
Rheinische

Friedrich-Wilhelms-Universität Bonn

Master thesis

Segmentation of Plant Root MRI Images

Author:

Ali Oguz Uzman

First Examiner:

Prof. Dr. Sven Behnke

Second Examiner:

Prof. Dr. Thomas Schultz

Advisor:

Prof. Dr. Sven Behnke

Submitted: 24.10.2018

Declaration of Authorship

I declare that the work presented here is original and the result of my own

investigations. Formulations and ideas taken from other sources are cited as such.

It has not been submitted, either in part or whole, for a degree at this or any

other university.

Location, Date Signature

Abstract

The plant roots have been a long standing research interest due to their crucial

role for plants. As a non-invasive method, Magnetic Resonance Imaging (MRI) is

used to overcome the opaque nature of soil and obtain 3D visualizations of plant

roots. Existing algorithms fail to extract the structural model of the root when

the environment (soil) is noisy and the resolution of MRI images is low. To this

end, we develop a convolutional neural network to segment plant root MRI images

as root vs non-root. The resulting segmentations have a higher resolution than

their input MRI data.

Our convolutional neural network is based on RefineNet, a state of the art se-

mantic segmentation method. As pretrained networks used in RefineNet expect

2D images, we use PCA to reduce 3D data into 2D RGB images for feature ex-

traction. We test different loss functions to overcome the class imbalance problem

between root and non-root voxels.

The provided data is insufficient for training a neural network. Thus, we develop

data augmentation processes to create synthetic training data.

Our segmentation method is evaluated on both augmented and real data. For

the real data, the ground truth data are not well aligned with the input MRI

images, thus, we develop a metric which is robust against small misalignments

between ground truth and our segmentations. The resulting segmentations of the

plant root MRI images can successfully depict the root structures with some minor

missing parts and MRI artifacts.

Contents

1 Introduction 1

2 Binary Segmentation 5

2.1 Binary Segmentation with Super-Resolution 5

2.2 Evaluation . 6

2.2.1 F-Score . 6

2.2.2 Distance Tolerant F-Score 7

2.2.3 Evaluation Criteria . 9

3 Theoretical Background 11

3.1 Convolutional Neural Networks . 11

3.1.1 3D Convolutional Neural Networks 11

3.1.2 Activation Functions . 11

3.2 Adam Optimizer . 12

4 Related Work 15

4.1 Semantic Segmentation . 15

4.2 Super-Resolution . 16

4.3 Class Imbalance . 17

4.4 Root Detection . 17

5 Real & Augmented Data 19

5.1 MRI Files . 20

5.2 Data Augmentation . 20

5.2.1 Root Structure XML Files 21

5.2.2 Generation of Occupancy and Intensity Grids 21

5.2.3 Noisy Image Generation . 22

5.3 SNR . 25

6 Segmentation Method 31

6.1 ResNet . 31

6.2 RefineNet . 31

vii

Contents

6.3 Mapping 3D information to 2D . 33

6.3.1 Averaging . 33

6.3.2 PCA . 34

6.4 7-Cascade RefineNet . 34

6.4.1 Loss Functions . 37

6.4.2 RefineNet without Transfer Learning 38

6.5 Training the Network . 38

6.5.1 Implementation . 38

6.5.2 Mini-batches . 39

6.5.3 Gradient Clipping . 39

6.5.4 Training Algorithm . 40

7 Experiments and Results 41

7.1 Comparison of Different Input Functions and Effect of Transfer

Learning . 41

7.2 Comparison of Loss Functions . 42

7.2.1 Training with Equal Weighted Negative Log-likelihood . . . 42

7.2.2 Training with Extra Root Weighting 43

7.2.3 Training with IoU Loss . 43

7.3 Test on Real Data . 50

7.4 Extraction of Root Model . 51

8 Conclusion 57

viii

List of Figures

2.1 Distance tolerant F1-Score . 8

3.1 ReLU and Logistic Sigmoid . 13

5.1 Thresholded visualization of the Lupine Small MRI scan. 19

5.2 Example occupation grid . 23

5.3 2D Perlin noise example . 25

5.7 Histogram of Dataset SNR . 25

5.4 The comparison between a slice from Lupine Small and a slice from

its augmentation. 26

5.5 The comparison between the Lupine 22 August and its augmentation. 27

5.6 The comparison of different noise distributions 30

6.1 Residual block . 32

6.2 RefineNet block . 32

6.3 Original 4-Cascade RefineNet architecture 33

6.4 Example reduction to RGB by averaging method 34

6.5 Example activations from ResNet-18 35

6.6 Customized 7-Cascade RefineNet Architecture 36

6.7 RefineNet without transfer learning 38

6.8 Gradient clipping effect example. 40

7.1 Per-voxel loss. 44

7.2 Accuracy of7-Cascade RefineNet. 45

7.3 Example segmentations from the augmented data 46

7.4 Loss curve with increased root weight 47

7.5 Example segmentation predictions from the augmented data by in-

creasing the root weight. 48

7.6 Training with IoU loss . 49

7.7 Comparison of the networks on real data. 51

7.8 Lupine Small Segmentation . 53

7.9 Lupine 22 August Segmentation . 54

7.10 Extracted root model of Lupine 22 August 55

ix

List of Figures

7.11 Extracted Root Model of Lupine Small 56

x

List of Algorithms

1 The generation of the dataset; main procedure. 28

2 The generation of the noise modelled after Lupine Small. 29

3 The generation of the noise modeled after Lupine 22 August. 29

xi

List of Tables

5.1 The plant root MRI scans that we are given 20

7.1 Results on the validation set for different loss functions 49

7.2 Results on the validation set for different loss functions 50

7.3 Results on the validation set for different loss functions 50

7.4 Quality scores of the network trained with NLL rw = 1 on Lupine

Small. 52

7.5 Quality scores of the network trained with NLL rw = 1 on Lupine

22 August. 52

xiii

1 Introduction

The plant roots have been a long standing research interest due to their crucial

role for plants (Dusschoten et al., 2016). Obtaining 3D visualization of these plant

roots is possible with non-invasive methods such as X-Ray CT, neutron radiogra-

phy or magnetic resonance imaging (MRI) which can overcome the opaque nature

of the plant soil (Pflugfelder et al., 2017). Usually, the roots contain more water

than the soils, this makes MRI a preferred way of obtaining these 3D visualizations

by showing the local water content of the scanned plant root. Existing algorithms

which extract the plant root structure from MRI root images fail when the environ-

ment (soil) is noisy and the resolution of the MRI data is too low to capture thin

roots with precision (Schulz et al., 2012). This requires an external preprocessing

step to reduce the noise and increase the resolution artificially.

This thesis is part of the project: “Advancing structural-functional modelling

of root growth and root-soil interactions based on automatic reconstruction of root

systems from MRI” (Schnepf and Behnke, 2015) . After acquisition of MRI images

in the first part of the project, the second part involves reducing the noise found

in these MRI root images. The third part of the project is to use the results of

the second part to extract structural model of the plant roots.

This thesis addresses the second part of the project by segmenting the plant

root MRI images as root vs non-root in super-resolution. In recent years, various

machine learning methods have shown great success on many computer vision tasks

such as image classification (Xie et al., 2017), object localization (Ren et al., 2015),

action detection (Carreira and Zisserman, 2017), and semantic segmentation (Lin

et al., 2017), etc. To this end, we make use of machine learning methods to learn

root detection from noisy MRI images.

In this thesis, Convolutional Neural Networks (CNNs) are used to eliminate

the noise by voxel-wise classification of the MRI images as root vs. non-root.

The voxel-wise classifications are of higher resolution than their original MRI scan

resolution, i.e, each input voxel must be mapped to multiple voxels in the estimated

segmentation. We choose RefineNet for segmentation as it is a state of the art

method for semantic segmentation. Pretrained networks used in RefineNet expect

2D RGB images. Thus, we map 3D data of ours into 2D RGB images for feature

extraction.

1

1 Introduction

Training these neural networks require large amounts of data. Due to current

lack of sufficient input MRI scans and corresponding teacher data, we develop data

augmentation processes to generate synthetic training samples.

This thesis is structured as follows: the problem is formally defined and the

evaluation metrics are introduced in Chapter 2. Chapter 3 includes some basics

on Convolutional Neural Networks and modern training methods. Some of the

tasks and problems we have faced have been previously investigated by others,

thus, we discuss the literature in Chapter 4 to build on our work. As we generate

our own data for training and validation of the network, in Chapter 5, we describe

the initial data we are given and the synthetic training data we generated. In

Chapter 6, we introduce our method and discuss different parameterizations for

training. In Chapter 7, we test the developed networks and different parameters

described in Chapter 6. We finish this thesis in Chapter 8 with a conclusion and

suggest future directions to extend the work.

2

Notation

Ix,y,z Given a volumetric image I, the voxel of I that is centered at x, y, z.

N0 Set of all non-negative integers.

R0 Set of all non-negative real numbers.

3

2 Binary Segmentation

2.1 Binary Segmentation with Super-Resolution

Semantic segmentation can be defined as separating images into labelled regions.

Usually, this is done on a pixel (in 2D images) or voxel (in 3D images) level where

each voxel v of an image I is assigned to one of n predefined classes. To this end,

most semantic segmentation algorithms output n values for each voxel or pixel

v where vi ∈ [0, 1] refers to the confidence of the estimation algorithm, that v

belongs to an object of class i. Then, v can be assigned to the class j with highest

confidence among the others i.e. vj ≥ vk ∀ k ∈ Z : 0 ≤ k < n.

We refer to the special case of semantic segmentation where the number of

classes n = 2 as binary segmentation. In this case, for each voxel v of an image

I, a single confidence c can be interpreted as the probability of the said voxel

belonging to the class 1. That is, given a certain threshold t, if c ≥ t then, the

voxel v is assigned 1.

Aside from segmentation, another requirement of this project is to increase the

resolution. Many roots have sub-voxel thickness. In original resolution, this may

cause ambiguity in the occupancy of the voxels. To increase the resolution, we

introduce super-resolution. We can formally define super-resolution as an estima-

tion of a high resolution image from a lower resolution input (Hayat, 2017). This

way, roots with sub-voxel thicknesses can be mapped to multiple supre-resolution

voxels, allowing more precise segmentations. Then, the super-resolution binary

segmentation can be defined as follows: for a super-resolution factor k ∈ N, the

function f must map from an input volumetric image

I ∈ Rx×y×z (2.1)

where x× y × z is the resolution of I, to a super-resolution ground truth image:

G ∈ Bx′×y′×z′ : x′ = x · k, y′ = y · k, z′ = z · k. (2.2)

Thus, each voxel of the input image is mapped to k3 voxels in the estimated

segmentation map. This thesis aims to find a super-resolution binary segmentation

5

2 Binary Segmentation

function f such that

G = f(I). (2.3)

To this end, we are going to use Convolutional Neural Networks to learn end-to-

end mapping of low resolution noisy MRI images to their corresponding higher

resolution ground truths.

2.2 Evaluation

Metrics are used to judge overall success o f segmentations. As only a small

fraction of the MRI images is actually root, metrics which are robust against class

imbalance are required.

We denote TP as the number of true positives, TN as the number of true

negatives, FP as the number of false positives, FN as the number of false negatives.

2.2.1 F-Score

For binary classification tasks, F1-Score is a popular choice due its robustness

against class imbalance. Its parameters are precision and recall.

precision =
TP

TP + FP
. (2.4)

recall =
TP

TP + FN
. (2.5)

In our case, high recall means most roots in ground truth are detected while

high precision means most root predictions are matched with roots in the ground

truth. F1-Score is the harmonic mean of precision and recall, this enforces both

precision and recall to be high. It can be given as:

F1 =
2 · precision · recall
precison+ recall

. (2.6)

Alternatively, the F-Score can be calculated with different weightings of precision

and recall. An example can be given as F2-Score. F2-Score weighs the recall more

6

2.2 Evaluation

than precision. It is defined as:

F2 = 5 · precision · recall
4 · precision+ recall

(2.7)

2.2.2 Distance Tolerant F-Score

As described later in section 5.2.1, the real MRI images and their provided ground

truth are not well aligned. Thus, we introduce a new metric; Distance Tolerant

F1-Score (Behnke, 2018) for robustness against small differences between MRI

images and their provided ground truths. The intuition is to forgive false positives

if they lie in a close proximity to the ground truth and false negatives if they lie

in a close proximity to the prediction.

For a given distance tolerance, precision and recall are redefined. First, we define

the volumetric dilation on volumetric images. Let B ∈ Bx×y×z and a distance

tolerance d ∈ R, then morphological dilation can be defined as:

D = dilate(B, d) (2.8)

where,

Di,j,k =

{
1 : ∃ î, ĵ, k̂ : d ≥ (|̂i|+ |ĵ|+ |k̂|) and Bi+î,j+ĵ,k+k̂ = 1

0 : otherwise
(2.9)

In equation 2.8, D is dilation of B by d. Equation 2.9 implies that, for a voxel v

of B at location x, y, z, if there exists a voxel u whose Manhattan distance to v is

less than d and the value of u is 1, then, Dx,y,z = 1 .

Let G be the ground truth and S be the predicted segmentation, we define

dilated ground truth Ĝ and dilated predicted segmentation Ŝ as;

Ĝ = dilate(G, d), (2.10)

Ŝ = dilate(S, d). (2.11)

The distance tolerant precision is defined as;

precision′ =

∑
i,j,k=0 Ĝ

i,j,k · Si,j,k∑
i,j,k=0 S

i,j,k
(2.12)

Equation 2.12 implies that when calculating the precision, for each positive predic-

tion s ∈ S, if there exists a positive ground truth voxel p ∈ G and distance(p, s) ≤ d,

7

2 Binary Segmentation

(a) Original segmentation
and ground truth

(b) Dilated ground truth (c) Dilated segmentation

Figure 2.1: In (a), a misalignment between ground truth and segmentation pre-
diction is shown. Purple areas are the false negatives, green areas are the false
positives, and black areas are the true positives. Let us assume that the mismatch
between these two occurs due to an annotation mistake in the ground truth. To
compensate for such a misalignment, distance tolerant F1-Score is used. In (b),
ground truth is dilated by 10 and distance tolerant precision is calculated. In (c),
predicted segmentation is dilated by 10 and distance tolerant recall is calculated.
(a) Precision: 0.45, Recall: 0.42, F1-Score: 0.43
(b) Precision: 0.73, (c) Recall=0.68, Distance tolerant F1-Score: 0.71

then consider s a true positive.

recall′ =

∑
i,j,k=0G

i,j,k · Ŝi,j,k∑
i,j,k=0G

i,j,k
(2.13)

Similar to equation 2.12, equation 2.13 implies that when calculating the recall,

for each positive ground truth voxel p ∈ G, if there exists a positive prediction

s ∈ S and distance(p, s) ≤ d, then consider p a true positive.

Now, distance tolerant F1-Score can be redefined as,

F1′ =
2 · precision′ · recall′
precision′ + recall′

. (2.14)

Theoretically, as d increases, both precision, recall, and F1-Score should be

converging to 1 regardless of the actual quality of the segmentation. Thus, it is

important to select a distance threshold that is reasonably small and that does

not blow up the precision and recall giving an unrealistically high F1-Score.

8

2.2 Evaluation

2.2.3 Evaluation Criteria

The difficulty of segmenting the MRI images depends on the signal-to-noise ratio

(SNR). Higher SNR means higher root intensity and lower noise, thus, segmenta-

tion is easier. The definition of SNR is given with more details in section 5.3.

To estimate the quality of the segmentations, the F1-Scores with respect to

different SNR levels are investigated. For an SNR level of i, true positives ˆTP ,

false negatives ˆFN , and false positives F̂P are defined as the sum of the number of

true positives, false negatives, and false positives in all MRI images of SNR level i

respectively. The overall F1-Score for SNR level i is calculated with the equations

2.4, 2.5, and 2.6 using ˆTP , ˆFN , and F̂P .

For a final average F1-Score among the whole validation set V , where v ∈ V is

a ground truth-input MRI root image pair; the average F1-Score is calculated as

follows:

avg f1 =
1

|V |
∑
v∈V

F1Score(v). (2.15)

This value is used to compare the accuracy of our method with the method of

Horn, (2018).

9

3 Theoretical Background

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of neural networks specialized

for grid-like inputs (Goodfellow, Bengio, et al., 2016). Mostly used for 2D images,

the assumption is that the pixels that are close to each other are more related than

the ones that are far away.

3.1.1 3D Convolutional Neural Networks

Plant root MRI scans are 3D images. Although it may sound reasonable to use

3D convolutional networks with 3D data, 3D CNNs have known issues. While

modern deep learning frameworks such as TensorFlow (Abadi et al., 2016), and

PyTorch (Paszke et al., 2017) support 3D convolutions, their use has been limited

due to higher memory and computational time requirements compared to their 2D

counterparts (Horn, 2018). At the time of the writing of this thesis, 12GB frame

buffer is the highest memory available for modern GPUs (e.g. NVIDIA Titan X).

However, Horn, (2018) has shown that even shallow 3D CNNs run into memory

problems. While training is time consuming due to 3D convolutions, the bigger

issue is the memory consumption of the 3D activations and kernels. This limits the

possibility of implementing deeper architectures with wider layers. This memory

constraint can be overcome by splitting the input images to 3D patches, however,

this increases the training time even further.

3.1.2 Activation Functions

Most classification problems are not linearly separable. Since convolution oper-

ation can only express linear functions, this limits the networks to learning only

linear functions. Activation functions are applied after these linear operations to

introduce non-linearity to the networks. Selection of activation function is crucial

for the network performance as investigated by several researchers (e.g. Glorot

and Bengio, (2010)). We present two of the relevant ones used in our work.

11

3 Theoretical Background

Sigmoid

Sigmoid is defined as,

σ(x) =
1

1 + exp(−x)
, (3.1)

and its derivative,

d

dx
σ(x) = σ(x) ∗ (1− σ(x)). (3.2)

Sigmoid function has a range [0,1], making it suitable to represent probabilities

and confidences. However, its derivative is too small especially when σ(x) ≈ 0

or σ(x) ≈ 1. Thus, when used in consecutive layers, it causes saturation of the

learning process (Glorot and Bengio, 2010).

Rectified Linear Unit

Rectified linear unit (ReLU) is defined as,

ReLU(x) = max(x, 0), (3.3)

and its derivative,

d

dx
ReLU(x) =

{
1 if x > 0

0 otherwise
(3.4)

ReLU is widely used in recent successful deep learning architectures. Its derivative

is 1 when x > 0; enabling the efficient flow of gradients backwards through the

network.

3.2 Adam Optimizer

While stochastic gradient descent (SGD) based algorithms have become the norm

to train the neural networks, pure SGD comes with stabilization issues and diffi-

culty of choosing optimal hyper-parameters. Success of the training heavily relies

on the selection of a correct learning rate and decaying it correctly over time

(Schaul et al., 2013). Several methods such as momentum have been proposed to

help SGD learn more efficiently, yet hyper-parameter selection remains a problem.

Kingma and Ba, (2014) propose Adam to improve SGD by adjusting the learning

rate automatically. Adam keeps separate learning rate for each parameter and

12

3.2 Adam Optimizer

−10 −5 0 5 10

0

5

10

x

y
ReLU(x)

d
dx
ReLU(x)

−10 −5 0 5 10

0

0.5

1

x

y

σ(x)
d
dx
σ(x)

Figure 3.1: ReLU, Logistic Sigmoid and their derivatives.

handles the momentum internally which reduces the need to carefully adjust the

hyper-parameters. As studies by the authors show, Adam usually outperforms

SGD and other SGD based algorithms (Kingma and Ba, 2014).

13

4 Related Work

4.1 Semantic Segmentation

Semantic segmentation is an extensively researched area with different approaches.

Currently, the state of the art results are obtained using deep learning methods.

Previously, methods such as random forests and Support Vector Machines (SVMs)

have been successfully applied to semantic segmentation tasks. For example,

Kolesnik and Fexa, (2004) train SVMs for segmentation of wounds from RGB

images. Another example uses random forests; Schroff et al., (2008) train several

binary trees using randomly sampled features, which are aggregated to make a

final decision for each pixel.

These approaches are old and have been outperformed using more modern tech-

niques. As with many of the computer vision tasks, deep learning methods achieve

state of the art results for semantic segmentation. Usually, these methods involve

either encoder-decoder architectures or transfer learning techniques.

Fully Convolutional Networks (Long et al., 2015), successfully utilized the first

end-to-end, supervised training for semantic segmentation using only convolutional

layers. The network adopts an encoder-decoder architecture; through a series

of convolution and pooling layers, the image resolution is reduced to a latent

space. This is followed by a series of transposed convolution layers which learn to

upsample the image to the input size. Another example is U-Net (Ronneberger

et al., 2015). Based on FCNN architecture, U-Net (Ronneberger et al., 2015)

concatenates the activations of the encoder of the network to the activations of

the decoder. This way, more precise segmentations are obtained.

Instead of using pooling layers, DeepLab (L.-C. Chen et al., 2017) incorporates

dilated convolutions which increase the receptive field of the convolutional layers

and keeps the same computational time complexity. DeepLab achieves some of

the best results for common semantic segmentation datasets.

Lin et al., (2017) introduced RefineNet which produces high resolution segmen-

tations by iteratively refining lower resolution activations of ResNet (He et al.,

2016) to higher resolutions. The unique structural properties of RefineNet allows

the construction of high resolution semantic segmentation networks easily.

15

4 Related Work

In medical field, semantic segmentation methods are frequently used to detect

tumors from brain MRI images. Although the 3D CNNs have been in in use

for some time, due to their high memory and computational power requirements,

2D CNNs are usually preferred over their 3D counterparts. For example, Pereira

et al., (2016) approach brain tumor segmentation as a problem with 5 classes

(normal tissue, necrosis, edema, non-enhancing, and enhancing tumor) using 2D

convolutions.

Zikic et al., (2014) present another 2D method for segmentation of brain tumors

by treating the depth along one axis as feature channel, which enables the use of

simple 2D convolutions. This is an idea that we adopt for our method.

A 3D CNN example is given by Kleesiek et al., (2016) who train a network with

8 layers for skull stripping from MRI images, achieving state of the art results.

4.2 Super-Resolution

Deep learning methods can learn super-resolution by end-to-end mapping of low

resolution images to high resolution. Most of these methods only aim to increase

the resolution rather than segmenting the image. To this end, self-supervised

learning is utilized. An input image is downscaled to a lower resolution. Then, the

network learns to map the low resolution input to the higher resolution original

image.

A recent example is by Ledig et al., (2017), who utilize Generative Adversar-

ial Networks (Goodfellow, Pouget-Abadie, et al., 2014). Concurrently, a gener-

ator network and a discriminator network are trained. Generator learns super-

resolution and discriminator learns whether the input is an original or a super-

resolution image.

Lai et al., (2017) utilize transposed convolution to increase the resolution of

both the image and its features, which are fused together by summation.

Dong et al., (2016) extract features from low resolution input, non-linearly maps

to a higher resolution then reconstructs the features, obtaining super-resolution

output. Another idea is by Behnke, (2001); a convolutional layer outputs 4 chan-

nels from an input image, which are rearranged into an output with twice the

resolution of the input. This rearrangement can be interpreted as a transposed

convolution with fixed weights.

A 3D example can be given by Pham et al., (2017), who increase the resolution

of brain MRI images by first upsampling and performing series of 3D convolutions

on the upsampled input.

These methods involve either serialization of output, transposed convolutions

16

4.3 Class Imbalance

or upsampling. While the outputs of these methods may look unnatural due to

distorted colors, most are successful at sharpening the edges which is suitable for

our task.

4.3 Class Imbalance

Roots are distributed sparsely inside the soil. Thus, the proportion of the number

of non-root voxels to the number of root voxels in the ground truth is extremely

large. Usually, when such class imbalance is not handled, it causes the network

to ignore the minority class (root) as noise and be biased towards majority class

(non-root). There are several approaches for this problem. Usually, this is either

on the basis of the loss function or altering the distribution of the training samples.

Tahir et al., (2009) uses undersampling to eliminate some of the samples from

the majority class. This method can solve the problem, however, it also causes

the training dataset to shrink.

Instead of undersampling the majority class, the minority class can be oversam-

pled. SMOTE (Chawla et al., 2002) artificially increases the number of minority

class samples by adding random noise to its features.

Thai-Nghe et al., (2010) propose cost sensitive learning which weighs the loss

of majority and minority classes differently. A con of this method could be the

selection of proper parameters for training.

Another way is to use a loss function that deals with class imbalance directly.

Intersection over Union (IoU) is a metric robust against class imbalance. Due to

the necessity of thresholding, it cannot be directly used to train networks. Rahman

and Y. Wang, (2016) introduce IoU loss which deals with the class imbalance by

training on the approximation of the intersection over union. This is explained

with more details in section 6.4.1.

4.4 Root Detection

One of the goals of this project is to help the automatic extraction of the structural

model of the root. Schulz et al., (2012) developed such a structure extraction al-

gorithm. First the tubular structures are detected in the root, then the root

connectivity is determined by treating the root structure as a tree. After the ex-

traction of root structure, the properties of the root such as local diameter and

mass are determined. The algorithm works better with less noisy and higher res-

olution images. By segmenting the MRI images in super-resolution, it is expected

for the algorithm to perform better.

17

4 Related Work

A modified version of Schulz et al., (2012)’s algorithm have been implemented

in the NMRooting (Dusschoten et al., 2016) software. We test our segmentations

with this software for automated root detection.

Using 3D CNNs, Horn, (2018) developed architectures for super-resolution seg-

mentation of the plant root MRI images. This involves the use of upsampling

operations for super-resolution. It has been observed that while 3D CNNs can

achieve relatively accurate results, training them is difficult as they are highly

volatile to different parameterizations such as learning rate, kernel size, number of

channels, and number of layers. Moreover, the memory requirements are high and

training is slow.

18

5 Real & Augmented Data

Figure 5.1: Thresholded visualization of the Lupine Small MRI scan.

The dataset is a major issue for this project. We want to train the network with

supervised learning. This requires end-to-end mapping of low resolution MRIs to

high resolution segmentation ground truths. Unfortunately, during the time of

this thesis, such data is not available.

The data we are given includes 4 pairs of plant root MRI (see table 5.1) and for

each of them, an XML file containing structure of the root. Apart from this file,

no usable teacher data are available.

19

5 Real & Augmented Data

Dataset Name
Resolution on axes Size of axis (mm)

Usable
x y z x y z

Lupine Small 256 256 128 40 40 40 Yes
Lupine 22 August 256 256 120 100 100 129 Yes
Lupine April 2015 256 256 128 64 64 70 Partly

GTK 183 183 613 28 28 100 No

Table 5.1: The plant root MRI scans that we are given

5.1 MRI Files

Our original data contains 4 MRI scans, of which only 2 are usable (table 5.1). The

other 2 files are unusable as they are corrupted. Each voxel contains an intensity

value in range [0, 1]. The format of these files is VTK (Schroeder et al., 2004);

which allows visualization of the volume under various software such as ParaView

(Ahrens et al., 2005).

3 of them are inside a pot and all 4 have a test tube inserted into the soil. In

figure 5.1, ISOSurface with 50% intensity threshold of the MRI Lupine Small is

displayed. While much of the noise in soil is still visible, due to thresholding, the

roots either appear thinner than reality or disappear completely.

The details of these four MRI images are given in table 5.1. In figure 5.1, the

bottom and top of the plant root lies on the extremes of the z axis. Similarly,

throughout this thesis, z axis refers to the axis that follows the scan from the top

to bottom.

Previously, we intentionally referred to the voxels of the MRI scans as cuboids

instead of cubes. This is due to differing unit length of the voxels on different axes.

For example, the x and y axes of Lupine Small voxels are (40/256)mm; while on

the z axis this is (40/128)mm.

5.2 Data Augmentation

Originally, there are 2 usable real MRI images. The ground truth for these images

can be generated by voxellizing the structure denoted in the XML files. However,

this brings a couple of issues. First, as described in section 5.2.1, the ground

truth and the real MRI images do not match perfectly due to the misalignments

found in the ground truth. In the ground truth, if the roots are misaligned or

not annotated at all, the learning algorithm can learn the wrong goal. The second

issue is insufficiency of the data. Training a neural network in a supervised manner

20

5.2 Data Augmentation

requires large amount of labelled data. 2 pairs of training samples is not enough

to train large networks. Moreover, the network needs to be tested with real MRI

images that are not part of the training set. Thus, we opt for synthesizing our own

data for training and validation. We reserve the real MRI scans and their ground

truths as the test set.

Synthetic plant root MRI is generated by introducing variety to the dataset

through 3 rotations rot ∈ {0◦, 60◦, 120◦}, mirroring on 2 axes (x and y), x-y

axis swapping and modifying the root thickness by multiplying the root thickness

with rf ∈ {0.34, 0.71, 1, 1.41}. Further variety is provided by generating soil noise

modeled after real MRIs. 2 noise types are modelled after Lupine Small and

Lupine 22 August under 5 different intensity scales so that the network can adapt

to different SNRs. Using four XMLs, this provides us with 4·4·3·2·2·2·2·5 = 3840

input MRI, ground truth pairs.

The overall procedure of dataset generation is given in algorithm 1.

5.2.1 Root Structure XML Files

Each MRI file listed in table 5.1 has a corresponding XML file. This XML file

describes a tree structure where each node of the tree contains a position in 3D

space and the radius of the root at this specific position. We define root branch

as a part of the root which starts from a leaf node (branch tip) and ends at the

root node (plant shoot).

These XML files can be used to voxellize root structures. However, as these

files are generated under human supervision, the location and thickness of the

branches are often incorrect. Some branches are missing altogether. Additionally,

the position of roots are given relative to the position of the plant shoot. Yet, the

XML files provide no information regarding the shoot positions. This necessitates

manual alignment of the plant shoot manually to the shoot of real MRI scans.

Regarding the branch thicknesses, the XML files only include radius. This makes

estimation of non-circular shapes impossible.

5.2.2 Generation of Occupancy and Intensity Grids

Using the XML files (see section 5.2.1), each root branch is fitted with a circu-

lar tube following the positions defined in its nodes. This can be interpreted as

sweeping a 3D volume from the branch tip to the plant shoot using a circle whose

diameter is adjusted with the radius given in the nodes. As the nodes lie dis-

cretely in 3D space, the positions and the radii between two nodes are estimated

with cubic spline interpolation and linear interpolation respectively.

21

5 Real & Augmented Data

The voxelization of this structure is not straight-forward as there exists no known

(to us) analytical way of exact calculation of the occupied part of a voxel by this

tube. Therefore, another method is used to closely approximate the occupancy of

a voxel. This is done by creating a grid of points (e.g. 4× 4× 4) inside the voxel

and checking the fraction of points which lie inside the root structure.

Given an MRI image of resolution (x, y, z), we initialize an occupancy grid

Vultra ∈ {0, 1}8x×8y×8z, and an intensity grid Iultra ∈ [0, 1]8x×8y×8z with 0s. For

each root branch, a random number rnd ∼ U([0.5, 1]) is sampled, for each voxel v

at index (i, j, k), if the 3D position vpos lies inside the fitted tube, then,

V i,j,k
ultra = 1 (5.1)

I i,j,kultra = rnd. (5.2)

To obtain a super-resolution occupation grid and a normal resolution intensity

grid, downsampling by the factors of 8 and 4 are applied to Vultra and Iultra,

respectively. The downsampling function (algorithm 1, lines 8 and 10) can be

given as:

B = downsample by n(A) (5.3)

Bi,j,k =
1

n3

n−1∑
i′,j′,k′=0

Ai∗n+i′,j∗n+j′,k∗n+k′ (5.4)

In the augmented MRI images, each voxel is represented by 83 = 512 points

in Iultra and each voxel in the super resolution ground truth G ∈ [0, 1]2x×2y×2z

is represented by 43 = 64 points in Vultra. The super-resolution ground truth is

obtained by thresholding the super-resolution occupancy grid. I.e., if half of a

voxel is occupied, then it is marked as root in the ground truth. I.e.,

Gi,j,k ←
{

1 if V i,j,k ≥ 0.5

0 otherwise
. (5.5)

5.2.3 Noisy Image Generation

It is desirable to generate augmented MRI root images that are as close to real

data as possible. As described in table 5.1, only Lupine Small and Lupine 22

August are completely usable. Thus, we model our noise distributions after these

2 MRI images.

22

5.2 Data Augmentation

Figure 5.2: An example occupation grid for Lupine 22 August with rf = 0.34.
The visualization is 0.5 intensity ISOSurface.

Lupine Small Various connected noise structures are observed which are de-

scribed in the figure 5.4. In addition to the noise, the plant is inside a pot and has

a vertically inserted test tube. Outside the pot, we do not notice any connected

structures. However, an MRI artifact that blurs the whole image can be seen.

For implementation, we make use of Perlin noise (Perlin, 1985). Perlin noise is a

gradient-based method that is used extensively in the field of computer graphics.

It can be used to generate random terrain, texture or smoke-like structures in any

number of dimensions; which makes it useful for our task. Usually, this involves

sampling in different scales and fusing them by summing together. An example

can be seen in figure 5.3.

In this case, the Perlin noise is used to create both large high intensity areas

and small blob like structures. The procedure is very complicated, thus, it is given

with its parameters in the algorithm 2.

In line 1, the tensors C and H are initialized with zeros. Tensor C is used to

generate large random, irregularly shaped blobs while H is used to generate small

irregularly shaped blobs. In lines 2 to 5, both C and H are initialized with same

Perlin Noise distribution. For generation of large blobs, we use Perlin noise only

23

5 Real & Augmented Data

as a non-binary mask. To this end, its standard deviation and mean are adjusted

and clipped between 0 and 1. At this point, the noise structure C contains large

blobs with inner areas equal to 1, and borders between 0 and 1. In line 8, we

further increase the contrast of the borders so that the passages between large

intensity and low intensity areas are stark. We observe from the real MRI scans

that the inner areas of these large areas contain a distribution similar to a normal

distribution. Thus, each voxel of C is multiplied by a random normal sampled

value (line 9). From lines 10 to 13, 20000 Gaussian blobs are generated. Each

Gaussian blob has a randomly sampled location and scale parameter. It is desired

that these Gaussian blobs not only increase the intensity but also decrease, thus,

their scaling value also includes negative numbers. The small blobs that are found

in the real MRI scans have high frequency intensity, to grant this, the intensities

of each voxel of H are adjusted in lines 14 to 16. The empty areas of the real MRI

scans contain noise that is similar to uniform distribution, further voxel-wise noise

is added to H to have this effect. Finally, in line 19, the small blob and large blob

structures are fused together by summation, followed by clipping which ensures

values are in range [0,1].

Lupine 22 August The noise of Lupine 22 August does not seem to have con-

nected structures with the exception of some MRI artifact. Much of the noise

has a truncated normal distribution without any noticeable connected structures.

Similar to Lupine Small, it contains a bent test tube inside. The procedure is

given in algorithm 3.

Combination with the intensity volume After generation from a noise type, it

is multiplied by a scaling factor s ∈ [0.2, 0.4, 0.6, 0.8, 1.]. This is done to force the

learning algorithm to adapt to different SNR levels. The intensity volume and

the scaled noise is fused together by summation followed by a voxel-wise intensity

clipping, ensuring each voxel intensity lies in range [0, 1].

With Lupine Small, we also notice an MRI artifact which blurs the image across

the x axis. Upon the combination of the noise with the intensity grid, we apply

blurring with a 1× 5× 1 kernel to simulate this effect.

24

5.3 SNR

Figure 5.3: A 2D Perlin noise example

10 20 30
SNR

10 3

10 2

10 1

Fr
ac

tio
n

in
 th

e
da

ta
se

t

Distribution of the SNR of augmented MRI.

Figure 5.7: Histogram of the Dataset SNR. Lower is noisier.

5.3 SNR

Signal-to-noise ratio (SNR) is defined as the ratio of the power of the desired signal

(root) to the power of the background noise. This power ratio can be defined with

different formulations. For an MRI image I , let mean(Ir) be the mean value of

root voxel intensities and std(Is) be the standard deviation of non-root voxels of

I. Then, SNR of I can be defined as:

SNR =
mean(Ir)

std(Is)
(5.6)

as given by Higgins, (2003-2018). SNR depends on the underlying noise distribu-

tion, random intensity scaling and thickness of the branches. Upon investigation

of our augmented data, we observe that the lower SNR corresponds to thinner

roots with high intensity background noise as expected.

25

5 Real & Augmented Data

(a) A slice of thickness one along z
axis from Lupine Small real MRI im-
age.

(b) A slice of thickness 1 along z axis
from a Lupine Small augmented MRI
image.

Figure 5.4: The comparison between the Lupine Small and its augmentation.
The details are as follows:

i) contains large high intensity areas. These are the result of a Perlin noise
used a mask for a uniform noise.

ii) contains blob-like 3D connected structures. These are synthesized by apply-
ing various thresholding operations on Perlin noise.

iii) contains areas with high spatial contrast.

iv) marked areas are the result of low intensity uniform distribution.

v) contains a test tube with two parts. For each voxel a random value from a
truncated normal distribution is added.

• The pot follows an almost circular shape along z axis; a cylinder that is
perpendicular to an x-y plane is positioned as a mask to the noisy image. The
areas outside the cylinder get low intensity values, sampled from a truncated
normal distribution.

26

5.3 SNR

(a) A slice of thickness one along
z axis from Lupine 22 August real
MRI.

(b) A slice of thickness one along
z axis from Lupine 22 August aug-
mented MRI.

Figure 5.5: The comparison between the Lupine 22 August and its augmentation.
Lupine 22 August does not have a pot. The test tube is still present. A truncated
normal distribution is used to set the intensity of the test tube.

27

5 Real & Augmented Data

Algorithm 1: The generation of the dataset; main procedure.

Data: XML root structure x, boundary
minx,miny,minz,maxx,mayy,maxz ∈ R, resolution r ∈ Z3

Result: Set of augmented MRI - super-resolution ground truth pairs
1 D ← ∅
2 N ← read all nodes(x)
3 foreach rf ∈ {0.34, 0.71, 1, 1.41}, rot ∈ {0◦, 60◦, 120◦} do
4 N ′ ← ∅
5 foreach node n ∈ N do

6

n′ ← rotate around center(n, rot)
n′radius ← n′radius ∗ rf
N ′ ← N ′ ∪ n′

/* Generate very high dimension grid, check every point if

they are occupiedV . Isuper is a high resolution

intensity which provides randomness to the intensity to

different branches. See section 5.2.2. */

7 Vultra, Iultra ← generate volume ultra resolution(N ′, bx, by, bz, r)
8 Vsuper ← downsample by 4(Vultra)
9 Gsuper ← threshold 0.5(V)

10 I ← downsample by 8(Iultra)
11 foreach xm, ym, swap axes ∈ {0, 1} do
12 I ′ ← I,G′ ← Gsuper

13 if xm = 1 // mirror the images on x axis

14 then I ′ ← mirror x(I ′), G′ ← mirror x(G′) ;
15 if ym = 1// mirror the images on y axis

16 then I ′ ← mirror y(I ′), G′ ← mirror y(G′);
17 if swap axes = 1// Swap the x and y axes

18 then I ′ ← swap axes(I ′), G′ ← swap axes(G′);
19 foreach noise type ∈ {lupine small, lupine 22} do
20 foreach noise instensity ∈ [0.2, 0.4, 0.6, 0.8, 1] do
21 Inoisy ← generate noise(I, noise type, noise instensity)
22 D ← D ∪ (Inoisy, G

′)
23 return D

28

5.3 SNR

Algorithm 2: The generation of the noise modelled after Lupine Small.

Data: Resolution r ∈ Z3

Result: Set of augmented MRI image - super-resolution ground truth pairs
1 C,H ← zero filled tensor of shape(r)
2 foreach i ∈ [1, 6] : i ∈ Z do
3 scale = r ∗ 0.5i

4 C ← C + random perlin noise(r, scale)/2
5 H ← H + random perlin noise(r, scale)/2

6 C ← C · 1.6/std(C)− 0.6
7 C ← clip(C, 0, 1)
8 C ← 1− (1− C)3

9 C ← C · iid normal distribution(shape : r,mean : 0.35, scale : 0.15)
/* Number of gaussian blobs */

10 count← 20000
/* Range of possible center locations for gaussian blobs; iid.

sampled for each blob */

11 center range← [(0, 0, 0), r]
/* The scale parameter of the gaussian blob; value of the

center of the gaussian; iid. sampled for each blob */

12 scale range← [−0.15, 0.15]
13 H ← H + random gaussian blobs(count, center range, scale range)
14 U ← random iid uniform(r,−0.3, 0.3)
15 U ← U · sqrt((H −min(H))/(max(H)−min(H)))
16 H ← H + U
17 H ← clip(H, [−0.02,∞])
18 H ← H + random iid uniform(r, 0, 0.15)
19 return clip(H + C, [0, 1])

Algorithm 3: The generation of the noise modeled after Lupine 22 August.

Data: Resolution r ∈ Z3

Result: Set of augmented MRI image - super-resolution ground truth pairs
1 G← iid normal distribution(shape : r,mean : 0.07, scale : 0.07)
2 return C return clip(H, 0, 1)

29

5 Real & Augmented Data

(a) SNR: 12 (b) SNR: 17

(c) SNR: 5 (d) SNR: 8

Figure 5.6: The comparison of Lupine Small under radius multiplier 0.71 with
different noise types and intensities. The first column has the noise modelled after
Lupine Small while the second column has the noise modelled after Lupine 22.
The first row’s noise multiplier is 0.4, and second row’s is 1. As expected, the
SNR decreases as the noise intensity is increased.

30

6 Segmentation Method

Recent studies show that, transferring knowledge from a domain to another is

useful for semantic segmentation (Yosinski et al., 2014). This is typically called

transfer learning which involves extracting features from a pretrained network to

help learning for another domain.

In this thesis, we utilize 2D networks for segmentation of 3D data. To this end,

we employ layer-by-layer segmentation of the MRI root images. A layer refers

to a slice of 1 voxel thickness along z axis. For example, the MRI image GTK,

whose resolution is 183 × 183 × 613 contains 613 layers along the z axis. For

segmentation of the whole MRI image, using a super-resolution factor k = 2, each

layer is mapped to 2 layers of resolution 366×366. In the end, a final segmentation

of resolution 366× 366× 1226 is obtained.

As a transfer learning architecture, we take RefineNet (Lin et al., 2017) as our

base model. Since RefineNet takes in 2D RGB images for extraction of features

from ResNet, a method to map 3D data into 2D RGB images is necessary. This

mapping process is more detailed in section 6.3.

6.1 ResNet

ResNet is one of the most successful convolutional neural networks for image clas-

sification. It is built on the argument that, as more layers are stacked, the learning

should get better. The authors propose a building block (see figure 6.1) for ResNet

which sums the input of the block with convolutional layers. This way, in the worst

case, the block can act as an identity function, ensuring a lower training error. Due

to the use of identity mapping and ReLU activation function, the gradients flow

very efficiently through the block, allowing the construction of very deep networks.

6.2 RefineNet

Lin et al., (2017) proposed RefineNet to exploit the information extracted by

pretrained networks at different layers of the network. Deep convolutional neural

31

6 Segmentation Method

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 6.1: A residual block. Image from He et al., (2016)

networks usually follow a series of pooling or strided convolutions, which reduce

the dimensionality of the original input image. These layers with small feature

maps usually contain complex high level structures, while the earlier layers with

larger feature maps contain simpler low level features.

RefineNet makes segmentation by fusing the activations of ResNet using build-

ing blocks called RefineNet blocks (figure 6.2). These blocks (see figure 6.2) take

Chained Residual
Pooling

5
x
5

 P
o
o
l

3
x
3

 C
o
n

v

5
x
5

 P
o
o
l

3
x
3

 C
o
n

v

Sum Sum Sum

5
x
5

 P
o
o
l

3
x
3

 C
o
n

v

...

RefineNet

2x RCU

Adaptive Conv.

2x RCU

M
u
lt

i-
p

a
th

 i
n
p

u
t

2x RCU

......

M
u
lt

i-
re

so
lu

ti
o
n
 F

u
si

o
n

C
h
a
in

e
d

 R
e
si

d
u
a
l
Po

o
lin

g

1x RCU

Output Conv.

R
e
LU

3
x
3

 C
o
n

v

R
e
LU

3
x
3

 C
o
n

v

RCU: Residual Conv Unit Multi-resolution Fusion

3
x
3

 C
o
n

v
3

x
3

 C
o
n

v

U
p
sa

m
p
le

U
p
sa

m
p
le

S
u
m...

...
(a)

(b) (c) (d)

ReLUSum

Figure 6.2: RefineNet block. Source: Lin et al., (2017).

in activations of different sizes and generate a high resolution output. A refine-

ment block consists of 3 sub-blocks: Residual Convolution Unit (RCU), Multi-

Resolution Fusion, and Chained Residual Pooling. First, Residual Conv Unit

(RCU) adapts the activations of the ResNet to RefineNet architecture through a

series of convolutions and non-linearities. Multi Resolution Fusion fuses different

sized activations by adjusting the number of channels and summing the upsam-

pled convolutions; Chained Residual Pooling applies a series of pooling operations

without reducing the resolution followed by a convolution, this enables the capture

of larger local area context.

RefineNet architectures are formed with combination of these RefineNet blocks.

32

6.3 Mapping 3D information to 2D

Figure 6.3: 4-Cascade RefineNet architecture. 4 different RefineNet blocks form
a cascaded refinement path. Source: Lin et al., (2017).

Lin et al., (2017) test different architectures and find that 4-Cascaded (figure 6.3)

architecture gives the best performance.

6.3 Mapping 3D information to 2D

ResNet takes in RGB images as input. Since our data is 3D, it is necessary to map

3D data onto 2D RGB for feature extraction from ResNet.

Let I ∈ Rx×y×z be an MRI image of size and I ,, l denote lth layer of the MRI

among the z axis. Then, for segmentation of layer l, layers in range l̂ ∈ [l − n, l + n],

are mapped to R,G,B ∈ Rx×y channels.

6.3.1 Averaging

A simple method is the aggregation of layers above l into B, layers below l into R

by averaging. The channel G is simply the layer l. This can be formulated as:

Ri, j =
1

N

n∑
k=1

I i,j,l+k (6.1)

Gi, j = I i, j, l (6.2)

Bi, j =
1

N

n∑
k=1

I i,j,l−k (6.3)

By averaging the neighboring layers, it is ensured that information from multiple

layers are included. Typically, a neighboring size n > 2 is observed to lose details.

33

6 Segmentation Method

Figure 6.4: Example reduction to RGB, with averaging method where n = 2 and
l = 80. On the left, the layers between 78 and 82 of Lupine Small, and on the
right, their reduction to RGB is displayed. All visualizations are negative of their
originals.

6.3.2 PCA

PCA is a linear dimension reduction technique. By finding the directions in which

the data has the most variance, the larger dimensional data can be represented in

a lower dimension with minimal loss.

We apply PCA image-wise. For each voxel v of an image I, a training sample

is extracted. The voxel v, n voxels above, and n voxels below - in total 2 · n + 1

voxels make a training sample.

Or formally:

S = {{I i,j,k̂ | k̂ ∈ [k − n, k + n]} | i ∈ [0, x), j ∈ [0, y), k ∈ [0, z)}
: i, j, k, k̂ ∈ N0 (6.4)

PCA is applied to the set S and projected to 3 dimensions. First, second, and

third principal components are mapped to G, R, B respectively. This ordering

follows the contribution of each channel to the image luminance.

Example feature maps from ResNet are given in figure 6.5.

6.4 7-Cascade RefineNet

We present a modified version of the original 4-Cascade RefineNet architecture:

7-Cascade RefineNet (see figure 6.6). For feature extraction, we use ResNet-18; a

shallower version of ResNet. Due to its shallow structure, ResNet-18 uses much

34

6.4 7-Cascade RefineNet

Figure 6.5: Example activations from ResNet-18 using PCA as mapping function.
Displayed feature maps belong to 80th layer of Lupine Small MRI image.

35

6 Segmentation Method

x

x

Input with 5
channels

Reduce to
RGB &

Normalize
R
es
N
et
18

x/32

x

x

Normalize

2xUpsample

2x/16

3

1x1
Convolution

Logistic Sigmoid

Segmentation
Confidence Map

7

6

1

4

5

x/4

x/8

x/2

2x

Figure 6.6: Customized 7-Cascade RefineNet Architecture

less memory and runtime is lower. Usually, reducing the network capacity acts

as a regularizer and forces the network to learn more general features. This may

allow the shallow ResNet-18 to generalize better to the foreign data that we have.

The original RefineNet architecture outputs segmentations that are 1/4 of the

resolution of the input while our task is to generate super-resolution outputs. To

output higher resolution images, more RefineNet blocks are added to the network.

The RefineNet blocks 1, 2, 3, 4 are identical to the ones found in the original

4-Cascade architecture. As higher resolution is needed, we opt for increasing the

resolution of the feature maps by a factor of 2 at each RefineNet block. Thus, an

extra layer from ResNet whose feature map resolution is half of the original input

is fed to the RefineNet block 5. After this point, the RGB feature map is no longer

needed as the only reason for reduction to RGB is to extract features from ResNet.

Instead, the input whose dimensionality has not been reduced is given as input to

the RefineNet 6 block. For segmentation of layer l, with n layers above and below

the layer l, each one of the 2n+1 layers is interpreted as a separate input channel.

This way the information that is lost after reduction to the RGB is introduced to

the network. The next RefineNet block involves fusing the upsampled input with

36

6.4 7-Cascade RefineNet

the feature maps of the RefineNet block 6, then, a feature map with double the

resolution among x and y is obtained. We further look to increase the resolution

among the z axis. A final convolutional layer with a kernel of size 1x1 and 2

output channels is introduced. Followed by a sigmoid function (section 3.1.2),

these 2 channels are interpreted as 2 consecutive layers of the segmentation where

each pixel denotes the confidence of the network that the pixel is a root. For our

experiments, we use the threshold 0.5 to decide whether a voxel is root.

With the exception of the RefineNet block 1, all RefineNet blocks output 16

channels each.

For now, this project aims for a super-resolution factor of k = 2. To adapt the

network for higher super-resolution factors, the upsampling operation before the

RefineNet block 7 must upsample by a factor of k and the final 1x1 convolutional

layer must output k channels.

6.4.1 Loss Functions

Negative log-likelihood loss

The logarithmic properties of negative log-likelihood overcomes the saturation

problem caused by derivatives of the logistic sigmoid function. A naive nega-

tive log-likelihood loss for a single classifier y ∈ [0, 1] and its true class ŷ ∈ {0, 1}
can be given as:

L = −
(
ŷ ∗ log2(y) + (1− ŷ) ∗ log2(1− y)

)
. (6.5)

As described in chapter 5, the number of non-root voxels heavily outnumber

the number of root voxels and this may cause average root voxel loss to be much

higher than average non-root voxel loss. The networks are trained using weighted

average per voxel loss; a new variable root weight rw is introduced to adjust the

weighting of the roots against non-roots. We define the loss for a mini-batch or a

batch as follows:

L =

∑
i,j,k(Gi,j,k · log2(Y i,j,k) · rw + (1−Gi,j,k) · log2(1− Y i,j,k))∑

i,j,k(Gi,j,k · rw + (1−Gi,j,k))
(6.6)

where G is the ground truth tensor and Y is the tensor corresponding to the

confidence values estimated by the network.

37

6 Segmentation Method

xInput with 5
channels xNormalize

2xUpsample 1x1
Convolution Logistic Sigmoid Segmentation

Confidence Map
7

6

Figure 6.7: RefineNet without transfer learning.

IoU Loss

Apart from the F-Score, intersection over union (IoU) is an alternative metric for

imbalanced datasets. Rahman and Y. Wang, (2016) propose an approximation of

IoU:

ĨoU =
Intersection(G, Y)

Union(G, Y)
=

∑
i,j,k(Gi,j,k · Y i,j,k)∑

i,j,k(Gi,j,k + Y i,j,k − (Gi,j,k · Y i,j,k))
. (6.7)

In terms of a loss function, this can be written as:

L = 1− ĨoU. (6.8)

The approximation is differentiable, therefore, the loss is also differentiable. One

important caveat for such a function is the sigmoid function. When sigmoid func-

tion is incorporated into the loss function without its logarithm, it is known to

have too small gradients especially when its output is close to 0 or 1 (see figure

3.1), which saturates the learning process.

6.4.2 RefineNet without Transfer Learning

To validate that the network benefits from transfer learning, we remove the pre-

trained network and the layers, which are fed from the pretrained network (figure

6.7). The rest of the parameters, including the number of channels in the RefineNet

blocks (6 & 7 in figure 6.7) are identical.

6.5 Training the Network

6.5.1 Implementation

Due to its dynamic structure and speed, the network is implemented with PyTorch

(Paszke et al., 2017). The RefineNet architecture implementation is based on the

38

6.5 Training the Network

code of Fan, (2018). Further modifications have been made on the code to enable

the use different sized inputs.

6.5.2 Mini-batches

As displayed in table 5.1, resolution of MRIs are often different. Each layer of the

MRI are segmented separately, thus, the resolution of network input is dependent

on only x and y axes. For example, x× y resolution of gtk is 183× 183, for other

datasets, it is 256×256. MRI layers with different resolutions cannot be processed

together in a single batch due to limitations of PyTorch and other deep learning

frameworks. Thus, each mini-batch contains 8 layers from the same input MRI.

6.5.3 Gradient Clipping

A common issue when training neural networks is the distribution of the gradients.

In our work, it is observed that, at certain times, the loss suddenly increases and

converges to some sub-optimal loss and not recover again. Upon investigation of

the gradients, we see that these spikes in the loss occur right after a sudden hike

in gradient norms.

Our first idea was to use a smaller learning rate, however, using a smaller learning

rate, we observed that the loss does not converge to a small value as it did before.

We set a constraint on the norm of the gradients using a method called gradient

clipping. If the norm of the gradients is higher than a certain threshold, the

gradients are scaled down to fit this norm constraint. Let L be the loss, w be the

set of parameters of the network, and t be a certain norm threshold and,

g ← ∂L

∂w
(6.9)

then,

g ←
{

t·g
||g|| if ||g|| > t

g otherwise
. (6.10)

We set the gradient norm threshold to 0.01 which is a rather average value among

the gradient norms. We observe that this not only solves the issue of sudden loss

spike, it stabilizes the learning process.

39

6 Segmentation Method

1 1.2 1.4 1.6 1.8 2

10−3

10−2

10−1

100

101

Epoch

L
os
s

Training loss
Gradients

Figure 6.8: The gradients and the training loss between epoch 1 and 2. Upon
sudden spike in gradients, the training loss suddenly diverges to a suboptimal
value.

6.5.4 Training Algorithm

A mini-batch contains 8 input layer-ground truth pairs from a single MRI image

(section 6.5.2). For each training step, average loss of 8 different mini-batches are

calculated and backpropagated. In total, a backward pass through the network

is processed for 64 input layers. As an optimizer, we use Adam(Kingma and Ba,

2014). By trial and error, we find that 0.0006 is the optimal learning rate for

training. Larger learning rates cannot learn at all while smaller learning rates

converge to sub-optimal losses.

40

7 Experiments and Results

We trained several networks to test different variations of input and loss functions.

For reduction of volumes to 2D RGB images, we test PCA (section 6.3.2) and

averaging (section 6.3.1) methods. Upon comparison (section 7.1), we observe

that PCA is the superior method. Moreover, we test the RefineNet architecture

without transfer learning (section 6.4.2).

We further investigate the behaviour of the negative log-likelihood (Nll) loss

with reweighing and compare with the IoU loss. Since we found that PCA is the

superior method (section 7.1), all tests for comparing loss functions have been

made using PCA.

Since the the real MRI and corresponding ground truth do not align well with

each other, the loss and average F1-Scores are computed on validation set only.

The approximate F1-Scores on the test set are presented separately.

In sections 7.1, 7.2, and 7.2.3 different parameterizations of the network are

investigated and its results on validation set (augmented) are presented. The test

results on real data are discussed in section 7.3.

We decide that the best network is using PCA with negative log-likelihood

loss where root and non-root voxels have equal weight rw = 1.

7.1 Comparison of Different Input Functions and

Effect of Transfer Learning

Our preferred method of mapping 3D data onto 2D RGB is PCA. This has been

decided by training the network with PCA, averaging method and also without

transfer learning. All experiments to compare input functions have been made

using negative log-likelihood with rw = 1. We observe that PCA is superior to

both methods. We believe this is due to PCA containing more information of the

3D data. This also validates the assumption that transfer learning helps. The

average F1-Score for network with PCA and rw = 1 is 0.95 (see table 7.1).

With averaging method, we do not notice much difference in terms of average F1-

Score (0.93). For SNRs less than 3.16, PCA achieves 0.89 while averaging method

achieves 0.87. For SNRs greater than 3.16 there is no significant difference.

41

7 Experiments and Results

When trained without transfer learning, the average F1-Score is 0.91. Again,

the biggest difference occurs when the SNR is lower than 3.16. The F1-Score drops

to 0.84 compared to 0.89 of PCA. This is due to significant drop in recall. Upon

qualitative analysis of its segmentations, we observe that even more thin roots are

undetected.

Upon qualitative investigation of the MRIs, we observe that the transfer learning

helps especially with thin roots as most thin roots are undetected.

7.2 Comparison of Loss Functions

In section 7.1, we see that PCA is the better method of mapping from 3D to

2D RGB data. Thus, when comparing the loss functions, we use PCA as input

function.

7.2.1 Training with Equal Weighted Negative Log-likelihood

We train the network using PCA with equal weighted(rw = 1), loss for root and

non-root voxels. The experiments show that the reweighing may not be necessary,

even with the class imbalance problem. We decide this is the best network for this

project.

As expected, the average non-root voxel loss (0.0001918) is proportionally much

less than the average root voxel loss (0.0757). These two values are still very

small. We theorize, this is due to the noise distribution being very similar across

the augmented data. Furthermore, since much of the noise is outside the pot with

very low intensities, they can easily be discarded as noise.

The average F1-Score on the validation set is 0.948. The lowest average F1-

Score on the validation set is obtained from Lupine April 2015 (0.911) while the

highest is obtained from Lupine Small (0.977). Lupine Small has overall thickest

branches while Lupine April 2015 has the thinnest ones. This evidences our prior

assumption that thinner branches are harder to detect.

We also investigate validation set with respect to different SNR levels of MRIs.

For data with SNR in the range [1, 3.16], the F1-Score is 0.89. For MRIs with

SNR above 3.16, the F1-Scores are above 0.97. This may be an acceptable re-

sult, moreover, many of the false positives are super-resolution artifacts which can

further be ignored.

A closer look at the dataset shows that the common pattern among the worst

performed augmented MRI root images is having thin roots with high noise levels.

These images are very hard to distinguish even for humans as they may be con-

sidered to miss information. Nevertheless, the F-Score, in this case, is still quite

42

7.2 Comparison of Loss Functions

high. We theorize, hard-to-detect nature of these roots may be solving the class

imbalance problem by forcing the network to learn roots.

An argument can be made that recall is more important than the precision. The

algorithm of Schulz et al., (2012) is successful at eliminating false positives while

false negatives are difficult to recover as they are integral to the structure of the

root. To this end, in an addition to the F1-Score, F2-Score can also be used.

The loss curve and the accuracy of the network trained with rw = 1 and PCA

are shown in figures 7.1 and 7.2. Some example segmentations on augmented data

are displayed in figure 7.3

7.2.2 Training with Extra Root Weighting

We train the network with rw = 16 to trade precision in favor of the recall.

While the difference decreases, root loss (0.0160) remains higher than non-root

loss (0.00088). As expected, recall increases while precision decreases. Upon qual-

itative analysis of the segmentations on the augmented data, we observe that the

stark reduction in the precision is caused by thicker estimations of the roots. When

the roots are very thin, estimating the root even a little thicker than it actually is

causes the number of false positives to explode. Thus, lower F1-Score caused by

low precision.

The loss curve and the accuracy of the network trained with rw = 16 and PCA

are shown in figure 7.4. Some example segmentations on augmented data are

displayed in figure 7.5.

7.2.3 Training with IoU Loss

We further train the network with a loss function that should automatically deal

with the class imbalance problem. An interesting behavior is seen. While the IoU

loss is continuously decreasing, during first few epochs, the average negative log-

likelihood also decreases. After, the IoU loss keeps decreasing while the average

root starts to increase. We theorize this is due to different global minima of IoU

and negative log-likelihood loss functions.

The analysis of the F1-Scores on augmented data shows that the IoU loss gives

comparable results to training with negative log-likelihood where rw = 1. The

average F1-Score is 0.943. The resulting loss curve and accuracies are displayed in

figure 7.6.

43

7 Experiments and Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

10−3

10−2

10−1

100

Mini-batches

L
os
s

Per-voxel loss

Training
Validation

0 0.5 1

·106

10−4

10−3

10−2

10−1

100

Mini-batches

L
os
s

Per-soil-voxel loss

Training
Validation

0 0.5 1

·106

10−1

100

101

Mini-batches

Per-root-voxel loss

Training
Validation

Figure 7.1: Per-voxel loss of RefineNet 7-Cascade trained with rw = 1.

44

7.2 Comparison of Loss Functions

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Epoch

P
re
ci
si
on

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Epoch

R
ec
al
l

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

−10 0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

Epoch

O
ve
ra
ll
F
1-
S
co
re

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

0 20 40 60 80 100 120 140 160
0

0.5

1

Epoch

A
ve
ra
ge

F
1-
S
co
re

Dataset name
GTK
Lupine 22 August
Lupine Small
Lupine April 2015

Figure 7.2: Accuracy of 7-Cascade RefineNet trained with negative log likelihood
loss where rw = 1.

45

7 Experiments and Results

Figure 7.3: Example segmentations of augmented data with very noisy soil en-
vironments from 7-Cascade RefineNet, trained using negative log likelihood with
rw = 1 and PCA as input function. The greens, reds and blues denote true posi-
tives, false negatives, and false positives respectively. The segmentations contain
almost no false positives with the exception of super-resolution artifacts. How-
ever, there are significant number false negatives. Overall root thickness decreases
from the first image to the third image. The first image contains only negligible
errors. The second image contains minor false negatives in places where the root
is very thin. However, the root model extraction software should be able to handle
this easily. The third image has significant number of false negatives which cause
disconnectivity and even completely missing roots.
46

7.2 Comparison of Loss Functions

0 10 20 30 40 50 60 70

10−3

10−2

10−1

100

Epoch

L
os
s

Average
Root
Non-root

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Epoch

O
ve
ra
ll
P
re
ci
si
on

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Epoch

O
ve
ra
ll
R
ec
al
l

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Epoch

O
ve
ra
ll
F
1-
S
co
re

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Epoch

A
ve
ra
ge

F
1-
S
co
re

Dataset name
GTK
Lupine 22 August
Lupine Small
Lupine April 2015

Figure 7.4: Loss curve and F1-scores when the root weight rw = 16.

47

7 Experiments and Results

Figure 7.5: Example segmentations from the augmented data with very noisy
soil environments. The root weight rw = 16. In figure 7.3, there are significant
false negatives. After increasing the root weight, more roots are detected. As
a downside, the segmentations in the root are thicker than the ground truth.
However, these false positives are not as critical as missing roots.
Second image originally has a rather low precision (0.60) since the roots are very
thin (see section 7.2.2). With a recall rate of 0.86, the F1-Score is 0.71. We test
the same MRI with distance tolerant F1-Score using dilation = 1. As expected,
the precision increases to 0.91, recall increases to 0.9 giving F1-Score of 0.91. This
confirms our expectations that rather low F1-Score is caused by thick estimation
of the roots.

48

7.2 Comparison of Loss Functions

0 20 40 60
0

0.5

1

Epoch

Io
U

L
os
s

Validation
Training

0 20 40 60

10−3

10−2

10−1

100

101

102

Epoch

L
os
s

Average
Root
Non-root

0 20 40 60 80
0

0.5

1

Epoch

O
ve
ra
ll
P
re
ci
si
on

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

0 20 40 60 80
0

0.5

1

Epoch

O
ve
ra
ll
R
ec
al
l

SNR range
1− 3.16
3.16− 10
10− 31.6
31.6− 100

Figure 7.6: Loss curve and accuracy for network trained with IoU loss.

Experiment
Weighted nll loss

IoU
Loss

Average
F1-ScoreAvg Root ¬Root

Nll, rw = 1 0.000457 0.0757 0.0001918 0.218 0.95
Nll, rw = 16 0.001610 0.0161 0.0008790 0.268 0.91
IoU loss 0.009399 1.6274 0.0036990 0.198 0.94
Horn, (2018) - 0.4683 0.004105 - 0.84

Table 7.1: Results on the validation set for different loss functions. The input
function is PCA.

49

7 Experiments and Results

Experiment
SNR [1, 3.16]

Precision Recall F1-Score

Nll, rw = 1 0.92 0.86 0.89
Nll, rw = 16 0.70 0.98 0.82
IoU loss 0.89 0.87 0.88

Table 7.2: Results on the validation set for different loss functions. The input
function is PCA.

Experiment
Overall F1-Score for SNR range

[3.16, 10] [10, 31.6] [31.6, 100]

Nll, rw = 1 0.97 0.98 0.99
Nll, rw = 16 0.95 0.97 0.98
IoU loss 0.96 0.98 0.99

Table 7.3: Results on the validation set for different loss functions. The input
function is PCA.

7.3 Test on Real Data

We chose the network trained with negative log-likelihood loss using rw = 1 and

PCA as the input function as our preferred network. We apply our segmentation

method to 2 usable real plant root MRI scans that we have: Lupine Small, and

Lupine 22 August. Regardless of the loss function, the network gives comparable

results. While the trained networks have no difficulty distinguishing thick roots

from soil, this is more difficult with thin roots. Due to its thick branches, we are

able to obtain precise segmentations from Lupine Small with few false positives.

We observe no false negatives, moreover, there are detected root parts which are

otherwise not present in the ground truth. These parts are overlooked during

human-supervised annotation due to their low intensity. The distance tolerant

F1-Scores of Lupine Small can be seen in table 7.4.

In the segmentation of the Lupine 22 August, not many false negatives are

present. Unfortunately, the MRI artifacts found in this MRI causes significant

increase in the number of false positives. We observe that the segmentation quality

changes with respect to the loss function. Negative log-likelihood with rw = 1

outputs rather good segmentations, detecting roots that are otherwise not present

in the manual annotations. However, there are some minor disconnectivities in

the root structure. The distance tolerant F1-Scores of Lupine 22 August can be

seen in table 7.4.

50

7.4 Extraction of Root Model

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dilation

F
1-
S
co
re

IoU loss - Lupine 22 August
IoU loss - Lupine Small
NLL loss, rw = 1 - Lupine 22 August
NLL loss, rw = 1 - Lupine Small
NLL loss, rw = 16 - Lupine 22 August
NLL loss, rw = 16 - Lupine Small

Figure 7.7: Comparison of the networks on real data.

Overall, we can say that our segmentations are better as we have been able to

capture extra roots not found in the original manual annotations; are in super-

resolution; are more precise.

7.4 Extraction of Root Model

We apply the root model extraction algorithm implemented in NMRooting (Duss-

choten et al., 2016). For both Lupine Small and Lupine 22 August, the software

successfully extracts the root model and eliminates the majority of false positives

while connecting disconnected roots.

51

7 Experiments and Results

Dilation Precision Recall F1-Score F2-Score

0 0.7891 0.7652 0.7770 0.7699
1 0.8348 0.8617 0.8481 0.8562
2 0.8652 0.9146 0.8893 0.9043
3 0.8875 0.9451 0.9154 0.9330
4 0.9045 0.9639 0.9333 0.9514
5 0.9176 0.9766 0.9462 0.9642
6 0.9278 0.9856 0.9559 0.9735
7 0.9360 0.9919 0.9632 0.9802
8 0.9427 0.9957 0.9685 0.9846
9 0.9480 0.9979 0.9724 0.9875
10 0.9522 0.9990 0.9751 0.9893
11 0.9557 0.9995 0.9771 0.9904

Table 7.4: Quality scores of the network trained with NLL rw = 1 on Lupine
Small.

Dilation Precision Recall F1-Score F2-Score

0 0.1164 0.2415 0.1571 0.1987
1 0.2494 0.4383 0.3179 0.3806
2 0.3675 0.6086 0.4583 0.5380
3 0.4617 0.7406 0.5688 0.6608
4 0.5324 0.8371 0.6509 0.7511
5 0.5834 0.9013 0.7084 0.8128
6 0.6190 0.9403 0.7466 0.8519
7 0.6450 0.9643 0.7730 0.8774
8 0.6625 0.9787 0.7902 0.8934
9 0.6735 0.9872 0.8008 0.9031
10 0.6816 0.9920 0.8080 0.9092
11 0.6879 0.9947 0.8134 0.9132

Table 7.5: Quality scores of the network trained with NLL rw = 1 on Lupine 22
August.

52

7.4 Extraction of Root Model

Figure 7.8: Segmentation of Lupine Small. The greens are positive segmentations
while the transparent blues are the approximate ground truth. There are very few
false positives. Similar to figure 7.9, there are detected root branches which are
not present in the ground truth.

53

7 Experiments and Results

Figure 7.9: Segmentation of Lupine 22 August. The greens are positive segmen-
tations while the blacks are the approximate ground truth. While there are plenty
clutters, there are also roots which are not present in the ground truth annotations.
As the roots are very thin, even a small misalignment causes low F1-Score.

54

7.4 Extraction of Root Model

Figure 7.10: Extracted root model of Lupine 22 August. Majority of false pos-
itives are eliminated. Only small fraction of the MRI artifact plane remains as
false positives.The algorithm assumes that the voxels are cubic. This causes the
root structure to appear squeezed.

55

7 Experiments and Results

Figure 7.11: Extracted root model of Lupine Small. No false positives remain.
An issue is duplicate detection of thick roots. This is due to the assumption of
NMRooting that the root thickness is at most 3 voxel-wide.

56

8 Conclusion

This thesis investigated the automated segmentation of plant root MRI images

as root vs non-root. The main contributions have been the data augmentation

processes, mapping of 3D information to 2D RGB images and developing CNNs

for super-resolution segmentations of the plant root MRI images. The validity

of our approach has been investigated both qualitatively and quantitatively using

synthetic and real data.

The random synthetic data has been continuously, iteratively improved as it has

been seen that the accuracy of segmentation increases as the training samples are

closer to reality. During the qualitative analysis of the segmentations, we have

seen that most of the errors stem from the MRI artifacts rather than the noise

found inside the soil. For future work, these MRI artifacts should be handled and

incorporated into the data augmentation processes. Additionally, the extremely

small loss values indicate that more variety in the root and soil noise structures

are necessary.

We have seen that super-resolution is especially useful for MRI images with

extremely thin roots as often the thickness of these roots are sub-voxel size in

original resolution.

When compared with the manual reconstruction of the plant root MRI images,

we see that our estimated segmentations are more precise in terms of root position

and thickness. Some parts of the roots were missing in their annotations due to

their hard to detect nature. Our method successfully detects these roots. Previ-

ously, root model extraction software has been unable to detect the root structures

from the raw real data. While it still has its own problems, we have shown that

upon segmentation of these MRI images, the algorithms can successfully detect

and even complement the missing parts of the segmentation results of our method.

As an extension point, the future work can include the segmentation of data

from other domains which make use of similar volume data. Examples may include

medical applications such as brain MRI image segmentation for tumor detection.

57

Bibliography

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. (2016). “Tensorflow: a system for large-scale
machine learning.” In: OSDI. Vol. 16, pp. 265–283 (cit. on p. 11).

Ahrens, J., B. Geveci, and C. Law (2005). “Paraview: An end-user tool for large
data visualization”. In: The visualization handbook 717 (cit. on p. 20).

Behnke, S. (2001). “Learning iterative image reconstruction in the neural abstrac-
tion pyramid”. In: International Journal of Computational Intelligence and
Applications 1.04, pp. 427–438 (cit. on p. 16).

— (2018). “Private communications with Sven Behnke”. In: (cit. on p. 7).
Carreira, J. and A. Zisserman (2017). “Quo vadis, action recognition? a new

model and the kinetics dataset”. In: Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on. IEEE, pp. 4724–4733 (cit. on p. 1).

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer (2002). “SMOTE:
synthetic minority over-sampling technique”. In: Journal of artificial intelli-
gence research 16, pp. 321–357 (cit. on p. 17).

Chen, L.-C., G. Papandreou, F. Schroff, and H. Adam (2017). “Rethinking atrous
convolution for semantic image segmentation”. In: arXiv preprint arXiv:1706.05587
(cit. on p. 15).

Dong, C., C. C. Loy, K. He, and X. Tang (2016). “Image super-resolution using
deep convolutional networks”. In: IEEE transactions on pattern analysis and
machine intelligence 38.2, pp. 295–307 (cit. on p. 16).

Dusschoten, D. van, R. Metzner, J. Kochs, J. A. Postma, D. Pflugfelder, J. Bühler,
U. Schurr, and S. Jahnke (2016). “Quantitative 3D analysis of plant roots
growing in soil using magnetic resonance imaging”. In: Plant physiology, pp–
01388 (cit. on pp. 1, 18, 51).

Fan, T. (2018). Pytorch Implementation of Refinenet. https://github.com/

thomasjpfan/pytorch_refinenet/ (cit. on p. 39).
Glorot, X. and Y. Bengio (2010). “Understanding the difficulty of training deep

feedforward neural networks”. In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp. 249–256 (cit. on pp. 11,
12).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. http://www.
deeplearningbook.org. MIT Press (cit. on p. 11).

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio (2014). “Generative adversarial nets”. In: Advances
in neural information processing systems, pp. 2672–2680 (cit. on p. 16).

59

https://github.com/thomasjpfan/pytorch_refinenet/
https://github.com/thomasjpfan/pytorch_refinenet/
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

Hayat, K. (2017). “Super-resolution via deep learning”. In: arXiv preprint arXiv:1706.09077
(cit. on p. 5).

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778 (cit. on pp. 15, 32).

Higgins, D. M. (2003-2018). How can we measure the signal-to-noise ratio (SNR)?
url: http://www.revisemri.com/questions/equip_qa/measuring_snr
(cit. on p. 25).

Horn, J. (2018). “Superresolution 3D Image Segmentation for Plant Root MRI”.
In: (cit. on pp. 9, 11, 18, 49).

Kingma, D. P. and J. Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (cit. on pp. 12, 13, 40).

Kleesiek, J., G. Urban, A. Hubert, D. Schwarz, K. Maier-Hein, M. Bendszus, and A.
Biller (2016). “Deep MRI brain extraction: a 3D convolutional neural network
for skull stripping”. In: NeuroImage 129, pp. 460–469 (cit. on p. 16).

Kolesnik, M. and A. Fexa (2004). “Segmentation of wounds in the combined color-
texture feature space”. In: Medical imaging 2004: Image processing. Vol. 5370.
International Society for Optics and Photonics, pp. 549–557 (cit. on p. 15).

Lai, W.-S., J.-B. Huang, N. Ahuja, and M.-H. Yang (2017). “Deep laplacian pyra-
mid networks for fast and accurate superresolution”. In: IEEE Conference on
Computer Vision and Pattern Recognition. Vol. 2. 3, p. 5 (cit. on p. 16).

Ledig, C., L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. P.
Aitken, A. Tejani, J. Totz, Z. Wang, et al. (2017). “Photo-Realistic Single
Image Super-Resolution Using a Generative Adversarial Network.” In: CVPR.
Vol. 2. 3, p. 4 (cit. on p. 16).

Lin, G., A. Milan, C. Shen, and I. D. Reid (2017). “RefineNet: Multi-path Refine-
ment Networks for High-Resolution Semantic Segmentation.” In: Cvpr. Vol. 1.
2, p. 5 (cit. on pp. 1, 15, 31–33).

Long, J., E. Shelhamer, and T. Darrell (2015). “Fully convolutional networks for
semantic segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3431–3440 (cit. on p. 15).

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer (2017). “Automatic differentiation in py-
torch”. In: (cit. on pp. 11, 38).

Pereira, S., A. Pinto, V. Alves, and C. A. Silva (2016). “Brain tumor segmentation
using convolutional neural networks in MRI images”. In: IEEE transactions
on medical imaging 35.5, pp. 1240–1251 (cit. on p. 16).

Perlin, K. (1985). “An image synthesizer”. In: ACM Siggraph Computer Graphics
19.3, pp. 287–296 (cit. on p. 23).

Pflugfelder, D., R. Metzner, D. Dusschoten, R. Reichel, S. Jahnke, and R. Koller
(2017). “Non-invasive imaging of plant roots in different soils using magnetic
resonance imaging (MRI)”. In: Plant methods 13.1, p. 102 (cit. on p. 1).

60

http://www.revisemri.com/questions/equip_qa/measuring_snr

Bibliography

Pham, C.-H., R. Fablet, and F. Rousseau (2017). “Multi-scale brain MRI super-
resolution using deep 3D convolutional networks”. In: (cit. on p. 16).

Rahman, M. A. and Y. Wang (2016). “Optimizing intersection-over-union in deep
neural networks for image segmentation”. In: International Symposium on Vi-
sual Computing. Springer, pp. 234–244 (cit. on pp. 17, 38).

Ren, S., K. He, R. Girshick, and J. Sun (2015). “Faster r-cnn: Towards real-time
object detection with region proposal networks”. In: Advances in neural infor-
mation processing systems, pp. 91–99 (cit. on p. 1).

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-net: Convolutional networks
for biomedical image segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention. Springer, pp. 234–241
(cit. on p. 15).

Schaul, T., S. Zhang, and Y. LeCun (2013). “No more pesky learning rates”. In:
International Conference on Machine Learning, pp. 343–351 (cit. on p. 12).

Schnepf, A. and S. Behnke (2015). “Advancing structural-functional modelling of
root growth and root-soil interactions based on automatic reconstruction of
root systems from MRI”. In: (cit. on p. 1).

Schroeder, W. J., B. Lorensen, and K. Martin (2004). The visualization toolkit: an
object-oriented approach to 3D graphics. Kitware (cit. on p. 20).

Schroff, F., A. Criminisi, and A. Zisserman (2008). “Object Class Segmentation
using Random Forests.” In: BMVC, pp. 1–10 (cit. on p. 15).

Schulz, H., J. A. Postma, D. Van Dusschoten, H. Scharr, S. Behnke, G. Csurka,
and J. Braz (2012). “3D Reconstruction of Plant Roots from MRI Images.”
In: VISAPP (2), pp. 24–33 (cit. on pp. 1, 17, 18, 43).

Tahir, M. A., J. Kittler, K. Mikolajczyk, and F. Yan (2009). “A multiple expert
approach to the class imbalance problem using inverse random under sam-
pling”. In: International Workshop on Multiple Classifier Systems. Springer,
pp. 82–91 (cit. on p. 17).

Thai-Nghe, N., Z. Gantner, and L. Schmidt-Thieme (2010). “Cost-sensitive learn-
ing methods for imbalanced data”. In: Neural Networks (IJCNN), The 2010
International Joint Conference on. IEEE, pp. 1–8 (cit. on p. 17).

Xie, S., R. Girshick, P. Dollár, Z. Tu, and K. He (2017). “Aggregated residual
transformations for deep neural networks”. In: Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on. IEEE, pp. 5987–5995 (cit. on
p. 1).

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (2014). “How transferable are fea-
tures in deep neural networks?” In: Advances in neural information processing
systems, pp. 3320–3328 (cit. on p. 31).

Zikic, D., Y. Ioannou, M. Brown, and A. Criminisi (2014). “Segmentation of brain
tumor tissues with convolutional neural networks”. In: Proceedings MICCAI-
BRATS, pp. 36–39 (cit. on p. 16).

61

	Introduction
	Binary Segmentation
	Binary Segmentation with Super-Resolution
	Evaluation
	F-Score
	Distance Tolerant F-Score
	Evaluation Criteria

	Theoretical Background
	Convolutional Neural Networks
	3D Convolutional Neural Networks
	Activation Functions

	Adam Optimizer

	Related Work
	Semantic Segmentation
	Super-Resolution
	Class Imbalance
	Root Detection

	Real & Augmented Data
	MRI Files
	Data Augmentation
	Root Structure XML Files
	Generation of Occupancy and Intensity Grids
	Noisy Image Generation

	SNR

	Segmentation Method
	ResNet
	RefineNet
	Mapping 3D information to 2D
	Averaging
	PCA

	7-Cascade RefineNet
	Loss Functions
	RefineNet without Transfer Learning

	Training the Network
	Implementation
	Mini-batches
	Gradient Clipping
	Training Algorithm

	Experiments and Results
	Comparison of Different Input Functions and Effect of Transfer Learning
	Comparison of Loss Functions
	Training with Equal Weighted Negative Log-likelihood
	Training with Extra Root Weighting
	Training with IoU Loss

	Test on Real Data
	Extraction of Root Model

	Conclusion

