.1: It uses random forests to generate
an object probability distribution as in semantic segmentation and 3D object co-
ordinates corresponding to each object for each pixel in the image. Then for each
detected object, using a RANSAC-like approach by randomly selecting 3-tuples of
pixels and computing aine transformation with their predicted 3D object coordi-
nates, the authors generate a set of hypothesis H using metropolis algorithm and
render RGB and depth images from the 3D model for each of the hypothesis. Then
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2.3 APC 2016 Perception Solutions

Figure 2.1: Learning analysis-by-synthesis. Source: Krull et al. (2015).

the authors train a CNN to take the rendered and observed images as input and
output an energy value such that the energy value is high if inputs are similar and
low when dissimilar. Finally, the hypothesis with maximum energy is selected. In
contrast, our work needs one froward pass per segmented object.

2.3 APC 2016 Perception Solutions

APC 2016 included two tasks; picking and stowing. In the picking task, the teams
needed to pick the speciied items from the bins of the shelf and place them in a
tote. Team NimbRo’s robot is shown performing the picking task in Fig. 2.2. The
stowing task was about stowing the objects from the tote into the shelf. Both the
task involved picking/stowing of 12 objects in 15 minutes. A set of 40 objects were
provided to the participating teams a couple of months prior to the challenge in
order to train the perception systems.

The standard approach by most of the teams in Amazon Picking challenge,
notably Team Delft (Hernandez et al. (2016)), NimbRo Picking from Universität
Bonn (Schwarz, Milan, et al. (2017)), and Team MIT and Princeton (Zeng et al.
(2016)), was a pipeline consisting of object detection and/or semantic segmenta-
tion, extracting relevant point cloud from the scene, and using ICP to align the
observed point cloud with the 3D model of the object

5
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Figure 2.2: Team NimbRo’s robot picking objects from the shelf and placing them in the
red tote. Source: Schwarz, Milan, et al. (2017).

6



2.3 APC 2016 Perception Solutions

Figure 2.3: Perception approach by team MIT and Princeton. Source: Zeng et al. (2016).

2.3.1 Team Delft and Team MIT/Princeton
Team Delft localized the objects from as RGB image using Faster R-CNN (Ren et
al. (2015)) and used the Super 4PCS algorithm (Mellado, Aiger, and Mitra (2014))
for aligning the observed point cloud with a 3D model. Team MIT and Princeton
did instance segmentation from RGB using Fully Convolutional Networks (FCN)
instead of object detection (Long, Shelhamer, and Darrell (2015)). An interesting
point about their system is the use of multiple views of the scene and fusing the
segmentation results from each view to estimate the orientation of the object as
shown in Fig. 2.3.

2.3.2 Team NimbRo Picking
The perception system used by Team NimbRo consists of an object detection
module using CNN based on DenseCap (Johnson, Karpathy, and Fei-Fei (2016)),
a semantic segmentation module using CNN proposed by Husain et al. (2017),
registering the segmented point clouds with the 3D model to determine the 6D
pose(only for 3 objects that needed speciic grasping locations), and dense 3D
modeling using Prankl et al. (2015).

We will discuss the object detection and semantic segmentation models in detail.
The object detection model is based on DenseCap network used for dense cap-

tioning of the RGB images. It consists of a CNN that takes RGB images and gen-
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Figure 2.4: Semantic segmentation model used by team NimbRo. Source: Schwarz,
Milan, et al. (2017).

erates regions proposals (bounding boxes and corresponding 14×14 dimensional
1024 features maps). These regions proposals are fed to a language model that
generates captioning for each proposal. The complete model is trained end-to-end.
For APC 2016, the language model was replaced by an SVM trained on-line to
classify the objects present in the predicted bounding boxes. Semantic segmen-
tation was done using the CNN shown in Fig. 2.4. The initial two layers were
copied from OverFeat Network Sermanet et al. (2013). The last three layers were
tuned for APC dataset. The resulting images from the CNN were up-sampled to
the size of the input images. Both networks were modiied to accept RGB and
depth encoded as HHA features Gupta et al. (2014) as input.

2.4 ARC 2017 Challenge Description
ARC 2017 was designed to increase the complexity compared to APC 2016. Among
the several changes included, we will discuss the changes that impact the percep-
tion system and these changes motivates the contributions of this thesis. To start
with, like APC 2016, the teams were provided with a set of 40 objects a couple
of months prior to the competition which we call training set. Just 45 minutes
before each challenge, the teams received a set of 32 objects named competition
set. Half the objects in the competition set are new. These new objects are similar
to objects in the training set but not the exact same ones. Thus the time available
for training the CNN models to include the new objects is limited. Also the time
available for collecting the training data is minimal. This makes any manual data
annotation process impractical.

8



3 Data Acquisition

3.1 Data Acquisition Pipeline
Training convolutional neural network usually needs lots of training data. Using a
pre-trained network trained on larger dataset and ine-tuning the network for the
task-in-hand alleviates the need for huge training dataset but even for performing
ine-tuning we need signiicant amount of training data. Acquiring labeled datasets
is a labor-intense operation. For many applications, including the Amazon robotics
challenge, the time available for collecting the training is limited. Thus we need an
automated data acquisition setup. Our design goals for a data acquisition setup
were straightforward:

• The time required for acquiring images of a new object should be minimal.

• Completely automated setup is not quite possible because of the need to
support a large variety of object shapes/textures but human labor needed in
the process should be scalable.

The data acquisition setup is shown in Figure 3.1. It consists of a turntable (B
in Figure 3.1), an Intel RealSense SR300 camera (B in Figure 3.1) and a Nikon
D3400 camera (D in Figure 3.1), background panel with monotonic color (A in
Figure 3.1), and a pair of LED panels for additional light (E in Figure 3.1). Intel
RealSense camera is an RGB-D camera suitable for depth perception up to 1.5m
while Nikon D3400 is a consumer scale RGB camera capable of signiicantly higher
resolution RGB images (24 MP).

The data acquisition pipeline consists of the following steps:

1. Data capture,

2. Background subtraction,

3. View alignment, and

4. Synthetic data generation.

9



3 Data Acquisition

...
A
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E
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E

Figure 3.1: Data capture setup. A: Background panel; B: Turntable; C: SR300 camera;
D: Nikon camera; E: LED lights.
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3.1 Data Acquisition Pipeline

3.1.1 Data Capture
The RealSense and Nikon cameras operate at diferent frame rates and we do
not employ any hardware synchronization. Images from RealSense and Nikon are
matched based on their timestamp. The frames that are more than the speciied
time diference apart are discarded. For every RGB image from Nikon camera, the
closest SR300 image is found. This matching process is done greedily. The data
acquisition setup is capable of capturing 2 frames per second, mostly limited by
the Nikon camera capture and download rate.

3.1.2 Background Subtraction
The frames acquired from the data acquisition setup need to be processed to ex-
tract the pixels belonging to the object, and the pixels belonging to the turntable
and other background objects need to be discarded. This is done a using back-
ground subtraction mechanism. During the beginning of the data acquisition pro-
cess, a background frame without any objects is captured. Then a frame with
the object is compared with the background frame. The pixels that difer by a
predeined threshold or more are considered as belonging to the object. This step
is quite simple but due to wide range of objects with diferent relectance prop-
erties, inding a correct threshold for background subtraction that works for all
objects needs complex mechanisms. Also, accuracy of the background subtrac-
tion step impacts all the modules in the rest of the pipeline. Thus, to achieve
high-quality background subtraction without complex mechanisms, we opted for
a manual background subtraction step but with minimal human efort. We de-
signed a GUI to aid human operator in try out diferent thresholds, see the efect
of the threshold, and then choose a threshold for the background subtraction. The
human operator can also specify if the object has holes, or is convex. This in-
formation is used as a constraint producing either a illed or convex polygon as
the inal object region, thus making the segmentation more robust when allowed
by the object shape. An example of the background subtraction process with the
GUI is shown in Figure 3.2.

On a large scale deployment scenario, one can imagine this module being learned
using machine learning techniques as well. But for ARC 2017, we used the above
explained manual background subtraction step.

3.1.3 View Alignment
When objects are placed on the turntable, not all the faces are visible. Thus,
we need to capture multiple sequences of objects with diferent faces pointing

11



3 Data Acquisition

Figure 3.2: Background subtraction GUI. Top: Frames captured without any thresh-
old for background subtraction. Middle: Efect of background subtrac-
tion with a threshold of 0.1 Bottom: Efect of human operator chosen inal
parameters(threshold= 0.1 and holes enabled).
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3.1 Data Acquisition Pipeline

Figure 3.3: Alignment tool in usage. The aggregated point cloud with coordinate system
is the frame of reference of the object. The transformation from the other
point cloud to the frame of reference is speciied using the 6D marker.

13



3 Data Acquisition

upwards. For generating data for training the segmentation network, no additional
information is required. But for generating ground truth for training the pose
estimation network, we need to know the transformation between the diferent
sequences.

We created a tool to help with specifying the transformation between diferent
sequences of an object. This tool was created as an RViz plug-in1. The trans-
formations between the frames of a single sequence can be simply obtained from
forward kinematics of the turntable. The initial frame of a sequence is considered
as the reference frame for that sequence. All other frames are transformed to the
reference frame and are aggregated. This aggregated point clouds for each placing
is displayed in the RViz with 6D markers to manipulate them. A human operator
can specify the transformation between diferent sequence by manipulating the
6D markers. The irst frame of the irst sequence is considered as the frame of
reference of object and all other sequences are transformed into this frame. Some
examples of the alignment step using the RViz plug-in is shown in Figure 3.3

3.1.4 Synthetic Data Generation

The semantic segmentation pipeline used in this thesis was augmented by our
team with a scene generator operating on previously annotated background scenes.
From the images acquired from the turntable setup, we generate labeled data for
training semantic segmentation and pose estimation networks. Generating training
data for semantic segmentation network starts with manually annotating a number
of real scenes. Then we place the images of the objects obtained from the data
capture setup on top of the scene to create synthetic training data. Examples
of synthetically generated scenes along with the manually annotated scenes are
shown in Figure 3.4

For pose estimation, we decided to follow this approach and implement a scene
generator in the following way. We create synthetic training data following the
steps shown in Figure 3.5. We extract the images of the objects from turntable
setup by the background subtraction step. We sample a rotation angle along the
optical axis of the camera frame and apply the transformation to the image of the
object (step d in Figure 3.5) and extract a crop whose dimensions are computed
based on the expected size of the object in the image. The motivation for this way
of extracting the crop is to ensure a constant sized crop even when the object is
partially occluded. We then place the extracted crop on top of randomly cropped
image patches of the real scenes and shift the pixels that does not the object

1http://wiki.ros.org/rviz
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3.1 Data Acquisition Pipeline

Figure 3.4: Generated synthetic scenes. All scenes were generated with the same an-
notated background frame (left column) for easier comparison. Top row:
RGB. Bottom row: Color-coded generated segmentation ground truth.
Source: Schwarz, Lenz, et al. (2018)

15



3 Data Acquisition

..
a) Turntable capture

.

b) Mask from
Background subtraction

.

c) Extracted
object pixels

.

d) Orientation
sampling
& cropping

.

e) Generated
scene

.

Figure 3.5: Steps in synthetic image generation.

towards red (step e in Figure 3.5) to emphasize the pixels belonging the object in
focus.

The coordinate frames used in the data capture setup are shown in Figure 3.6.
The Camera Frame is the frame of reference of the object. The Base Frame is
the center of the turntable but ixed; the Turntable Frame is the center of the
turntable but rotates along with the turntable. The Object Frame is the origin of
the object. During the data capture, for an object, between the frames of same
sequence the transformation TBase

Turntable changes according the angle of turntable
rotation; T Turntable

Object changes between sequences.
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3.1 Data Acquisition Pipeline

..
a) Camera Frame

.

b) Base Frame

.

c) Turntable Frame

.

d) Object Frame

..

TCam
Base

.

TBase
TurnTable

.

T Turntable
Object

Figure 3.6: Coordinate frames used in the data capture setup.
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3 Data Acquisition

3.2 Calibration
Obtaining ground truth for the pose estimation needs good calibration between the
camera and the turntable. We use AprilTags, a iducial marker based technique
proposed by Olson (2011). A set of nine ArpilTags are placed on the turntable and
frames are captured for one complete rotation of the turntable. To make use of
conventional SLAM pipelines, we assume the turntable was ixed and the camera
was moved around the turntable. For each frame, the AprilTags are detected.
We use graph optimization approach to compute 6D pose of camera using g2o
graph optimization package described by Kümmerle et al. (2011) for estimating
the pose of the camera at diferent time frames. The graph optimization results
in a set of camera pose that lie in a circle and the center of the turntable is the
center of the circle on which the camera poses lie. To compute the center from
a given set points on a circle, Hough transformation can be used. While Hough
transformation is a simple process, exploiting the fact that the points roughly
span the whole circumference and the points lie at roughly equal intervals, we can
estimate the center of the circle in a more eicient way. The idea is motivated
by the property of the circle that the distance from any point on the circle to the
center of the circle is constant (radius). We compute the centroid ĉ of the points.
We search a small rectangular window space around the centroid by discretizing
the search space into iner cells. For each cell, we assume the center of the circle
to be the cell and compute the distance from each point, pi, to the cell. We call
each of the distance as ri and we compute the mean of all ri, r̄. A cost for each
cell is deined as

costx,y =
∑

i

abs(r̄ − ri)

The cell that has the minimal cost is the center we need. The points, centroid,
and the computed center are shown in 3.7.

Note that this problem of inding the center of the circle given some points on
the circle can also be formulated as a least-square problem and can be solved very
eiciently using existing implementations. We used the above-explained method
since the number of points is small and calibration is an one time process thus
does not need to scale for more number of points.

18
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Figure 3.7: Estimated camera poses, centroid of the poses, and the estimated center of
the turntable.
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4 Semantic Segmentation

Semantic segmentation is the task of understanding what is in an image at the level
of pixels. Semantic segmentation is often formulated as pixelwise classiication but
the task is much complex that an a simple image classiication task. The research
community also uses terms like scene labeling (Farabet et al. (2013)), scene parsing
(Grangier, Bottou, and Collobert (2009)), etc., to emphasize the importance of
understanding the scene to perform semantic segmentation.

4.1 Network Architecture
In the recent years, the algorithms that perform well on the most commonly used
benchmarking datasets such as PASCAL VOC 2012 (Everingham et al. (2010)),
Cityscapes (Cordts et al. (2016)), SUN RGB-D (Song, Lichtenberg, and Xiao
(2015)), etc., uses deep learning techniques. Training CNNs from scratch is a time
and resource consuming process, thus the common approach to train a CNN on a
new task is to perform transfer learning. A detailed study by Yosinski et al. (2014)
on the efectiveness of transfer learning showed that initialing weights by transfer
learning and performing ine tuning leads to better generalization.

In our previous work for APC 2016, we used this approach to perform image
segmentation for cluttered bin picking. While this approach provides good results,
often the segmentation is poor along the object boundaries. This is mainly due
to fact that after repeated down-sampling, the features in the inal layers lack
ine-grained spatial information need for performing semantic segmentation. One
of the state-of-the-art methods, ReineNet proposed by Lin et al. (2017) tackles
this problem by using the features also from the earlier layers. Figure 4.1 shows
the semantic representation of the multi-path ReineNet where the features from
diferent stages of ResNet are combined using learned convolutions.

A detailed representation of the ReineNet architecture is shown in Figure 4.2.
The pipeline of the ReineNet is as follows: features from diferent stages of the
ResNet are fed to an Adaptive Convolution layer with RCU blocks and the result-
ing features of diferent resolution are fused into features of same dimensions as
that of the highest resolution using convolutions and upsampling. Then a Chained
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4 Semantic Segmentation

Figure 4.1: ReineNet architecture: The features from the diferent stages of ResNet are
combined using learned ReineNet blocks into reined high-resolution feature
maps. Source: A. Milan (2017).

Residual Pooling layer with a sequence of convolutions with diferent kernel size
are employed and inally the features are again reined with an Residual Con-
volutional Units(RCU) block. All the convolutions performed in the RCU and
Chained Residual Pooling blocks follows the spirit of ResNet architecture in hav-
ing residual connections. This ensure the gradient low during learning process.
In the following paragraph, we discuss RCU and Chained Residual Pooling blocks
in detail.

The RCU shown in Figure 4.2(b) is simply a ReLU non-linearity followed by
3 × 3 convolution applied as a Residual connection. The Chained Residual Pooling
shown in Figure 4.2(c) consists of ReLU followed by a sequence of 5 × 5 pooling
and 3 × 3 convolutions where each of the convolutions are applied as residual
connections.

We use ReineNet as the backbone network for semantic segmentation and pose
estimation.

4.2 Evaluation Metric

The most common metric used to measure the accuracy of the semantic segmen-
tation models is Intersection over Union (IoU). For example, the PASCAL Visual
Object Challenge, one of the major challenges in the computer vision community
(Everingham et al. (2010)), uses IoU as the evaluation metric. The IoU score is
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4.2 Evaluation Metric

Figure 4.2: A ReineNet block combining feature from diferent stages of the backbone
model. Source: Lin et al. (2017).

deined as,

IoU =
TruePositive

True Positive+ False Positive+ FalseNegative

The positive and negative counts are aggregated over all the images; and the
IoU score is averaged over the classes to obtain the mean IoU.
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5 Pose Estimation

Pose Estimation is predicting the 6D pose of an object in the world coordinate
frame. Estimating 6D pose of the objects is usually done using variants of Iter-
ative Closest Point (ICP) algorithm. ICP is only an reinement algorithm and
the quality of the reinement depends on the initial guess. ICP works with two
point clouds: the observed point cloud and the reference point cloud and computes
the transformation that minimizes the distance between them. Finding the cor-
respondences between two point clouds is a diicult process. Many ICP variants
have been proposed for inding better correspondences, from which point-to-point
and point-to-plane are the most widely used. For inding the initial estimation R,
the most commonly used approach is to initialize with the result of performing
singular value decomposition (SVD) of the observed point cloud into UDV T as,

R = UV T

Since the quality of the inal estimation depends on the initial estimate, this
method of initialization does not always guarantee the best results. Inspired by
the recent use of convolutional neural networks for 6D pose estimation (Kendall,
Grimes, and Cipolla (2015) , and Koo et al. (2017)), we propose a CNN to estimate
the pose of the object.

Convolutional LayersRefineNet

256x80x80 256x80x80 256x40x40 256x10x10

Normalization

qx
qy
qz
qw
x

y

Figure 5.1: Pose Estimation network architecture.
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5 Pose Estimation

5.1 Network Architecture

The pose estimation network is trained with the features extracted from ReineNet
model as input. The last layer of the ReineNet model has 256 feature maps.
We use RGB images of dimension 320 × 320 as input for ReineNet and the
resulting feature maps is of dimension 80 × 80. We use the result of the semantic
segmentation network to crop a rectangular region containing pixels belonging to
the target object. It is beneicial to feed the segmentation results into the pose
estimation network. We do this by pushing the pixels in the crop that does not
belong to the target object towards red. We want the objects to be maximal in the
crop, but also have constant scaling for all views. We achieve this by specifying the
size of the crop to be the expected size of the object in the image given the camera
parameters and the size of the object; such that the biggest view of the object
would it. The architecture of the network is shown in Figure 5.1. It consists of
three convolutional layers followed by two fully connected layer and the inal output
layer. The pose estimation network predicts 5D pose of the object(x and y of the
translation component, and a unit quaternion for the rotation component). We do
not train the network to predict the z component (depth) of the translation since
generating synthetic images with depth needs sophisticated rendering pipeline and
the training process is time consuming. Also the depth can be predicted from by
projecting the predicted x and y component into the 3D space using the camera
parameters. We evaluated two variants of the network that difer in the number of
neurons in the inal output layer. One of the variants has 6 neurons in the output
layer—an unit quaternion representing the rotation component and the translation
component. Output of the neurons predicting the unit quaternions are normalized
explicitly alleviating the networks to learn the normalization. The irst variant is
trained with a modiied version of mean-square-error(MSE) as:

Error(Ŷ , Y ) =
n∑

i

(Ŷi − Yi)
2,

where Ŷi is the ground truth pose and Yi is the predicted pose for an image i.
Note that the error is not averaged over the batch as in mean-square-error.

The second variant has 6N neurons, where N is the number of objects. Each
set of 6 neurons is associated with an object. This allows the network to adapt
to diferent object classes. While training, only the predictions corresponding to
the object is subjected to the error metric and the other predictions are simply
ignored. Like the irst variant, quaternion predictions are normalized explicitly.
The error functions is deined as
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5.2 Evaluation Metric

Error(Ŷ , Y ) =
n∑

i

(Ŷi − Yij)
2,

where Ŷi is the ground truth pose and Yij is the predicted pose for an image i

containing object j.
Since the translation component and the rotation component are of diferent

scales, we need weighting factors for each of the component in the error function.
The weighted error function is deined as

Error(Ŷ , Y ) =
n∑

i

1

β
( ˆY xy

i − Y
xy
ij )2 + ( ˆ

Y
quaternion
i − Y

quaternion
ij )2.

5.2 Evaluation Metric
The above-deined error metric consisting of two diferent components balanced
by an explicit weighting is used only as a metric for the network learning process.
The performance of the network in estimating the pose of the objects is measured
individually for each of the component.

5.2.1 Translation error
The translation error is simply the Euclidean norm between the predicted and the
ground truth pixel.

5.2.2 Rotation error
The rotation error metric is measured by two metrics: the Euclidean norm and
angle between the predicted and the ground truth quaternion.

Quaternion, Q, is represented as [qw, qx, qy, qz]; angle, θ, between two quater-
nions, q1 and q2 is computed as,

q−1

2
= [q2w,−q2x,−q2y,−q2z]

q = q1 ∗ q
−1

2

θ = 2 ∗ arccos(qw)

(5.1)
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6 Implementation
An overview of the pipeline implemented is shown in Figure 6.1. The input RGB-D
image is provided to the Semantic Segmentation model and from the resulting seg-
mented image, a crop around the object that we need pose estimation is extracted.
The red component for the pixels in the crop that does not belong to the object
is increased while the blue and green components are decreased. This resulting
image is passed though the ReineNet to extract a set of feature maps which is fed
to the pose estimation model.

In this thesis, we use an existing semantic segmentation pipeline implemented
using the Torch framework1, which was developed for the APC 2016. We adapt
it to extract high-level features from synthetic scenes and implement the pose
estimation model using the newer PyTorch framework2.

While training the pose estimation network, for an input image, the ReineNet
features needs to be extracted just once and can be stored to the SSD hard-drive.
However, loading the data from the SSD hard-drive is slower than the time needed
for GPU to process the data. Thus we implemented multi-threaded data loading
as shown in Figure 6.2. The training thread at the beginning of an epoch pushes
the list of directories to be loaded into the directories queue. The loader threads
are waiting for directories in the directories queue and when it appears, the loader
threads pops the directories from the queue, loads the data in the directory, and
pushes the data to the data queue. The training thread, after pushing the list of
the directories, waits for data in data queue and once it appears, pops the data
form the data queue and starts training. All the thread synchronization is done
using the Python’s3 and Torch’s 4 thread-safe queue libraries implicitly and not
handled explicitly.

1http://torch.ch
2http://pytorch.org
3https://docs.python.org/3/library/queue.html
4https://github.com/torch/threads
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6 Implementation
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Figure 6.1: Scene understanding pipeline.
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Figure 6.2: A schematic representation of the multi-threaded data loading.
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7 Evaluation

7.1 Pose Estimation
We evaluated the pose estimation model trained on synthetically generated train-
ing data as discussed in the Section 3.1.4. For each object, depending on the shape
of the object, we capture two or three turntable sequences. Each sequence consists
of 20 frames. We augment each frame with 60 new sampled orientations. Thus
the dataset generated consists of 2400 or 3600 images with ground truth poses.
We use this dataset in the following evaluations.

7.1.1 Single Vs. Multi Block Output Comparison
We evaluated both variants of the model: multi-block output; single-block out-
put on three objects. We also evaluated the variants on synthetic images with
and without occlusion. To generate occlusion, we randomly sample a portion of
the bounding box that contains the object and set the pixels in the portion as
background.

The Table 7.1 and Table 7.2 shows the comparison of single-block vs. multi-
block variants with no occlusion in training data and Table 7.3 and Table 7.4
shows the comparison of single-block vs. multi-block variants with synthetic oc-
clusion in training data. From these results, we observe that single block output
variant works slightly better with occlusion while the multi block output works
comparatively better when the there is no occlusion in the input image. One of the
reasons for the multi-block variant performs in the absence of occlusion could be
that the training objective for the multi-block variant does not penalize for wrong
object recognition; we simple discard the poses estimated in the blocks that does
not correspond to the objects under consideration. i.e. we do not force the multi-
block variant to perform object recognition as a part of post estimation. On the
other hand, the reason for single-block variant performs better when occlusion is
present could be that the single-block variant has less danger of overitting, because
the output is forced to adapt to diferent objects all the time—like a regularizer
that introduces noise on the labels.
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7 Evaluation

Table 7.1: Pose Estimation Errors - Translation component single-block vs. multi-
block output without any occlusion.

Training Validation
Translation Translation

[pixel] [pixel]
Multi-block Single-block Multi-block Single-block

Epsom salts 2.28 4.85 3.32 5.69
Toilet paper 2.41 5.08 3.79 5.98

Yellow windex 2.25 4.07 3.41 4.75
Average 2.31 4.67 3.51 5.47

Table 7.2: Pose Estimation Errors - Rotation component single-block vs. multi-
block output without any occlusion.

Training Validation
Quaternion Angular Quaternion Angular

[norm, ·10−2] [degrees] [norm, ·10−2] [degrees]
Multi Single Multi Single Multi Single Multi Single

Epsom salts 1.63 2.88 1.80 3.32 3.83 4.43 3.19 4.92
Toilet paper 1.94 3.06 1.68 3.38 4.75 5.73 3.09 4.98

Yellow windex 2.04 3.03 1.86 3.48 3.23 4.71 2.78 4.57
Average 1.87 2.99 1.78 3.39 3.93 4.97 3.02 4.82

Table 7.3: Pose Estimation Errors - Translation component single-block vs. multi-
block output with occlusion.

Training Validation
Translation Translation

[pixel] [pixel]
Multi-block Single-block Multi-block Single-block

Epsom salts 6.95 6.29 8.31 7.44
Toilet paper 5.89 6.14 7.72 7.73

Yellow windex 5.29 5.33 6.34 6.33
Average 6.04 5.92 7.46 7.17
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7.1 Pose Estimation

Table 7.4: Pose Estimation Errors - Rotation component single-block vs. multi-
block output with occlusion.

Training Validation
Quaternion Angular Quaternion Angular

[norm, ·10−2] [degrees] [norm, ·10−2] [degrees]
Multi Single Multi Single Multi Single Multi Single

Epsom salts 4.94 2.92 4.64 3.38 5.81 4.85 6.26 4.98
Toilet paper 3.37 3.04 3.83 3.44 6.51 6.15 6.13 5.56

Yellow windex 4.06 2.86 5.61 3.27 6.59 4.66 6.82 4.52
Average 4.12 2.99 4.69 3.36 6.03 5.22 6.04 5.02

7.1.2 Data Requirement Evaluation
The accuracy of the model heavily dependents on the volume of training data
used for training the model. But training with more volume of data requires
more computational resource and time. Thus inding the least volume of data
that is suice to achieve good accuracies is vital for the model to be deployed
in real world—particularly with lexibility of adding new objects incrementally.
We empirically found the minimum volume of data needed for training the pose
estimation model. As discussed in Section 3.1.4, for a captured frame, we create
synthetic scene by sampling new orientation (described in step d) of Figure 3.5) .
In Figure 7.2, Figure 7.3, and Figure 7.4, the training process of training with 24,
36, and 60 sampled orientations for each of captured frame is shown respectively.
In Figure 7.2, and Figure 7.3 we can observe that while training loss looks good,
the validation loss is high suggesting insuiciency of the training data. Figure 7.4
shows validation loss is comparable to training loss. The inal accuracies of these
training process are compared in Figure 7.1. In the rest of the experiments we
create training dataset by generating 60 synthetic images for each of the captured
frame.
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Figure 7.3: The training process of training with 36 sampled orientations for each of the
captured frames.
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Figure 7.4: The training process of training with 60 sampled orientations for each of the
captured frames.
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7.1.3 Scenes Requirement Evaluation
In Section 7.1.2 we empirically found the minimum number of synthetic images
needed for training the pose estimation model. We concluded that for each of the
captured frame, we need to generate 60 new images by sampling along z axis and
superimposing the generated scene in a realistic background. We experimented
with generating more synthetic scenes by superimposing the images of sampled
orientation (described in step d) of Figure 3.5) on diferent backgrounds (described
in step e) of Figure 3.5).

The Figure 7.5 compares the training process of generating ive synthetic scene
and one synthetic scene for each of sampled orientation respectively. The inal
accuracy of the two resulting model were similar, and thus we can conclude that
we need only one synthetic scene for each of sampled orientation. One probable
explanation for not needing multiple synthetic scenes is that network learns to
ignore the background pixels of the scene that has dominant red component from
just one synthetic scene of each sampled orientation —suggesting that our encoding
of the segmentation results is easily understandable by the network.
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7.1.4 Efect of Occlusion
In the Section 7.1.1, we showed that the pose estimation network can learn to
estimate the pose of the object, despite the object being partially occluded. We
generate occlusion by sampling as rectangular portion close to one of the four sides
of the bounding box containg the object in the image. We set all the pixels in the
portion as the background pixels. We then compute the precent of occlusion and
discard the iamge if the percentage of occlusion is more than 50. Examples of
the occluded images are shown in Figure 7.6. We further investigated the efect
of occlusion in the accuracy of the pose estimation. In Figure 7.7, and Figure 7.8
we,respectively, present the norm loss in predicting the translation component, and
the rotation component when object is occluded between 0 and 50 percentage. As
we discussed in Section 7.1.1, the pose estimation model variant with single-block
output is less susceptible to occlusion. From these charts we can see the loss
increases with the increase in percentage of occlusion almost linearly.
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7.1 Pose Estimation

Figure 7.6: Examples of occlusion. Top row: RGB image of the objects. Bottom row:
Occluded objects.

...
......0 .

(0-10]

.

(10-20]

.

(20-30]

.

(30-40]

.

(40-50]

.
3.5 · 10−2

.
3.84 · 10−2

.

4.09 · 10−2

.

4.55 · 10−2

.

5.74 · 10−2

.

6.84 · 10−2

. 4.94 · 10−2.

5.92 · 10−2

.

6.42 · 10−2

.

7.16 · 10−2

.

0.1

.

0.18

.

XY Norm Loss

.

O
cc

lu
sio

n
Pe

rc
en

ta
ge

.

Efect of occlusion on Translation Error

.

. ..Single-block

. ..Multi-block

Figure 7.7: Efect of occlusion on Translation error.

41



7 Evaluation

...
.....0 .

(0-10]

.

(10-20]

.

(20-30]

.

(30-40]

.

(40-50]

.
0.13

.
0.15

.

0.16

.

0.2

.

0.18

.

0.17

. 0.15.

0.19

.

0.21

.

0.22

.

0.26

.

0.2

.

Quaternion Norm Loss

.

O
cc

lu
sio

n
Pe

rc
en

ta
ge

.

Efect of occlusion on Rotation Error

.

. ..Single-Block

. ..Multi-Block
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7.1.5 Efect of Output Scaling

In many machine learning problems where the input features and output of the
models are of diferent scale, the model learned preforms better when the input
features and the output of the models are scaled to have zero mean and unit
standard deviation (Juszczak, Tax, and Duin (2002), Aksoy and Haralick (2001),
Youn and Jeong (2009)). In the case of the pose estimation network, the output
of the network has two components; translation, and the rotation components.
While the translation component represented as quaternions range between 0 and
1, the translation component representing the location of the origin of the object
in the image space ranges from 0 to 320. We experimented with two diferent
variants of pose the estimation model; the translation component of the model is
scaled between -1 and 1, and unscaled version ranging between 0 and 320.

Both variants needs a balancing factor β to balance the diference in the scale
of the translation and rotation losses as discussed in Chapter 5. But in the case of
scaled variant, the two losses are of a very similar scale and difer only in learning
process(one of the losses might be easier to minimize than the other). Thus β is
needed only to make the network emphasize more on one of the losses. To allow
this, the loss function can be reformulated as follows,

Error(Ŷ , Y ) =
n∑

i

β ∗ ( ˆY xy
i − Y

xy
i )2 + (1− β) ∗ ( ˆ

Y
quaternion
i − Y

quaternion
i )2
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Table 7.5: Efect of output scaling.
Translation Rotation

[pixel] [degree]
train val train val

scaled 4.6 6.8 3.2 8.2
unscaled 3.24 6.6 2.9 6.9

The hyper-parameter search for β is easier in the case of scaled variant. The
training process of the two variants are shown in Figure 7.9, and Figure 7.10.
While the orientation loss curves (theta loss) in both variants looks very similar,
translation loss(XY loss) is smoother in the case of scaled variant suggesting that
the learning is faster. The inal accuracy shown in Table 7.5 is similar. One of the
reasons that unscaled version performed comparable to scaled version is the usage
of ReLU activations whose activations are unbounded when active.
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Figure 7.9: Training process when x and y outputs are scaled between -1 and 1.
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Figure 7.10: Training process when x and y outputs are not scaled.
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7.1.6 Evaluating the Generalization Properties
The objects that we encounter in the real world are often instances of some category
of object. We humans need not to learn to recognize/operate each single instance
of the category of the object. We can transfer the knowledge that we acquire in
one of the instances to other instances of the same category. With enough training
data, CNNs are shown to generalize to new instances of same category. In this
section we evaluate the generalization properties of the pose estimation network.
We trained the pose estimation networks on a set of four drills shown in Figure 7.11.
The origin and the pose of a drill is shown in Figure 7.12. We then evaluated the
generalization properties of the networks by testing on an unseen drill shown in
Figure 7.13. The accuracy of the pose estimation network in predicting the pose of
the unseen drill with and without occlusion is shown in Table 7.6. We investigated
the pose estimation for the unseen cases further by displaying the image of the
seen drill that is closest to the predicted orientation in the entire seen dataset.
The unseen input images and the image closest to the predicted orientation are
juxtaposed in Figure 7.14, Figure 7.15, Figure 7.16, and Figure 7.17. In these
igures, the ground truth translation and the predicted translation are displayed
as small white and green dots in the input image displayed on the left-hand side.

The Figure 7.14 shows some example cases where input is not occluded and
the predicted pose is relatively good. The Figure 7.15 shows some typical failure
cases. In most cases where the model performed poorly was when the unseen drill
was lying with its base facing the camera. Similarly, the Figure 7.16 shows the
cases where predicted pose was good even though the unseen drill in input image
is occluded and the Figure 7.17 shows the failure cases. The top right image of
Figure 7.17, we can see the efect of the occlusion in predicting the translation. Due
to the base of drill being completely occluded—despite the orientation predicted
is quite good—the translation prediction fails.

In both occluded and non occluded cases, the translation estimation is of by
a few pixels and from this observation, we could infer that the pose estimation
model doesn’t learn the deinition of the origin for a novel drill based on the seen
drills. Rather the model tries to estimate the translation of the novel drill from
the set of features learned on the seen drills and this doesn’t generalize perfectly.
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7.1 Pose Estimation

Table 7.6: Generalization properties of the Pose Estimation network.
without occlusion with occlusion

Translation [pixel] 36.34 39.52
Quaternion [norm, ·10−2] 0.362 0.397

Angular [degrees] 33.6 38.21

Figure 7.11: The drills on which the model was trained.

Figure 7.12: The origin and the coordinate frame of a drill
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Figure 7.13: The new drill on which the model was evaluated.
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Figure 7.14: Generalization without occlusion; working cases.
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Figure 7.15: Generalization without occlusion; typical failure cases.
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Figure 7.16: Generalization with occlusion; working cases.
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Figure 7.17: Generalization with occlusion; typical failure cases. Top: While the orien-
tation estimation is relatively good, the translation estimation is poor due
the base being occluded.
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7.1.7 Dealing With Invariance
Many objects have the inherent property of being invariant to viewing angles along
one or more axis. Consider, for example, the dumbbell shown in Figure 7.18 is
looks very similar when rotated along the z axis(shown in blue) except for a small
diference the positioning of the label close to the origin which is negligible. Also,
in terms of manipulation, the pose of object is invariant along z axis and also in-
variant to 180°rotations along y axis (shown in green). But the automatic ground
truth generation process discussed in Section 3.1 does not treat these invariances.
Forcing the pose estimation network to estimate the precise pose from the images
with little variance will hamper the learning process. To deal with this, we exper-
imented by assigning the same ground truth for all the invariant poses along an
axis as shown in Figure 7.19. The learning process with variant poses for visually
similar images is shown in Figure 7.20 and Figure 7.21 shows the learning process
with dataset containing invariant poses for visually similar images.

We can observe that the translation and rotation error of the object “Hand
weight” (dumbbell) drops signiicantly faster in the invariant poses case compared
to variant poses case and the inal accuracy is slightly better. The inal accuracies
are compared in Table 7.7.

Table 7.7: Invariance experiment: Accuracy comparison.
Variant Poses Invariant Poses

Translation Rotation Translation Rotation
[norm, ·10−2] [degrees] [norm, ·10−2] [degrees]
train val train val train val train val

Epsom salts 3.48 5.04 3.39 6.53 3.22 4.76 3.16 6.65
Hand weight 2.67 2.67 1.67 1.72 1.44 1.52 0.74 0.80
Utility brush 1.92 2.90 3.49 5.68 1.87 3.09 3.36 5.67

Average 2.68 3.54 2.81 4.71 2.18 3.16 2.41 4.47
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7 Evaluation

Figure 7.18: Dumbbell with origin and coordinate system.

Figure 7.19: Poses with little invariance are assigned the same ground truth.
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Figure 7.20: Invariance experiment: Variant Poses.
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Figure 7.21: Invariance experiment: Invariant Poses.
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7.1 Pose Estimation

7.1.8 Copy/Retain Weights experiment
The conventional machine learning work-low involving a ixed dataset to train
a model does not suit real-world applications; for a model to be pragmatic, the
ability fast retrain on new data is crucial. Some of the recent works (T. Chen,
Goodfellow, and Shlens (2015), Li and Hoiem (2016)) address the problem of
modifying the architecture of the network without destroying the functionality
learned. One of our goals in designing the the pose estimation network was to
have the ability to fast train the model on new objects. Our design of multi-
block output was motivated by this necessity. We evaluated the ability of the two
variants of the pose estimation network to fast learn a new objects. We perform
this evaluation by training both variants on three objects initially, and then adding
one more object to the dataset. While learning on the new object, we experimented
with retaining/copying weights of the neurons from the initial run and assess the
beneit of retaining/copying the weights. Figure 7.22, and Figure 7.24 shows the
training process of training single-block and multi-block variant with the initial
three objects respectively. Figure 7.26 shows the training process of training the
multi-block variant from scratch and Figure 7.23 shows the training process of
training single-block variant by retaining the weights from the initial run and
Figure 7.25 shows the training process of training multi-block variant by retaining
weights of the convolutional layer and the three output blocks corresponding the
the initial three objects. The output block corresponding to the new object (a
driller in our case) was initialized by copying the weights corresponding to the
driller in the initial set of objects. While training the new object, the number of
the training images corresponding the old set of objects were halved. Note that
the plots shows the training process only the irst 150 epochs, since, eventually,
the inal accuracies of the variants are similar and we are interested not in the inal
accuracy but in the rate of learning process. From these results we can observe
that multi-block variant learns faster when the weights are copied and the single-
block variant also learns equally faster without forgetting the older objects. We did
not observe any particular beneit of having multi-block output and single-block
variant not forgetting the initially learned objects while learning the new object.
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Figure 7.22: Copy weights experiment: Single-block output; initial run with three ob-
jects.
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Figure 7.23: Copy weights experiment: Single-block output; training with an additional
object by retaining weights from the initial run.
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Figure 7.24: Copy weights experiment: Multi-block output; initial run with three ob-
jects.
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Figure 7.25: Copy weights experiment: Multi-block output; training with an additional
object by retaining weights from the initial run.
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Figure 7.26: Copy weights experiment: Multi-block output; training with an additional
object from scratch.
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7.2 ARC Dataset
The scene understanding pipeline was evaluated with the data collected before and
during Amazon Robotics Challenge, 2017. The Challenge consists of picking and
stowing objects from and into the boxes. A set of 40 objects called the training
set were given to the teams a couple of months before the competition and just
45 minutes before the competition, the teams receive a set of 32 objects called
the competition set to be used in the pick or stow task. Half the objects in the
competition set are new, and the rest are from the training set. We start with
acquiring data for new objects using the pipeline discussed in Section 3.1. In
the meantime, we start the training of the semantic segmentation and the pose
estimation networks with the data we have and add the new data as we acquire.

7.2.1 Semantic Segmentation
The semantic segmentation network in trained in parallel over of multiple GPUs.
The training starts with the network trained on the objects in the training set. The
training process scans for new the new turntable captures in the ilesystem, and
generated synthetic images by placing images of ive objects on top of manually
annotated scenes. After every epoch, the structure of the network is adopted to
accommodate the new objects. Thus the structure of the inal classiication layer of
the network do not stay constant during the training and changes according to the
number of objects. Figure 7.27 shows examples of the segmentation results. The
input RGB image is shown in the left followed by ground truth, uninformed, and
informed case of segmentation results. In the informed case, the set of objects in
the bin is known thus the argmax operation on the inal softmax classiication layer
is done only on the feature maps corresponding to those set of objects, whereas in
the uninformed case, the set of objects are not known and the argmax is performed
over all the feature maps. Figure 7.27 shows the mean IOU during a typical
training process. The learning saturates after 5000 to 10000 images and with four
GPUs, it takes 15 to 30 minutes to reach the saturation point.

7.2.2 Pose Estimation
The pose estimation network is trained on the ive objects shown in Figure 7.29.
Pose estimation is done only for objects that needs to be grasped in a speciic
poses due to its shape and other physical constraints. From the evaluations done
in the Section 7.1, we observed single-block variant performed better when the
objects are occluded and can learn faster when the weights are retained from the
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7 Evaluation

Figure 7.27: ARC semantic segmentation results. In each row: RGB input on the left;
ground truth to the left, followed by segmentation results of uninformed
and informed cases.

64



7.2 ARC Dataset

...

..

0

.

5 k

.

10 k

.

15 k

.0.4 .

0.5

.

0.6

.

0.7

.

Training images

.

M
ea

n
Io

U

Figure 7.28: Semantic Segmentation experiments; Mean IoU during training.

Figure 7.29: ARC objects used in pose estimation evaluation. From left to right: Browns
brush, epsom salts, hand weight, reynolds wrap, and utility brush.
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Table 7.8: ARC objects pose estimation results.
Translation Rotation

[pixel] [degree]
train val train val

Browns brush 9.1 11.2 3.7 11.4
Epsom salts 8.6 9.8 3.6 6.8
Hand weight 5.5 7.3 0.9 1.1

Reynolds wrap 5.9 7.6 3.8 9.1
Utility brush 8.0 8.9 3.6 6.9

previous training process. We decided to use singe-block variant for the evaluation
of pose estimation in favor of the multi-block variant. A training epoch consists
of batches of 32 images. One training epoch takes approximately 40 seconds on
a single GPU. When the training is resumed with the weights from a previous
training run, it takes 50-75 epochs to achieve a reasonable accuracy. Thus the
pose estimation network needs 30 to 50 minutes to train on a new set of objects.
The inal accuracy of the network is shown in Table 7.8.

7.3 Disaster Response
On a high-level, random bin picking and disaster response appears to be very
diferent application scenarios but the scene understanding pipeline we developed
can be applied to disaster response as well. To that extent, we evaluated our
pipeline on Centauro dataset1. The Centauro project aims to build a human-robot
symbiotic system with sophisticated autonomous and teleoperation capabilities. In
the context of autonomous behavior, the robot should be capable of recognizing
the known tools in a disaster environment and manipulate the recognized objects.
To recognize the tools we perform semantic segmentation of the scene and estimate
the pose of the objects to aid manipulation.

7.3.1 Semantic Segmentation
The semantic segmentation network is evaluated on the Centauro Tools dataset 2.
The dataset consists of 129 frames RGB-D frames of seven tools. Additional to
the 129 manually annotated frames, we generated more training images using our

1https://www.centauro-project.eu/
2https://www.centauro-project.eu/data_multimedia/tools_data
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7.3 Disaster Response

Figure 7.30: Centauro semantic segmentation results. In each row: RGB input on the
left; ground truth to the left, followed by segmentation results of uninformed
and informed cases.

Table 7.9: Centauro objects: semantic segmentation results.
Box Clamp Driller Door Extension Stapler Wrench

Handle Box
Intersection 767021 3389 7144 112 7627 1580 1751

Union 768443 3859 7510 129 7881 1725 1920
IoU 1.0 0.88 0.95 0.97 0.97 0.92 0.91
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Figure 7.31: Centauro objects used in pose estimation evaluation. From left to right:
Driller, extension box, and stapler.

Table 7.10: Centauro objects pose estimation results.
Translation Rotation

[pixel] [degree]
train val train val

Driller 8.3 9.9 7.6 10.2
Extension box 9.8 12.8 7.8 9.9

Stapler 6.3 8.1 4.3 6.4

synthetic data generation pipeline.Figure 7.30 shows the RGB image on the left,
ground truth, uninformed, and informed segmentation results of example scenes
during the training. The inal IoU of the segmentation is shown in Table 7.9.

7.3.2 Pose Estimation
We evaluated the pose estimation network on the three objects shown in Fig-
ure 7.31. As in the ARC dataset pose estimation, we used the single-block variant.
The objects that needed pose estimation are known in advance and thus eliminat-
ing the need for learning new objects. The inal accuracies of the pose estimation
model is shown in Table 7.10.

7.3.3 Application In Real-World Scenarios
The trained models were used in real-time on Centauro setup. A novel drill is
placed on the table and the task for the robot is to perceive the environment,
localize the driller and grab it to preform some predeined manipulation actions.
The scene understanding pipeline developed in this thesis was put to test in the
real-world environment in real-time. The results are shown in Figure 7.32. An
unseen drill is placed in the table and is observed from the Kinect V2 camera
mounted on the table. The predicted orientation is displayed at the bottom of the
Figure 7.32. The translation is not used in this case and the center of the point
cloud is used as the translation component in the visualization. The estimated
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7.3 Disaster Response

Figure 7.32: Semantic segmentation and pose estimation model evaluated on a unseen
object. Top Left: Input image of the scene. Top Right: Result of semantic
segmentation. Bottom: Visualization of predicted orientation.
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Figure 7.33: Centauro robot grasping novel drill using the results of the pipeline proposed
in this thesis.70



7.3 Disaster Response

orientation is good enough for the manipulation using an UR5 3 arm to succeed.
Figure 7.33 shows pictures captured during the demonstration where the Centauro
robot is grasping a novel drill using the results proposed in this thesis. A video
capture of the demonstration is present in the DVD attached with this thesis.

3https://www.universal-robots.com/products/ur5-robot/
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8 Conclusion
We conclude by discussing the contributions of the thesis, limitations, and the
possible future works to address the shortcomings of our work. We presented a
pipeline for fast training of convolutional neural networks for scene understand-
ing. Our pipeline consists of a high throughput data acquisition setup to capture
images of new objects in short span of time, synthetic data generation module
to generate training images needed for training segmentation and pose estimation
networks, a semantic segmentation network, and a pose estimation networks. We
evaluated diferent design choices of the pose estimation network and selected the
best performing variant suitable for fast retraining on new images. We also pro-
posed a method for dealing with invariance in the appearance of the objects to
ease the training process of the pose estimation network. We then evaluated the
pipeline in a random bin picking and a disaster response scenario and showed that
our model performed well in both scenarios. Finally, we discussed the real-world
scenarios where the pipeline was used to recognize an object and estimate its pose,
thus aiding a robot arm in the autonomous manipulation of the object.

While this pipeline performs well in real-world scenarios, one of the early design
choices of the pipeline to decouple the semantic segmentation and pose estima-
tion networks resulted in the inability to perform joint learning. We believe both
semantic segmentation and pose estimation can beneit mutually and thus needs
to be trained jointly. To achieve joint learning, the architecture of the pose esti-
mation network needs to be modiied by replacing the inal fully connected layers
with convolutional ones, thus obtaining a fully convolutional network. Additional
improvements can be done in post-processing the estimated 5D pose to obtain
6D pose, and generating 3D scenes with meshed models to directly train the pose
estimation network to estimate 6D poses.
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