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Abstract

Time efficiency in autonomous robotic systems is essential; sensor input modules,

perception and decision algorithms require a large amount of computational re-

sources and they have high priority in using these resources. However, robotic

systems consist of additional modules that are computationally expensive, such

as motion planning. This thesis presents a method that can reduce execution

time and consequently required computational resources of motion planning for

a 6-DoF’s robotic arm that performs autonomously pick and place tasks in a

stationary industrial environment. The presented method combines the use of

motion plans that are computed off-line and short-distance motions plans, that

are computed on-line. Pick and place tasks that are performed in a stationary

environment allow us to define a motions’ workspace and plan multiple motion

trajectories off-line. For the purpose of this thesis ROS framework and MoveIt

library are used. MoveIt is a free open-source motion planning library that per-

forms only sampling-based planning. We present how we can use features that

MoveIt offers and plan with constraints in a reasonable time. We choose a 6-DoF

robotic arm because it has a large workspace and MoveIt can efficiently compute

forward and inverse kinematics solutions for chains up to 6-DoF. Our goal is to

show how we can use an existing planning algorithm and take advantage of its

favourable features and work around its shortcomings.
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Chapter 1

Introduction

1.1 Thesis Outline

This thesis is focusing on designing a strategy of motion planning for a 6-DOF

robotic arm in a controlled environment. The main contribution of this thesis is

the presentation of a method that fully exploits the characteristics of a controlled

environment and the targeted task specific application.

The main focus of this thesis is to create a strategy for motion planning for

a robotic arm for a pick and place task. The results of this method have been

used in the STAMINA (Sustainable and Reliable Robotics for Part Handling in

Manufacturing Automation) 1 project. STAMINA introduces the use of multiple

robots in a industrial car warehouse for collecting engine parts and delivering them

to the assembly line. The robots should navigate around the warehouse; identify,

collect and inspect the requested engine parts and deliver them to the assembly

line in order to get assembled into a new car engine. The use of robots in such a

scenario makes the production of custom car engines more affordable and easier

to get integrated in an mass production assembly line.

In chapter 2 we present the robots on which we applied this method, the

middle-ware used for robot-computer communication and the libraries used in

our implementation.

1http://stamina-robot.eu/
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1.1 Thesis Outline

In chapter 3 we present the problem that we try to solve and the purpose of

this thesis. Furthermore, we introduce some known approaches that have been

used for motion planning.

In chapter 4 we present the approach that we chose as our problem solution

and how we came to the conclusion that this is the best suited approach. In addi-

tion, we present the implementation of our proposed method and the difficulties

we managed to overcome during this process.

In chapter 5 we present the results of the proposed method. Additionally we

present the conclusions that we made and suggest some future work.
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Chapter 2

Background

In this chapter we present to the reader all the essential knowledge in order for him

to understand the discussed topics. We present in detail the robotic systems 2.1

that we used for our results. We also present the platform 2.2 that we used during

implementation and its libraries 2.2.3.

2.1 Robotic Systems

Nowadays robots have taken a significant place in our everyday life, from au-

tomated coffee machines and vacuum cleaning robots to bomb disposal and in-

dustrial robots. They help us live an easier and safer life. The term robot is

used for describing a system which can interact with a person or the environ-

ment and perform a task with little or no guidance. Robots can be autonomous,

semi-autonomous or manually controlled. One might support that there are also

pre-programmed robots. A vending machine or a production line robot might fall

in this category. We can consider that a robot is pre-programmed if it is only

capable of executing one task and if every execution is identical to the first one.

However, this type of robots are widely considered as automated systems. A man-

ually controlled robot is a robot that does not perform any task by its own, this

kind of robot functions only if a user is controlling it. Most robots used in surgery

and bomb disposal are manually controlled and require an experienced operator.

A semi-autonomous robot is able to perform by its own with a little guidance by

an operator. Autonomous robots perform without any guidance. An operator is
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2.1 Robotic Systems

necessary only for requesting the desired task for execution. The vacuum cleaning

robots are considered autonomous, because the user only requests the cleaning

task to begin and the robot creates a map of the environment, decides the route,

avoids large obstacles and perceives when the cleaning is done.

2.1.1 UR 10 Robot

Figure 2.1: Pictures of the UR 10 robot arm.

The UR10 1 robot is produced by Universal Robots and it has an on-board

controller. It can be controlled manually by a user through an interface or it can

run autonomously if desired.

It weighs 28.9kg and has a 190mm diameter footprint. It can reach to 1.3m

distance and lift up to 10kg load. The UR10 has six joints, each joint has 640◦

rotation range and 120◦/s − 180◦/s speed limit(Table 2.1). It is equipped with

force sensors, if any outer force is detected on the arm, it will automatically

activate the emergency stop. This feature is available on both modes, autonomous

and manual. It does not have any sensors, besides the force sensors, and the tip

of the arm does not have any tools attached on it. It is possible to attach a tool,

an extension or sensors on the tip due to its design.

When in manual control, the user can move each joint separately or move all

joints synchronously by setting a goal position for the end-effector of the arm. A

1http://www.universal-robots.com/products/ur10-robot/
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2.1 Robotic Systems

Joint Rotation Range( ◦) Speed Limit( ◦/s)

Base Joint 640 120

Shoulder Joint 640 120

Elbow Joint 640 180

Wrist 1 Joint 640 180

Wrist 2 Joint 640 180

Wrist 3 Joint 640 180

Table 2.1: UR10 joint specification.

teaching mode is also available on the user’s interface which allows the user to

move the arm by hand to a desired position. However, in this case two users are

in need, one to push the teach button on the controller and one to move the arm

by hand.

The UR10 robot can run on automated control as well, the programming can

be done at two levels, the Script Level and C-API Level. In case of Script Level

programming, the arm is only controlled by a program written in URScript, a

language developed by Universal Robots for the UR robot series. The URScript

language is similar to python, one can use variables, types, functions, flow of

control statements etc. It also provides necessary commands for communication

and motion control, but it has not extended libraries for motion planning or

advance mathematics. If such computations are necessary, it is recommended to

write a program in a higher level, the C-API Level. At this level all computations

can be done in C or C++ and the communication and motion control will

be done with a URscript program. There is a script available which connects

ROS(Section 2.2) modules with a URScript program. It is available as part of the

ROS-Industrial repository and more specific the universal robot meta-package2.
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2.1 Robotic Systems

Figure 2.2: The Fanuc M-20iA/20M robot arm.

2.1.2 Fanuc M-20iA/20M Robot

The FANUC M-20iA/20M3 robotic arm(Figure 2.2) is manufactured by FANUC

and is widely used in industrial production lines. It is programmable and manu-

ally controlled. It is accompanied by a R-30iB controller in a variety of cabinets.

FANUC provides a large series of robotic arms in a variety of sizes and capabili-

ties.

The FANUC M-20iA/20M weighs 250kg and has a 343mm x 343mm footprint.

It can lift up to 20kg load and reach to 1.83m distance. It has 6 joints, each joint

has a rotation range between 260◦ − 900◦ and speed limit between 175◦/s −
615◦/s(Table 2.2).

The FANUC M-20iA/20M arm is controlled by a R-30iB controller, which

has a user-friendly touch screen, the iPendant. The iPendant touch screen allows

the user to control the robot manually or run an automated program.

2https://github.com/ros-industrial/universal_robot
3http://www.fanuc.eu/uk/en/robots/robot-filter-page/m-20-series/m-20ia-20m
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2.2 ROS

Joint Rotation Range( ◦) Speed Limit( ◦/s)

J1 370 195

J2 260 175

J3 460.6 180

J4 400 405

J5 280 405

J6 900 615

Table 2.2: FANUC M-20iA/20M joint specification.

In manual control, the user can control each joint independently or move the

entire arm at once to a end-effector goal position. The user can define the speed

of the arm by setting it as a percentage of the joints’ maximum speed. With this

method, the motion of the arm retains the design characteristics independently

of the chosen speed.

In automated control, the user can choose to run any loaded automated pro-

gram with the iPendant. The R-30iB controller supports multiple programs, the

user has the ability to run one of them at a time. A step-by-step function is

available for all automated programs that are loaded on the controller. The TU

Robotics Institute provides a program that can be loaded on the R-30iB controller

and control the FANUC M-20iA/20M arm with commands that it receives from

a ROS system.

2.2 ROS

ROS4 [1](Figure 2.3) stands for Robotic Operating System and is a free open-

source middleware for robotic systems. It provides libraries and software packages

for communication, motion control, planning, perception, navigation, mapping,

and more. ROS is a multi-lingual system with C++ and python as the dom-

inating programming languages. It is heavily supported by the academic and

industrial community, which contributes to a reliable and state-of-art system.

4http://www.ros.org
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2.2 ROS

Any application or algorithm can be easily integrated into a ROS system due to

its design and communication architecture.

Figure 2.3: The ROS logo.

2.2.1 Robot Description Model

The most important part of any robotic system’s software is having a realistic

representation of the robot’s and environment’s geometry and structure. In ROS

systems every geometric characteristic of a robot can be described accurately with

the Unified Robot Description Format (URDF) model, which is an XML format

for representing a robot model. With URDF, one can describe the dimension and

kinematics of every link and joint and any type of sensor that is on the robot.

Links can be represented by a simple geometric shape or a more complicated

shape with the help of a mesh object.

An accurate URDF model contributes to an accurate representation of the

environment. Environment representation is very difficult in mobile robotic sys-

tems, but good quality sensors in combination with an accurate URDF model

make it a lot easier. Systematic and unsystematic errors that may occur in per-

ception create a difficulty in representing the environment, thus accuracy in the

model and sensors are very important.

2.2.2 Communication

A robotic system, is a large system, which requires multiple calculations and

decisions done at once and concurrently. ROS solves this problem by having

multiple threads and nodes and by providing a communication system among

those nodes that run synchronously. A node can run on one or multiple threads.

A node may communicate with other nodes by announcing or reading newly

obtained information and requesting or stopping an action. Information can be
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2.2 ROS

exchanged among nodes in three forms, a message, a service or an action. All

messages, services and actions are published on topics (Figure 2.4).

Figure 2.4: ROS communication system example.

Topics are named buses used for exchanging messages among nodes. Nodes

use topics as announcement boards, they publish data that they need to share

and they read information that is helpful to them. They do not know which node

is reading their published data or which one published the data that they are

interested in. A node may publish or subscribe to multiple topics and topics may

have multiple publishers and subscribers. Topics were designed for unidirectional,

streaming communication, in case of remote procedure calls a service or an action

should be used instead of messages.

2.2.2.1 Messages

A message is published by a publisher and received by a subscriber, nodes may

have multiple of both. Each publisher can publish only one type of message. The

same rule applies to subscribers as well, one subscriber can read only one type

of message. Messages may be of type boolean, float, integer or string. These are

the basic message types provided by ROS, users may use custom types as well.

A large number of ROS packages use their own custom, complex, message types
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2.2 ROS

for optimized communication. Each message can be timestamped and have a

sequence number.

2.2.2.2 Services

A service is a request and reply type of communication. A request is sent by a

service client to a service server and a response is sent by a service server back

to the client. Nodes may have multiple service clients and servers, each pair uses

a unique topic of communication. The communication is considered successfully

completed only when the response has reached the service client. Services are

used for remote procedure calls and they are blocking, which means that the

node will wait for the client to receive a response before continuing to the next

command. The request and response part of the service are of type message.

2.2.2.3 Actions

An action is also a request and reply type of communication, but with the option

of cancellation and moderation during execution. They require an action client

and an action server, as service clients and servers, a node may have multiple

of them and each pair uses a unique topic of communication. Actions are used

for remote procedure calls, but they are non-blocking, which means that the

node may execute commands while its client request is being executed remotely.

Actions have 3 parts, goal, feedback and result. An action goal is defined by the

action client and it is sent to the action server. The server may send feedback to

the client while the task is in execution and it should send a result message as

soon as the task is completed. On the client’s side, the goal can be cancelled if it

necessary, for example, if it takes too long or the feedback is negative.

2.2.3 MoveIt

MoveIt5 [2](Figure 2.5) is an open-source mobile manipulation software for robots

developed at Willow Garage by Ioan A. Sucan and Sachin Chitta. It provides

solutions for mobile manipulation related problems, such as kinematics, motion

5http://moveit.ros.org
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planning and control, 3D perception and navigation. The MoveIt library is part

of the ROS packages and it is widely used in robotic systems. Since 2012, it has

been used on over 65 robots. What makes MoveIt great for developers is that

it can be easily configured for any robot. However, it performs best for robotic

arms with 6 DOFs(Degrees of freedom) or less.

Figure 2.5: The MoveIt logo.

2.2.3.1 MoveIt Configuration

There is a graphical interface for configuring MoveIt for a new robot, the MoveIt

Setup Assistant. It uses the URDF model of the robot as a base for constructing a

SRDF (Semantic Robot Description Format) model. The SRDF model contains

information about pairs of links that will never be in collision, like any adjacent

links. This type of information is generated by the MoveIt Setup Assistant, but

everything else is defined by he user. The user can define one or multiple motion

groups. For each group the user can setup an end-effector, a kinematic solver and

multiple poses. A link or a joint of the robot may belong to none, one or more

motion groups. In case that, a joint does not belong to any of the defined motion

groups, it can not be moved with MoveIt.

2.2.3.2 Motion Planning

MoveIt uses the Open Motion Planning Library(OMPL 6) [3] which provides a

variety of sampling-based planning algorithms. The developer can choose to use

either one of OMPL algorithms or a custom one, which can be easily integrated

into the software. MoveIt has only one kinematics solver, the KDL, which is

a numerical Jacobian-based solver. However, the user can implement his own

kinematics solver and integrate it into the software. There is also the option

6http://ompl.kavrakilab.org
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Fol lowJo intTra jectoryAct ionGoal a c t i o n g o a l

Fo l l owJo intTra j ec toryAct ionResu l t a c t i o n r e s u l t

Fol lowJointTrajectoryAct ionFeedback ac t i on f e edback

Figure 2.6: FollowJointTrajectoryAction Class Description

of generating one with OpenRave’s IKFAST plug-in7. KDL and IKFAST give

better inverse kinematics results for a kinematic chain of 6 or less DOFs. It is

recommended to use a custom kinematics solver when having kinematic chains

with more than 6-DOFs.

2.2.3.3 Motion Control

MoveIt provides the user with two versions of a motion control manager. The

motion control manager can activate a motion, monitor it and cancel it. There

is a motion control manager that controls the motors on the robot and there is a

fake motion control manager which simulates the motion of the robot’s motors.

The fake motion control manager can not be used on Gazebo (simulator of ROS).

However, it can be used if only the motion of the robot and not the environment

and sensor output are desired to be simulated. When the user wants to simulate

the robot motion in a simulated environment, then the non-fake manager and

Gazebo should be used together. Each MoveIt motion group has one dedicated

motion controller, since each joint may be part of more than one motion groups,

joints may have multiple controllers.

The motion activation, monitoring and cancellation occur with the help of the

ROS communication system. The desired motion is sent to the control manager,

fake or otherwise, in the form of an action. The FollowJointTrajectoryAction

(Figure 2.6) is defined in the ROS package control msgs, which is used to request

the execution of a motion from the manager. The action client needs to fill the

data for the action goal variable and the motion manager will notify the client

during execution with action feedback data and when the action is complete or

failed the motion manager will send an action result to the client.

7http://docs.ros.org/indigo/api/moveit_ikfast/html/doc/ikfast_tutorial.html
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Header header

u int32 seq

time stamp

s t r i n g f rame id

a c t i on l i b msg s /GoalID go a l i d

time stamp

s t r i n g id

cont ro l msgs / Fo l lowJo intTra jectoryGoal goa l

t r a j e c t o ry msg s / Jo in tTra j e c to ry t r a j e c t o r y

Header header

u int32 seq

time stamp

s t r i n g f rame id

s t r i n g [ ] j o int names

t r a j e c t o ry msg s / Jo in tTra j e c to ryPo in t [ ] po in t s

f l o a t 6 4 [ ] p o s i t i o n s

f l o a t 6 4 [ ] v e l o c i t i e s

f l o a t 6 4 [ ] a c c e l e r a t i o n s

durat ion t ime f r om s ta r t

cont ro l msgs / Jo intTo le rance [ ] pa th to l e r anc e

s t r i n g name

f l o a t 6 4 po s i t i o n

f l o a t 6 4 v e l o c i t y

f l o a t 6 4 a c c e l e r a t i o n

cont ro l msgs / Jo intTo le rance [ ] g o a l t o l e r a n c e

s t r i n g name

f l o a t 6 4 po s i t i o n

f l o a t 6 4 v e l o c i t y

f l o a t 6 4 a c c e l e r a t i o n

durat ion g o a l t ime t o l e r an c e

Figure 2.7: FollowJointTrajectoryActionGoal Class Description

In figures 2.7, 2.8 and 2.9 you will find the class descriptions of FollowJointTra-

jectoryActionGoal, FollowJointTrajectoryActionFeedback and FollowJointTrajec-

toryActionResult respectively. Later on, we will focus mostly on how we can

compute values for a FollowJointTrajectoryActionGoal variable.
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Header header

u int32 seq

time stamp

s t r i n g f rame id

a c t i on l i b msg s /GoalStatus s t a tu s

u int8 PENDING=0

uint8 ACTIVE=1

uint8 PREEMPTED=2

uint8 SUCCEEDED=3

uint8 ABORTED=4

uint8 REJECTED=5

uint8 PREEMPTING=6

uint8 RECALLING=7

uint8 RECALLED=8

uint8 LOST=9

ac t i on l i b msg s /GoalID go a l i d

time stamp

s t r i n g id

u int8 s t a tu s

s t r i n g text

cont ro l msgs /Fol lowJointTrajectoryFeedback feedback

Header header

u int32 seq

time stamp

s t r i n g f rame id

s t r i n g [ ] j o int names

t r a j e c t o ry msg s / Jo in tTra j e c to ryPo in t d e s i r ed

f l o a t 6 4 [ ] p o s i t i o n s

f l o a t 6 4 [ ] v e l o c i t i e s

f l o a t 6 4 [ ] a c c e l e r a t i o n s

durat ion t ime f r om s ta r t

t r a j e c t o ry msg s / Jo in tTra j e c to ryPo in t ac tua l

f l o a t 6 4 [ ] p o s i t i o n s

f l o a t 6 4 [ ] v e l o c i t i e s

f l o a t 6 4 [ ] a c c e l e r a t i o n s

durat ion t ime f r om s ta r t

t r a j e c t o ry msg s / Jo in tTra j e c to ryPo in t e r r o r

f l o a t 6 4 [ ] p o s i t i o n s

f l o a t 6 4 [ ] v e l o c i t i e s

f l o a t 6 4 [ ] a c c e l e r a t i o n s

durat ion t ime f r om s ta r t

Figure 2.8: FollowJointTrajectoryActionFeedback Class Description
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Header header

u int32 seq

time stamp

s t r i n g f rame id

a c t i on l i b msg s /GoalStatus s t a tu s

u int8 PENDING=0

uint8 ACTIVE=1

uint8 PREEMPTED=2

uint8 SUCCEEDED=3

uint8 ABORTED=4

uint8 REJECTED=5

uint8 PREEMPTING=6

uint8 RECALLING=7

uint8 RECALLED=8

uint8 LOST=9

ac t i on l i b msg s /GoalID go a l i d

time stamp

s t r i n g id

u int8 s t a tu s

s t r i n g text

cont ro l msgs / Fo l l owJo intTra j ec to ryResu l t r e s u l t

in t32 SUCCESSFUL=0

int32 INVALID GOAL=−1

in t32 INVALID JOINTS=−2

in t32 OLDHEADERTIMESTAMP=−3

in t32 PATH TOLERANCE VIOLATED=−4

in t32 GOAL TOLERANCEVIOLATED=−5

in t32 e r r o r c ode

Figure 2.9: FollowJointTrajectoryActionResult Class Description
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Chapter 3

Problem Statement

In this chapter we present to the reader the problem that we try to solve; the

scientific importance of it and the difficulties behind it. Robot motion planning

and control is essential in robotics. We are focused on a targeted setup problem.

In particular we are interested in presenting a solution of efficient motion planning

and control of a robotic arm targeted on performing pick and place tasks on a

stationary environment with a high success rate and minimum computing time.

3.1 Sensors and Data Processing

Sensors have a key role in robotic systems. Robots with no sensors in a non-

static environment can not move or act safely, thus they can not be autonomous.

Sensors collect information about the environment and the status of the robot.

It is preferable to use sensors with high frequency, because having the most

recent and accurate information is critical. Small time periods allow sensors

to collect multiple instances of an area during a very small frame of time. The

collected information needs to get processed and evaluated. Usually the data

that is collected by the sensors need to be transformed to a convenient format

for further information extraction. All the above tasks need a large amount of

processing power. This is due to the amount of collected data from a sensor in

each period and the fact that most robotic systems have more than one sensor

running at time and that small time periods are preferable for getting real time

representation of the environment.
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Common sensors used in robotic systems are laser scanners, mounted on a

fixed or rotating joint, RGB or RGB-D cameras, sonar sensors, force and tactile

sensors. Each type of sensors may be targeted for a different use. Force and

tactile sensors are used in manipulation of objects. Sonar sensors are used for

obstacle avoidance during locomotion. Laser scanners are used for obstacle avoid-

ance, mapping and localization, in combination with RGB sensors laser scanners

can be used for object detection and localization as well. RGB-D sensors can be

used both for object detection and localization and mapping of small areas. Tra-

ditionally, laser scanners have greater measurement range than RGB-D sensors,

thus they are a preferable choice for mapping and localization.

Initial processing of sensor data may include elective down-sampling of fields

that are out of the main area of interest, data transformation from 3D to 2D or

vice versa, neighbourhood extraction according to colour, height, incline or any

other feature, obstacle extraction, identification and removal of any robot parts

from the data etc.

Initial processing helps in getting a quick first look at the environment and

identify the areas of interest that need more in depth processing. It allows to

reduce processing time and computing resources by selecting and bounding the

areas of interest.

Autonomous robots that can observe the environment and gather accurate

data about it, are capable of making safe and optimized decisions regarding their

task. Thus, we always try to get more information with more sensors, that

are more accurate, faster, can pre-process collected data and adapt to different

conditions in lighting, temperature etc.

3.2 Sensor Data Usage in a Robotic System

As mentioned above the amount of sensors used in a robotic system gets larger, as

they get cheaper, faster, more accurate and with higher resolution. Having better

sensors means that the system is able to collect more accurate data in a shorter

period of time. The collected data is mainly used for locomotion and mapping.

Locomotion is the module which decides which path the robot is going to follow

and finds the current position of the robot on the map. Its name is derived from
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the words localization and motion, both of them occur at the same time and affect

each other. Mapping is the module that creates and maintains the map of the

environment. When the robot is in an unknown environment then mapping and

localization are happening simultaneously, this is known as SLAM (Simultaneous

Localization And Mapping)[4]. If the environment is known then mapping is used

for correcting or adjusting the map with newly obtained information.

Both, mapping and locomotion are essential for knowing the current location

of the robot and for it to move safely. It is crucially important for locomotion

to use a high density map, which means that a large amount of computational

resources should be reserved for mapping and locomotion.

3.3 Computational Resources of a Robotic Sys-

tem

Technology is constantly improving and computer processors become more power-

ful with every new generation. They are capable of making complex calculations

with a large amount of data online or at least in very short time. In addition

sensors can take more detailed information about the robot’s environment which

means that the sensor data processing modules need more computational power

than before. Having dense data about the environment leads to having more

data for mapping and locomotion and consequently needing more computational

power for both of them. In order to reserve a large sum of computational power

for sensor data processing tasks, mapping and locomotion, we need the rest of

the computing modules to be efficient and to require only a few resources.

The software of a robotic system can be divided in groups of smaller programs

with regards to the objective task of each program. Each group require a different

amount of computational power and run at different time intervals.

As seen at table 3.1 motion planning requires medium amounts of compu-

tational power. In addition, it is not used as often as motion control or sensor

processing. The medium frequency of execution and the medium amount of com-

putational resources in need may build up to frequent bursts at CPU usage. We

can avoid these bursts by using more efficient algorithms of motion planning. It
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3.4 Motion Planning

Programming Module Frequency of Execution Computational Resources

Decision Making low low

Motion Control very high very low

Communication high low

Motion Planning medium medium

Locomotion and Mapping medium high

Sensor Processing high very high

Table 3.1: Robotic system’s modules and their characteristics in frequency of

execution and computational power requirements.

is easier to reduce the CPU consumption of motion planning rather than of lo-

comotion and mapping, due to their complex algorithms and high density data.

Simplifying these algorithms is insufficient and leads to making invalid assump-

tions about the nature of the environment which means that we end up with

unreliable results. On the other hand, motion planning can be efficient in the

same way with high or low density sensor data. Sometimes it is feasible to use

data with density as low as the width of the robot’s smaller movable part. In mo-

tion planning all the information that we need to know about the environment is

if the robot arm can fit and move safely around a certain area of interest without

any collisions.

3.4 Motion Planning

Motion planning is a problem that can be solved with a variety of methods.

Sampling-based methods [5] are the ones that are less demanding in compu-

tational resources and some of them are also very time efficient. The OMPL

library(section 2.2.3.2) provides a large variety of sampling-based algorithms. De-

spite of all of them being sampling-based, they have different characteristics and

approaches to the problem of going from position A to position B. Sampling-

based planning is time efficient, especially if there is a clear and wide path to

the target position. However, it does not always give an optimal solution. In the
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Controlled Environment

presence of multiple obstacles between the initial and target position, large delays

may occur depending on which sampling-based algorithm is running. It does not

work well when having multiple obstacles and in this case it is possible to get

a repetitive motion as a solution, which is not desirable. A repetitive motion is

a motion that has one or more parts in repetition, i.e. going repeatedly back

and forth to an obstacle. This is a deficit that sampling-based planning can not

overcome due to its nature. In this thesis we will concentrate on how we can solve

this problem without increasing the execution time and efficiency of the motion

planning algorithms.

3.5 Motion Planning Improvements for an Au-

tonomous Robot in a Controlled Environ-

ment

In this thesis we are going to examine the improvements that we can make on

existing motion planning algorithms in order to get better results faster and

without increasing the algorithm’s computational needs. We are going to work

with a 6-DOFs robotic arm that is designed for industrial purposes. We are

going to use ROS as our operating system. ROS provides us with a motion

planning library, MoveIt, in which we can integrate our own custom programms.

We are using ROS and MoveIt, because both of them are well designed and

reliable systems, while allowing developers to easily integrate custom modules.

Our goal is to maintain planning time at the lowest possible value without causing

large bursts in CPU consumption. Our robotic system uses three to four RGB-

D cameras, both short and wide range, which means that most our processing

power is reserved for the sensor processing modules. We need to produce feasible,

safe, short and stable motion plans for our robotic arm with the use of MoveIt’s

sampling-based planners.

Sampling-based planners have the disadvantage of not giving optimal solutions

and sometimes not giving any solution at all due to bad initializations. We

are going try to minimize the effects of this algorithmic behaviour with simple

techniques that can be used when the robotic arm is moving in a stationary
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environment. A stationary environment is an environment that follows some

regulations and rules and has none or minimum unexpected elements in it. It

allows us to safely make assumptions about it that contribute in simplifying our

problem.

Having a stationary environment in an industrial set-up besides the allow-

ing simplifications, it creates some extra specifications that the motion planning

module should be fitted to. In particular, the arm’s end-effector should always

face downwards. The arm is designed for carrying breakable, expensive car parts,

which should stay in the arm’s gripper and should not fall on the ground. An

unexpected flip of the arm’s end-effector during a motion is undesired, because it

may lead to unsafe conditions. In addition industrial safety rules apply, because

the robot will be in a room where people work and their safety around the robot

is our first priority.

In most industries robots are widely used, they might be teleoperated or

autonomous. In any case there is user that either controls the robot or assists

the robot if something goes wrong. We will introduce a system that is designed

for autonomous robots and it reduces the need of an assisting human.

3.6 Related Work

Several efforts have been made in order to efficiently reduce planning time for a

constrained motion. Sampling-based planning algorithms can not handle plan-

ning with constraints in a reasonable time frame, or they can not generate solu-

tions at all. In this section we briefly discuss methods for applying task constraints

on known sampling-based motion planning algorithms.

In [6], M. Stilman presents two methods that explore alternative solutions in

joint space planning for robotic arms that follow task or workspace constraints.

He proposes Tangent Space Sampling, in which each RRT (Rapidly-exploring

Random Tree) sample is projected into the linear tangent space of its nearest

neighbour. The linear tangent space describes the task constraints that the mo-

tion plan should follow. Only the samples that follow the task constraints are

accepted as valid solutions. In addition he proposes a First-Order Retraction

method, in which joint space samples are displaced towards a direction where the
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constraint violation error is decreased. Displaced joint space samples are accepted

only if their constraint error is under a defined threshold.

In [7], a randomized roadmap method is presented for motion planning that

produces candidates points that follow task constraints. The proposed method

requires preprocessing, in which a roadmap is generated in the configuration space

of the robot. The configuration space includes obstacles that the robot should

avoid, candidates are are generated on the surface of the obstacle and not inside

the obstacle. This stationary configuration can be transformed to dynamic by

updating the obstacles, removing the candidates that are currently parts of the

obstacles and generate new candidates for the space previous obstacles occupied.

In [8], Constrained Bi-directional Rapidly Exploring Random Tree (CBiRRT)

algorithm for motion planning in configuration space with constraints is pre-

sented. This is algorithm is an extension of BiRRT planning algorithm by in-

troducing exploration of the configuration space manifolds that correspond to

constraints. In this approach, sampling is performed in configuration space as

usual BiRRT planners do, and with the use of projection operation samples are

moved onto constrained manifolds, if necessary. In case of multiple constraints

the connectivity feature of RRT is utilized for connecting manifolds of different

constraints. This method has been used for planning motion trajectories for tasks

such as opening a sliding door and moving a dumbbell without making any noise.

This method can handle end-effector pose and torque constraints as long as they

can be evaluated by a function of the robots configuration,
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Chapter 4

Approach and Implementation

In this chapter we present the chosen approach of motion planning for a robotic

arm based on the motion plans of the MoveIt library for pick[9] and place tasks

in a controlled environment.

4.1 Chosen Method

Having a robotic arm in a controlled environment, executing only pick and place

tasks helps us reduce the planning time needed for any arm motion. Our set-up is

presented in Figure 4.1. As seen, objects for picking can be either in large boxes

or flat surfaces. Placing is performed on a on-robot box.

By robot design, it is known that the robot will approach the surfaces and

boxes that contain the objects with its left or right side and it will place the

picked object on the front portion of the platform. In addition, based on the used

sensors, we know that the robotic arm should move closer to the object for the

verification of the detection with data provided by a short-distance RGBD sensor

mounted on its end-effector. The specifications of the task and robot design

create conditions for simplifying the motion planning problem for picking. The

workspace for the pick and place task is fully defined in terms of space which

helps us design carefully our strategy.

Motion planning can be time consuming for large distance motion paths with

a large number of constraints. Our goal is to perform safely a pick task for

objects that may be heavy, fragile or have a shape that does not allow very firm
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Figure 4.1: Testing environment in the lab and storage environment.

gripping, which creates a lot of constraints in planning motions. The task by

itself, constrains the motion of the end-effector, which is order to move safely

after grasping an object should move with a stable vertical orientation. Humans

try to carry something safely by holding it from the bottom up, in contrast

robots do the opposite. Robotic grippers can apply a firm gripping force, which

can ensure the stability of the object in hand. However, this stability can change

if the pose relation between gripper and object changes during a movement,

which can happen if the end-effector changes it orientation with respect to the

ground. Gravity affects the applied forces on the object, which means that either

the gripper should adjust the applied forces on the object with respect to its

orientation and shift of the object’s center of mass or the robotic arm should

move with the same orientation to the ground until the placement of the object.

Hence, we can achieve our goal by constraining the orientation of the end-effector

during motion on two axes (x and y), as shown in figure 4.2. In addition, the

arm in bounded by the bars above it that support the cameras, which are RGBD
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Figure 4.2: Orientation constraint of the end-effector on x and y axes of the global

frame.

sensors for indoor environments and can measure depth up to 3.5m. In summary,

the workspace of the robotic arm is constrained by its kinematics, placement of

the camera supporting bars and end-effector rotation in just axis(z).

Having that many constraints creates large delays in planning with the MoveIt

library. In particular, having an orientation constraint for the entire motion path

requires to get the inverse kinematics solution for every step of the path and

confirm that there is no violation of the constraint. Inverse kinematics for a 6-

DoF chain is time expensive by itself and having that computed for all points of

the motion trajectory is inconvenient and reduces the chance of getting a motion

plan for the requested pose transition. The probability of getting successfully a

motion plan is reduced to the fact that the motion planning algorithm in use is

sample based and that the inverse kinematics solver does not always return the

solution closer to the current configuration. Not having the closest IK(Inverse

Kinematics) solution also suggests that the path could get very large or the
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transition between the two configuration is not feasible due to the orientation

constraint.

The above mentioned factors helped us come to the conclusion that it would

be more efficient to create a grid of poses for the end-effector that describes

the workspace of the pick task[9] and plan off-line the respective motions. This

strategy allows us to save time and resources, and move safely after grasping an

object.

In summary, we suggest to create a grid of end-effector poses that possibly

correspond to the necessary poses for object detection verification. Define an

initial and final pose for the pick task that are used for every execution and use this

trio of poses for determining the pairs of motion plans for off-line computation.

A controlled environment allows us to use pre-computed motions, but this

is not sufficient for completing the pick task. Thus, we will concatenate these

pre-computed motions with short-distance motions that are computed on-line for

achieving maximum accuracy and time efficiency.

In the following sections of this chapter, we present the implementation of the

proposed method in detail.

4.2 Off-line Computation of Motion Plans

The off-line computation of motions for a pick task requires to define the initial

and final pose of the task and the coordinates that describe the workspace for

the robotic arm and the sampling step of its poses. Once all trios of poses is

available, we should compute all feasible motion plans and then we can define

the motion pipeline that should be used in a pick task. The motion pipeline is

constructed by pre-computed and on-line computed motions.

4.2.1 Initial and Final Pick Task Poses

The selection of initial and final poses is done by complying with some criteria.

The initial pose is also the default pose of the robotic arm. Thus, it should be

convenient for the locomotion of the robot and it should not occlude with the

FoV of the sensors that oversee the pick and place workspace. Convenient for
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locomotion pose, is a pose that positions the centre of mass of the robotic arm

close to the centre of mass of the fixed parts of the robot. Thus, a fully extended

arm pose is highly discouraged, because it moves the centre of mass of the robot

towards the direction of the extension. In addition, having an extended arm is

unsafe during locomotion, due to possible undetected collisions. As shown in

Figures 4.3a and 4.4a, a folded pose has been chosen for each robot model.

(a) Initial Pose (b) Final Pose

Figure 4.3: Initial and final pose of the UR10 arm for the pick task.

The final pose should comply with the end-effector orientation constraint men-

tioned in the previous section and be convenient for the place task. The picked

objects are placed on a box that is the front part of the robot platform. As shown

in Figures 4.3b and 4.4b, the end-effector is perpendicular to the ground and close

to the place task area.

Having a stable starting and ending point for picking creates a predictable

and consisted behaviour, which helps the user or observer to easily recognize any

mistakes or mishaps that might occur. It is also common in humans who work in

the assembly line of a factory to repeat similar, if not the same, motions for the

same task. Thus, the above design is not far from human behaviour.
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(a) Initial Pose (b) Final Pose

Figure 4.4: Initial and final pose of the Fanuc arm for the pick task.

4.2.2 Robot’s Workspace as a Pose Grid

As mentioned in Section 4.1 the robot’s workspace is constrained by the charac-

teristics of the robotic arm, the design of the robot and the FoV of the sensors.

The robot’s workspace is defined by the intersection of its visible and reachable

area, where it should be able to move safely by identifying possible collisions.

Besides the limitations derived by the robot’s design, there is one more limitation

derived by the storage environment(Figure 4.1), where the picking is performed.

The maximum and minimum height, length and width of the boxes and surfaces

used, should be consider for the robot’s workspace definition. Once the area is

defined, we can define the density of pose sampling with regards to the density of

objects placed on each surface and the size of the objects. For example, if there

are at most 50 objects on a surface of 2m2 it is redundant and not optimal to

plan 200 motions for that surface. The density of pose samples of the grid is also

affected by the size of the gripper in use and the average size of the objects. The

gripper in use has approximately 15cm2 gripping surface and the objects have

an average diameter of 10cm. Having that in mind, the distance between two

samples in the horizontal plane should not be less 5cm. We can use a different
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sampling step in the vertical plane, the average height of the objects is 10cm, so

we could use this value as the sampling step or a value slightly larger.

Ideally we want to have one grid pose for one candidate object position for

pick up. When the storage surface is at most capacity this is feasible, but when

we have fewer objects there are more than one grid poses per object. In any case

we are going to choose the most suitable one.

The criteria for the most suitable pose is that it should be at the shortest

distance to the target pose and its corresponding motion is collision free for the

current instance of the environment. The target pose is defined by the position

of the object for picking.

Figure 4.5: The produced workspace grid for the right side of the robot. Each

green dot represents one or more poses in the 6-D space.

The program, which computes the sample poses of the workspace, can be

used for any ROS compatible robotic arm, which is configured for the MoveIt

library. The user can define maximum and minimum values and sampling step

for the position of the pose in the a 3D Cartesian space and a sampling step for

orientation sampling in one axis. We sample in a 6D space, because an arm pose

is described by its position in a 3D Cartesian space and the orientation(again

3D) of the arm’s end effector. Two out the three orientation axes are locked to

a certain value, due to the end-effector’s orientation constraint. Thus, we define

only the rotation of one axes when we sample positions. The user can also define

the reference link of the Cartesian coordinates, the name of the generated grid file,
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and the distance step between the samples both in vertical and horizontal plane.

The user can choose whether the workspace will have a rectangular shape or a

circular one on the horizontal plane. The generated workspace is stored in a file

as a grid of poses, the given name of the grid is stored in the file, and used as its

file name as well. The poses are stored as a geometry msgs::PoseArray variable

and each pose has type geometry msgs::Pose. The end result is visualised in

RViz (Figure 4.5).

When choosing the attributes of the workspace, we should consider the size

of the gripper, the average size and height of the objects, the size of the robot’s

workspace and the method of object storage. For every sampled pose the pro-

gramme requests an inverse kinematics solution(IK), if one is found then the pose

is added to the grid. We should also consider that not all sample poses will be

reachable by the robot for any motion. The initial pose of a motion plan in com-

bination with the IK of a sample may not produce a successful motion due to the

motion constraints. All taken sample poses belong to the workspace of the arm,

which means that there is at least one IK solution that can satisfy every one of

them. However, it is not possible to plan from any valid initial pose to any valid

target pose.

Taking all of the above in consideration in our study, we used a rectangular

shape for better approximation of the shape of the boxes. We chose 2 different

orientations for sampling because all objects are packed in the boxes the same

way. We chose a 7cm step on the horizontal plane and we doubled it for the

vertical plane, due to the size of the objects and the gripper.

4.2.3 Motion Grid Computation

Once we have defined the robot’s workspace, we have all potential poses that will

be the arm’s target poses. In addition the initial and final poses are used for

defining the two planned motions for each pose.

4.2.3.1 Motion Definition

For all potential grid poses we have two motions, one that approaches the grid

pose and one that retracts from it. We use two additional poses that serve as
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an initial pose during the approach and as a target pose during the retraction

of the arm. These two poses are used for all planned motions and are presented

in section 4.2.1. If a different robot design and sensor layout allow to use the

same configuration for the initial and final pose, it is encouraged to do so. This

approach can reduce off-line planning time and motion workspace data storage

significantly. If we assume that the approach and retract motion take the same

amount of time and need the same amount of data storage, we will need only half

for each process.

4.2.3.2 Motion Planning with Constraints and Restrictions

Virtual collision objects are used as the representation of storage surfaces during

off-line motion planning. It is essential to design motion trajectories with the

end-effector higher than the height of the target pose. Due to the nature of the

task, we know that there will be an object and a hard surface bellow the target

pose. We use virtual collision planes to represent them during planning. During

on-line motion planning this is not necessary, because all visible collisions are

represented in a 3D collision map that is constructed by RGBD sensors’ input.

The process of computing all motions of the generated pose grid takes a large

amount of time due to the large number of sample poses. If we consider that for

a successful motion plan, the planning algorithm requires in average 0.4 seconds

and the cell grid contains 1-3 thousand poses that each requires two plans. In

addition, for each successful plan on a pose the file is updated, which is time

consuming. We choose to repeat each successful plan at least two times and keep

the shortest motion path. In addition when the motion planning module fails we

attempt to get a solution 5 times in total. A sample-based planning algorithm

can fail to find a solution even if a motion plan is feasible. It has been observed

that after the third failed planning attempt, the chances of getting a successfully

planned motion are very slim. The most time consuming stage of this method is

the failing plans. MoveIt allows the user to set a planning time threshold. We

have set this threshold to 2.0 seconds, which means that if the planner is not able

to find a solution for a pose in our grid it will spend at least 5 times this time

Angeliki Topalidou-Kyniazopoulou 42 August 2017



4.2 Off-line Computation of Motion Plans

trying, in total 10 seconds. Through observation we came to the conclusion that

2.0 seconds allowed planning time was suitable for our set-up.

Motion planning for picking tasks is constrained by a variety of factors. The

most essential and time consuming constraint, is the end-effector orientation con-

straint. It is very dangerous to flip the end effector during movement, because

the object in hand might fall or move to an unsafe position. If the picked object

falls, it might injure a person and in addition the object might get defected or

destroyed and possibly unsuitable for further use.

MoveIt gives us the ability of constraining the motion in multiple ways. How-

ever, the orientation constraint delays the planning very noticeably and gives us

a very low success rate in motion planning, which in consequence makes this fea-

ture unusable. Practically we can not use an extra feature that drops the success

rate to 12% and increases the planning time by 60%.

In order to constrain the orientation of the end effector during the motion we

use the joint constraints that MoveIt offers. We can constrain the motion of each

joint separately during the motion, if necessary. In our study we used two robotic

arms with 6-DOFs, due to different kinematics and joint range we used different

constraints on each arm. The joints with constrained motion range are presented

in Figure 4.6

The selection of which joints to constrain on each robotic arm has been made

based on observation. Trials have been made, during which we have observed

the behaviour of MoveIt’s planning solutions. Our decision has been made based

on the desired target poses and the failed attempts of the planning algorithm.

For the Fanuc arm, the planning algorithm failed every time it tried to move

Joint 4 more than 180o. For the UR10 arm the planning algorithm failed every

time it tried to move the Shoulder and Elbow joint more than 90o. In addition,

to the Shoulder and Elbow joints, we noticed that it was essential to constrain

Wrist 2 joint as well, because a large motion on this joint violated the orientation

constraint that we aim to apply on the end-effector.

By constraining the motion range of certain joints we achieve the effect of

the end-effector orientation constraint with lower time cost and produce motion

plans that fit our needs. Restrictions in joint space are significantly cheaper in

computation than constraints in Cartesian space. Cartesian space constraints
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(a) Fanuc Arm (b) UR10 Arm

Figure 4.6: The constrained joints are in red font.

require to compute IK solutions for every computed point of the motion path,

which is highly time consuming and has low success rate. The success rate is

low because, the motion planning algorithm can not accept any IK solution, it

requires a solution that is very similar to the one of the previous point of the

path.

4.2.3.3 Valid Motion-Pair of Motion Workspace

For every grid pose we need a pair of motion trajectories. Both of these motions

should be successfully planned in order to consider that the grid pose is reachable.

In the case that, the approaching motion could not be planned, we abort the

retraction motion planning. If the approaching motion is planned successfully,

but the retraction motion is not, then this grid pose is considered unreachable.

We plan in pairs because it serves better the robot behaviour of the picking task.
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Having one or more kinematic solutions for one pose does not guarantee that

there will be a path to and from that pose. The necessity of a pair of motions

increases the probability of failing to plan for a pose. One solution for that prob-

lem could have been to use the same pose for the beginning and the completion

of the task. In our case this is not advisable due to the design of the platform,

arm, objects and task itself. However, if it is possible to use the same pose as

the initial pose during the approach and the final pose during the retraction, it is

advised to do so. Using only one reference pose simplifies the problem by plan-

ning one motion, instead of two as we can revert the first motion and produce

the retraction motion. It also decreases the possibility of failing plans and the

planning time.

The initial pose of the arm should be a pose that is safe when the platform is

moving around the factory. The arm has to be folded in a position close the centre

of mass of the platform and it should not occlude the view of the cameras that

are monitoring the environment for new objects and obstacles. All of the above

requirements of the initial pose contradict the requirements of the intermediate

pose. In which the main focus is the collision free state of the object-on-hand,

satisfying all potential objects in hand, and the object’s safe transfer during the

place task.

4.2.4 Motion workspace Representation

We designed a grid of cells in order to store the pairs of planned motions with

their respected poses. A grid of cells has a name and an array of cells. Each

cell consists of a pose and two trajectories, one to approach the pose and one to

retract from it. Both of the cell trajectories have been planned by following the

constraints mentioned in Section 4.2.3.2.

In Figure 4.7 is shown the cell grid that represents the motions’ workspace. In

pink we can see the poses, for which two motion were successfully planned and in

blue the poses for which it not possible to plan one of the two necessary motions.

For all poses that are presented in Figure 4.7 the robotic arm has at least one

IK solution, however not all of them can be reached due to the constraints that

we apply during motion planning as discussed in Section 4.2.3.2. All visualized
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(a) Front View (b) Side View (c) Angled View

Figure 4.7: Pink dots represent the poses that got a successfully planned pair of

motions and blue dots represent the poses that failed to do so.

poses belong to the grid pose that represents possible approach poses. The cell

grid is stored with YAML in a file and it is loaded once when the pick and place

task runs for the first time.

4.2.5 Verification of Precomputed Motions

It is essential to verify that all computed and stored motions are valid and they

can be executed without causing any problems. Thus, we have added an extra

verification step to this procedure. MoveIt does not produce motion plans that

are in self-collision, but it might be in collision with the virtual collision objects

if they were not placed correctly. or there was a synchronization problem. It is

possible to have synchronization issues when using ROS. If we publish on the same

cycle the addition of a collision object and request a motion plan, it is uncertain

which one will be executed first or if multiple objects are published then one of

them may get discarded, thus extra verification is reasonable to performed.

As an extra verification step, we check the motion plans of all poses of the

generated grid for collisions with virtual collision objects. For each pose in the

grid we place a virtual collision object where the object for picking would have
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Figure 4.8: The poses with successfully planned motions are presented in blue

colour and the ones that failed in red. Representation of one layer.

been and simulate the picking task. If a collision is detected or simulation fails,

then this pose is removed from the grid.

4.3 System and User tools

A number of Graphical Interfaces have been developed in order to configure the

predefined motions’ workspace and compute the motions themselves. In particu-

lar, a Trajectories Editor, a Motion Grid Editor and a Motion Design Verification

interface have been developed.
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4.3.1 Trajectories Editor

An RViz plugin has been developed for creating and saving a motion for a robotic

arm. This editor is useful for storing motions that are performed multiple times in

a run, so instead of designing them every time we only check for collisions before

execution. In our controlled environment in particular, the robotic arm follows

a number of pre-determined points in its workspace, which means that some

motions between these pre-determined points can be planned once. In particular,

the robotic arm after the completion of the place task returns to the final pose

of the pick task. As mentioned above, the robotic arm should be in its initial

pose, thus we used this tool for designing and storing the transition motion for

the final to the initial pose. This motion is used once per pick and place task.

4.3.2 Grid Visualization Plugin

The Pose Grid Visualization Plugin that has been implemented allows the user

to define the size, density and shape of the grid. We offer a rectangular box or

a sphere as the grid shapes. The density of the grid depends on the distance

sampling between the samples on all 3 axes. The plugin computes and visualizes

the workspace of the pose grid and the samples that can be reached by the robotic

arm. This tool is used for creating the pose grid, the visualization is necessary

only for user verification of the given parameters.

4.4 Integration of Precomputed Motions in the

System

In this section we present how the pre-computed motion plans can be utilized

with maximum gain in a large and complex robotic system. Our method has

been integrated in the system presented in [10]. However, the system does not

fully rely on the pre-computed motion plans, but it can plan a full motion plan

if our method fails to find a suitable plan.
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4.4.1 Pick and Place Task

The pre-computed plans have been integrated in the pick and place task. This

task can be divided in 6 stages, object detection, object approach and verification,

object grasping, object picking, placing position detection and object placing.

The pre-computed plans have been used at the stages of object approach and

verification and object picking.

The algorithm chooses an object for picking, the robotic arm should approach

the object so it can use a close range RGB-D camera and verify that the selected

object is the correct object. The motion plan used for the approach is a combi-

nation of two plans if possible. If there is a pose in the cell grid in a distance of

10cm from the approach pose and the pre-computed motion path does not collide

with any obstacles in the current scene then this precomputed motion path will

be used. In addition, a motion plan is computed on-line for reaching the final ap-

proach destination and we concatenate the two motions in one before execution.

Object grasping is performed by using only on-line planning, because grasp poses

depend on the pose and type of the object. The pick and place task is performed

on a variety of objects thus, it is not possible to compute off-line motion plans

for grasping. Object picking is concluded with on-line planned motion from the

pose to the chosen pose of the grid and its respective retract off-line planned

motion. Again the two motions are concatenated in one before execution. After

the completion of the pick task, the place task is performed. In the place task the

pre-computed motions are not used, because the placing position of the object

depends on the type of object and free space of the on-robot placing box.

Figure 4.9 shows how the pre-computed and on-line computed trajectories are

used together in one motion.
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Figure 4.9: the on-line planned trajectories are shown in red and the pre-

computed plans are shown in blue.
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Chapter 5

Conclusions and Future Work

In this chapter we present the results of our method, the conclusions that we

arrived to and any future work that could optimize our method.

5.1 Results

We performed 50 repetitions of planning a motion using one initial configuration

and one target pose. We chose four different configurations for the same motion.

First configuration uses the proposed method with the pre-computed motion

plans in a cell grid. The second configuration uses MoveIt with joint constraints,

as we used for computing the pre-planned motions. The third configuration uses

MoveIt without introducing any motion constraints on the planner. Finally, the

fourth configuration uses MoveIt and applies an orientation constraint on the

end-effector. We present the planning time of each method and their success

rate.

For the purpose of this experiment we used the UR10 arm in simulation,

we did not include any obstacles in the workspace of the robot and chose an

arbitrary target pose that follows the applied orientation constraint. For our

proposed method, we used a pre-computed cell grid that has motion plans for

2.645 poses, and none of them matches the target pose. The chosen target pose

and the initial configuration is shown in figure 5.1.

In Table 5.1, we show the number of successful plans for each configura-

tion. We should mention that for all configurations we used the same sampling-
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Figure 5.1: The target pose is shown as an axis and the current configuration of

the robot is the initial configuration of the motion plan.

based planner, RRTkConfigDefault (Rapidly-exploring Random Tree), we al-

lowed MoveIt to plan each motion for maximum 2.0secs, and do only one planning

attempt per trial. In addition, the same IK solver has been used.

Planning Method Successfull Plans Failed plans

Pre-computed Plans 47 3

MoveIt with joint constraints 48 2

MoveIt without constraints 46 4

MoveIt with orientation constraints 6 44

Table 5.1: Motion Plan success rate for all three configurations used in the ex-

periment.

As shown in Table 5.1, the least successful approach is to use MoveIt with

an applied orientation constraint on the end-effector. We managed to get only 6

out of 50 motion plans, and all of them required the maximum allowed planning

Angeliki Topalidou-Kyniazopoulou 52 August 2017



5.1 Results

time (2.0secs). In case of larger planning time the results may be more successful

for planning with orientation constraints. Using MoveIt without any planning

constraints appears to be more successful than the above configuration. Four

out of 50 motion plans failed, which is acceptable, since we performed only one

planning attempt per trial. We should take in consideration that the configuration

for the target pose affects the result of motion plans, since there might be more

than one configuration for the target pose. We can expect that one or more

of them may not be reachable from the initial configuration. We get similar

number of failed motion plans for pre-computed plans and planning with joint

constraints, as well. The later configuration has been the most successful with

two failed motion plans out of 50 trials, it has only one less failed trial than

our proposed method with pre-computed plans, which had three failed planning

attempts.
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Figure 5.2: Planning time of a motion plan for 3 different planning configurations.

Figure 5.2 presents the planning times of all successful motion plans per con-
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figuration. The method that uses pre-computed plans requires significantly less

planning time than the other three methods. This is explained fairly easy, the

planning distance on this experiment for the other three methods is more than

13 times larger than the minimum distance for this method.

5.2 Conclusions

Based on the results presented in section 5.1 we can conclude that the proposed

method reduces planning time for a specific manipulation task.

We managed to use an existing motion planning library (MoveIt) and exploit

all of its desirable features and compensate for its shortcomings. We used MoveIt

collision space computation module, which allows to add and remove collision ob-

jects and define allowed collisions with obstacles if necessary. In addition, MoveIt

can detect and avoid self-collision for any robot and plan collision free motion

trajectories. We managed to use joint constraints that are computationally inex-

pensive in contrast to orientation constraints and generate motions that mimic

the effect of an orientation constraint in a reasonable time frame.

Our proposed method works very well for a defined task, but it can not be

used for any manipulation task as is. In case of having to perform several ma-

nipulation tasks that require different constraints or different task workspace,

separate configurations are required for joint constraints and motion workspace

during pre-processing and on-line motion planning. However, that does not make

our method non-transferable, but more complicated to use if several tasks are

required to be performed by one autonomous robot.

We introduced an alternative use of an known and widely used motion plan-

ning library that makes motion planning less demanding during task execution.

5.3 Future Work

We propose as future work, a GUI that will guide the developer to do all necessary

steps to get the pre-computed plans and generate the motion plans. In particular,

the user would be able to load a robot model, define its joint constraints, initial

pose and final pose if necessary; and motion workspace that corresponds to a
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specific task. This is part of the workspace and motion planner configuration.

After the completion of the configuration the user would be able to automatically

generate the grid of target poses and the modified planner that uses all defined

joint constraints. It would be useful if the user could test the modified planner

before enabling the generation of the motion plans. As the last step we suggest the

generation of the task’s cell grid, the grid with the target poses and corresponding

motion plans to go to this pose and retract from it.

This kind of interface would make the proposed method easily transferable to

different robots and different tasks. In addition, it would be possible to use this

method for multiple tasks with very little effort by the user/developer.
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[5] Tsianos, K.I., Şucan, I.A., Kavraki, L.E.: Sampling-based robot motion

planning: Towards realistic applications. Computer Science Review 1(1)

(August 2007) 2–11 30

[6] Stilman, M.: Task constrained motion planning in robot joint space. In: 2007

IEEE/RSJ International Conference on Intelligent Robots and Systems. (Oct

2007) 3074–3081 32

[7] Amato, N.M., Wu, Y.: A randomized roadmap method for path and ma-

nipulation planning. In: Proceedings of IEEE International Conference on

Robotics and Automation. Volume 1. (Apr 1996) 113–120 vol.1 33

Angeliki Topalidou-Kyniazopoulou 56 August 2017



REFERENCES

[8] Berenson, D., Srinivasa, S.S., Ferguson, D., Kuffner, J.J.: Manipulation

planning on constraint manifolds. In: 2009 IEEE International Conference

on Robotics and Automation. (May 2009) 625–632 33

[9] Holz, D., Topalidou-Kyniazopoulou, A., Stuckler, J., Behnke, S.: Real-time

object detection, localization and verification for fast robotic depalletizing.

In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International

Conference on. (Sept 2015) 1459–1466 34, 37

[10] Holz, D., Topalidou-Kyniazopoulou, A., Rovida, F., Pedersen, M.R., Kruger,

V., Behnke, S.: A skill-based system for object perception and manipulation

for automating kitting tasks. In: Emerging Technologies Factory Automation

(ETFA), 2015 IEEE 20th Conference on. (Sept 2015) 1–9 48

Angeliki Topalidou-Kyniazopoulou 57 August 2017


	1 Introduction
	1.1 Thesis Outline

	2 Background
	2.1 Robotic Systems
	2.1.1 UR 10 Robot
	2.1.2 Fanuc M-20iA/20M Robot

	2.2 ROS
	2.2.1 Robot Description Model
	2.2.2 Communication
	2.2.3 MoveIt


	3 Problem Statement
	3.1 Sensors and Data Processing
	3.2 Sensor Data Usage in a Robotic System
	3.3 Computational Resources of a Robotic System
	3.4 Motion Planning
	3.5 Motion Planning Improvements for an Autonomous Robot in a Controlled Environment
	3.6 Related Work

	4 Approach and Implementation
	4.1 Chosen Method
	4.2 Off-line Computation of Motion Plans
	4.2.1 Initial and Final Pick Task Poses
	4.2.2 Robot's Workspace as a Pose Grid
	4.2.3 Motion Grid Computation
	4.2.4 Motion workspace Representation
	4.2.5 Verification of Precomputed Motions

	4.3 System and User tools
	4.3.1 Trajectories Editor
	4.3.2 Grid Visualization Plugin

	4.4 Integration of Precomputed Motions in the System
	4.4.1 Pick and Place Task


	5 Conclusions and Future Work
	5.1 Results
	5.2 Conclusions
	5.3 Future Work

	References

