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Abstract

An automated method for root system architecture reconstruction from 3D volume
datasets obtained from magnetic resonance imaging is developed and validated with a 3D
semi-manual reconstruction using virtual reality and a 2D reconstruction using SmartRoot
(Lobet et al., 2011). It is tested on the basis of a MRI image of a 25 days old lupin grown
in natural sand with a resolution of 0.39× 0.39× 1.1 mm. The automated reconstruction
algorithm was inspired by methods for blood vessel detection in MRI images. It describes
the root system by a hierarchical network of nodes which are connected by segments of
defined length and thickness, and allows also the calculation of root parameter profiles as
root length, surface and apex densities. The obtained root system architecture (RSA)
varies in number of branches, segments, and connectivity of the segments, but does not
vary in the average diameter of the segments (0.137 cm for semi-manual and 0.143 cm for
automatic RSA); total root surface (127 cm2 for semi-manual and 124 cm2 for automatic
RSA); total root length 293 cm for semi-manual and 282 cm for automatic RSA), and total
root volume (4.7 cm3 for semi-manual and 4.7 cm3 for automatic RSA). The differences
in performance of the automated and semi-manual reconstruction is checked by using the
root system as input for water uptake modelling with the Doussan model (Doussan et al.,
1998). Both systems work well and allow for continuous water flow. Slight differences in
the connectivity appear leading to locally different water flow velocities, which are below
30%.



1 Introduction

Root system architecture (RSA) is a crucial plant component of productivity: plant
resistance to drought stress, nutrient acquisition and plant yield are strongly influenced
by the plant’s capacity of developing and adapting its RSA to environmental conditions.
Although important progress has been achieved in understanding the molecular and
genomic bases of RSA, the interaction of RSA with the soil matrix is far less understood.
This is mainly due to the opaque nature of the soil which prevents from direct observation
of roots systems and water uptake processes. Novel detailed models which rely on the
knowledge of RSA have been developed for simulating nutrient and water uptake or root
growth and performing “in situ” experiments for testing and validating the impact of
specific root traits (Dunbabin et al., 2002; Doussan et al., 2006; Javaux et al., 2008; Draye
et al., 2010). For these not only the RSA is needed but the full network of nodes with
their connections. Yet, today, characterizing the 3D RSA in situ is still a challenging
task. Various methods were used over the years to obtain root architecture starting
with manual drawing (Kutschera, 1960); light transmission (Garrigues et al., 2006);
rhizotron mini-cameras (Garre et al., 2011); 3D-imaging platform (Iyer-Pascuzzi et al.,
2010; Clark et al., 2011). In the last two decades, however, non-invasive three-dimensional
observation techniques with high resolution have been adapted for root soil interaction
research. These are X-ray tomography, which probes the physical density of the medium
(Wildenschild et al., 2002); neutron tomography (Esser et al., 2010); X-ray microcomputed
tomography (Mairhofer et al., 2012); and magnetic resonance imaging MRI (Pohlmeier
et al., 2008; Pohlmeier et al., 2010; Rascher et al., 2011). Among the root measurement
techniques, MRI possesses several great benefits. MRI can provide 3D images of a strong
heterogeneous sample giving the exact location of the various structures within, with
high spatial resolution. The knowledge about relaxation properties of root tissue and
soil matrix (Pohlmeier et al., 2010; Pohlmeier et al., 2012a) can be used to differentiate
between roots and soil and obtain high resolution 3D architecture of roots growing in
natural soil. As compared to 2D scans or pictures, 3D imaging may also bring more
precise informations on branching connection, explored soil volume and branching angles.
Ideally, all the connections between root segments should be characterized in a unique
way (which is not the case with a 2D image). Limitations in using high field MRI for
root-soil imaging are mainly due to the presence of air bubbles and para- or ferromagnetic
particles in natural soil which lead to susceptibility artifacts caused by local magnetic
field inhomogeneities. This shifts the resonance frequency of the root tissue which is
translated by the subsequent image reconstruction in a shifted location. The roots appear
“pitted” or even gaps in the root strand occur (Menzel et al., 2007). Another difficulty
for achieving good contrast is in wet soils near saturation where transverse relaxation
times of the soil matrix are relatively long compared to the relaxation in the root issue.
Here, long echo times must be used for fading out signal from soil. It should be noted
that also the other 3D imaging techniques mentioned above have in common with MRI
that information about the course of the root strands is sometimes interrupted and noisy.
Therefore such data can not be utilized as input for e.g. inverse modelling or analyis of
the root system architecture.
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What is needed is an image processing procedure, which finally yields a 3D network of
root nodes that represents the RSA with no gaps, since such gaps prevent water flow. In
addition, such a reconstruction should allow for characterization of the root diameter
and exact location distributions.

In this paper, we introduce a novel automated method to recognize and reconstruct
the 3D-RSA using high resolution (0.39 mm) MRI dataset of a three week-old lupin plant
grown in sandy soil material (Pohlmeier et al., 2012b). For validation this automated
method is compared with a semi-manual 3D reconstruction procedure in virtual reality
and a 2D analysis. The automatic reconstruction was performed using software developed
in Bonn University based on a tube similarity measure for blood vessel detection in
MRI images (Sato et al., 1998; Frangi et al., 1998). The semi-manual reconstruction
is performed using the virtual reality system Pi-casso (JSC, FZ Jülich) developed by
S. Wienke and H. Zilken (Winke, 2010) based on ViSTA software platform (Virtual
Reality for Scientific Technical Application) developed at RWTH Aachen (Assenmacher
and Kuhlen, 2010). The 2D skeletonisation is based on SmartRoot algorithm developed by
Lobet et al. (2011). The comparison between the different methods is based on statistical
differences between topological indices. A transient water flow experiment using the
Doussan et al. (1998) model was simulated using both 3D root structures (semi-manual
and automatic) to assess the influence of the observed differences between the root
structures on water potential and water flux within the root xylem.

2 Methods

Our experiment consisted in monitoring the water content distribution dynamics in a pot
with a lupin during a drought experiment. A lupin seedling was planted in a 8× 10 cm
Perspex cylinder, filled with medium sand as growing medium, and watered from the
bottom with Hoagland nutrition solution. Nine days after germination, the cylinder was
saturated to a water content of 0.33 cm3cm−3 and sealed at bottom and top so that water
loss was possible only by transpiration. During the following period, MRI images of the
root system were taken after 0, 11, and 16 days to monitor root system development
during increasing drought stress. From these series, the image obtained at the last date is
chosen here for further analysis, since in this state it was most similar to the photographs
taken after finishing the experiments. The MRI experiments were performed on a 4.7 T
vertical bore superconducting magnet (Magnex Scientific, UK) operated by a Varian
console. The NMR RF-resonator is a birdcage-type resonator with an internal diameter
of 100 mm. The signal from the soil was efficiently suppressed by a long echo time of 20
ms and further by applying a threshold of 16 percent of the maximum signal. Repetiton
time was 30s. The field of view was 100 × 100 mm at a matrix size of 256x256 pixles
resulting in a resolution of 0.39 mm in-slice and a slice thickness of 1.1 mm, and 120 slices
were monitored in interleaved mode. The total measuring time was about 4 hours for
two acquisitions Pohlmeier et al. (2012b).
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Figure 1: Pi-Casso work station used in the semi-manual reconstruction of the lupin RSA.
Two projections of the 3D image with orthogonal polarization are overlaid on
the display and can be viewed by the stereo glasses. The tracking cameras
monitor the motion of the users head, the 3D image can be moved and rotated
by the space navigator, and nodes are defined by clicking using the gyro-stick
(a 3D mouse).

2.1 Automatic Reconstruction

In this section, we summarize the algorithm for automatic root reconstruction described
by Schulz et al. (2012). The algorithm starts with a 3-dimensional MRI image. The unit
of a 3D image is a voxel1. Each voxel is described by a single grey value representing the
signal intensity.

We first enhance the raw data by emphasizing tubular structures (the roots) using an
algorithm developed by Frangi et al. (1998) for blood vessel detection in medical MRI
images. This results in another 3D image, where values in voxels are larger if the local
structure of voxels has similarity to a tube.

The root model we desire should, however, be defined in terms of root segments and
branches, not in terms of voxels. Our multi-step procedure for the automatic extraction
of the root model from the 3D image is summarized hereafter.

2.1.1 Finding Tubular Structures

Tubular structures (root segments, in our case) can be found in the second order derivatives
of an image (Frangi et al., 1998). Locally, the image structure is similar to a tube if in
one direction (where the root grows), grey value does not change much, while in the
other two directions (orthogonal to the first one), grey value drops off equally fast and

1cf. pixel in 2D images
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Figure 2: Construction of nodes and segments using the traced pointer on Pi-Casso
station. A different color is automatically selected by the system for each new
branch. Also shown is the 3D traced pointer, which is a 3D equivalent of the
well known 2D pointer on computer monitors
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rapidly. Here, the change in grey value is captured by the eigenvalues of the Hessian
matrix, while directions are captured by the eigenvectors.

Whether a tube is found depends on the scale. Small roots are found when the
Hessian is calculated in small neighborhood, large roots are found when larger window is
considered. The neighborhood can be varied more efficiently by convolving the image
with a Gaussian distribution with standard deviation σ first and then using a fixed
neighborhood (e.g. all adjacent voxels) to determine the Hessian. The parameter σ is
chosen proportional to the size of the roots we intend to find.

We first pre-process the MRI image by up-sampling to isotropic (equal edge lengths)
voxels using cubic spline interpolation. The resulting image is then convolved with a
Gaussian distribution at scale σ and the tube similarity measure by Frangi et al. (1998),
a function of the eigenvalues, is computed. We repeat this process for all scales and find
the maximum value for each voxel.

In the resulting 3D image, each voxel is represented by a number which is larger if
there exists a scale at which the neighborhood of the voxel has the appearance of a tube.

2.1.2 Determining the Root collar Position

The starting point for model extraction will be the root collar, i.e., the position in the 3D
image where the plant exits the ground. We know the approximate slice (z coordinate)
in the 3D image where this happens due to the measuring process. To find the other
coordinates robustly, we convolve the slice with a Gaussian with large σ to remove
maxima which are due to measurement noise. The maximum in the smoothed slice then
has the x and y coordinates of the root collar.

2.1.3 Determining the Connection between Root Elements

All parts of the root must be connected somehow to the collar position determined above.
This intuition is captured by the concept of a tree in the graph-theoretical sense. To
ease discussion in the following, we briefly introduce several technical terms. A directed
graph is a set of nodes and a set of tuples containing two nodes each. One tuple—usually
referred to as child and parent—defines a directed edge. A tree is a directed graph where
every node has exactly one parent. One node is exempt from this rule, it has no parents.
This is the so-called root node, which in our case corresponds to the root collar.

For every voxel, many paths may lead to the root collar, but we need to choose one.
We decided to select the path where most way-points are similar to a tube. For this
purpose, we define a cost function between two adjacent2 voxels xs and xt as

w(xs,xt) = ‖xt − xs‖ exp (−ω(Vs + Vt)) , [1]

where Vs is the tube similarity measure at position xs and ω is a constant, which we set
to 10. For each voxel in the 3D image we find the path for which the cost is minimal.
We implement this search efficiently using the Dijkstra algorithm (Dijkstra, 1959), which

2We use a 26-neighborhood. In 3D, a voxel has 6 direct and 20 diagonally connected neighbors.

7



finds shortest paths for all voxels simultaneously. For each voxel we then know (a) the
distance in terms of costs to the root collar and (b) a predecessor, that is, the voxel in
its neighborhood which decreases the cost towards the root collar the most. This defines
tree as introduced above.

2.1.4 Model Construction

Every voxel is now connected to the root collar position, but we already know that not
all voxels are part of the root structure. The voxel-based tree needs to be pruned by
removing branches which only represent part of the soil, leaving the tree representing the
root system.

For this purpose, we carefully select voxels which are definitely part of the root system.
They, and the whole path connecting them to the root collar are then retained for the
final root system tree.

The selection is based on two thresholds. The grey value of a selected voxel must
be above some first threshold ν N , where N is the average noise level of the imaging
procedure estimated in air above ground. If the signal-to-noise ratio is low and ν is small,
this is not sufficient, as all spurious measurements would be part of the root system
tree. We therefore define a second threshold, accepting only voxels for which the mass of
their subtree (i.e. all their children, grandchildren, . . . ) is larger than a threshold µN .
The two thresholds can be chosen manually or automatically if the true root system is
known—see Schulz et al. (2012) for details.

The retained graph can now be represented as a graph data structure instead of an
image. The retained voxels are the nodes of this graph, while the predecessor relationship
defines its directed edges.

2.1.5 Subvoxel Positioning

To determine the lengths, surface and volume of root, high-precision positioning of nodes
is essential. So far, nodes are positioned at voxel centers, where we initialized them.
Voxel centers are merely an artefact of the MRI procedure, the true root likely does not
pass through voxel centers. We now apply a iterated mean-shift procedure to move the
nodes to the center of the root with subvoxel precision. At each node n at position xn,
we estimate a covariance matrix Cn in a radius of 3 mm and determine its eigenvalues
λ1 ≤ λ2,≤ λ3 as well as corresponding eigenvectors v1,v2,v3. If λ3 > 1.5λ2, we can
assume that a clear direction is defined and v3 corresponds to the local root direction.
We then move the node to the mean of a neighborhood in the voxel grid, weighted by
the tube similarity measure V. To do so, we choose a 4-neighborhood of xn in the plane
spanned by v1 and v2, and evaluate V by linear interpolation.

Nodes where no main principal axis can be determined (λ3 < 1.5λ2) are moved to
the mean of their immediate neighbors in the root graph. We iterate these steps until
positions stop changing significantly.
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2.1.6 Radius Estimation

We determine the radius of a root assuming a (truncated) symmetric Gaussian cross-
section profile of roots. First, we fit a radial Gaussian function Mn(r) = a exp(−b‖r‖2) +
ν N to the MRI data in the plane defined by the second and third eigenvector of
the covariance matrix Cn at every node n. The parameters a and b are estimated
using unconstrained least squares optimization with the Levenberg-Marquardt algorithm
starting at a = L(xn), the interpolated MRI voxel intensity at the position of node n,
and 1/5 of the expected maximum root radius rmax for the width, i. e. b = 12.5/r2max.
Starting with a thin root hypothesis biases the local optimization towards thin roots
and avoids merging information of two neighboring root segments. The radius is set to b.
Since estimates are noisy, especially for thin roots, we smooth the radius using a robust
median filter over the closest six nodes in the graph.

2.1.7 Algorithm Runtime

Many parts in the described algorithm are inherently parallel. We therefore use a
12 × 2.67 GHz core Intel machine. The runtimes reported are for the 256 × 256 × 120
reference root, which is upsampled to 256× 256× 256. Most processing time is spent for
calculation of the tube similarity measure (30 s per scale). The shortest path selection
amounts to 3 min. Sub-voxel positioning takes 15 s, radius estimation 1.5 min. All other
steps have runtimes totaling in less than 1 min. The complete dataset can therefore be
processed in about 10 min. This is significantly shorter than the measuring time for one
MRI image of the whole root system which takes about 1 hour.

2.2 Manual reconstruction using virtual reality (VR)

The automatically reconstructed RSA is compared with a semi-manual method using a
3D virtual reality system. The setup of the virtual reality system is shown in Fig. 1. It
contains a virtual reality engine and input/output hardware to supply the platform for
simulation. The engine reads the input devices, accesses databases, performs updates for
real-time calculation of the virtual world and is responsible for presenting the results to
the output device. These tasks are performed by a desktop computer in cooperation with
the visualization system PI-casso which includes a display, tracking cameras, tracked
stereo glasses, tracked gyro-stick (a 3D mouse) and the space navigator as output/input
devices. ViSTA is a software platform that allows for integration of VR technology and
interactive 3-D visualization (Assenmacher and Kuhlen, 2010). After cutting off voxels
below a manually determined threshold, the MRI root image is visualized in VR. The
reconstruction of the root was carried out manually by creating nodes and root segments
using the gyro-stick, which is represented on the 3D working environment by a traced
pointer (Fig. 2). The user first defines the parent node, which is the point, where the
shoot enters the soil domain. This is termed in Sec. 2.1.2 as “root of the tree” in the
graph theoretical sense. Then further descendants nodes are defined and automatically
connected to the parent node by segments. The user must also define the thickness of
the segments, which later defines their surface area through which water uptake takes
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place, by the gyro-stick. Then further nodes and segments are added until the whole
root system is defined. The developed software provides the user with the option to store
and later reload the reconstructed root system. The final root system architecture is
hierarchically structured in a single tree and stored in ASCII format in the corresponding
RSWMS input file (Javaux et al., 2008). In addition to the x, y, and z coordinates of each
node, the ID-s number of the node and the branching order, the surface area of each root
segment, the length of the root segment and its mass are also calculated. The surface
area of each segment is a morphological characteristic of particularly importance because
it affects the amount of water absorption. The time needed for the whole procedure was
about 3 hours. Detailed information about development of the virtual reality system can
be found in Winke (2010).

2.3 2D skeletonisation

The 2D skeletonization of the lupin root is based on SmartRoot image analysis toolbox
developed by Lobet et al. (2011). Firstly, the root was extracted from the soil, washed
and spread on a horizontal plate to avoid as much as possible overlapping of branches.
Next, the root was photographed. The 2D photo was used to trace the root architecture
and topology using SmartRoot. Citing the authors, “SmartRoot is semiautomated image
analysis software that combines vectorial representation of root objects with a tracing
algorithm that determines the center of the root at a picked position by mouse click and,
continues with a stepwise reconstruction of the root segments backward and forward to
the tip and the basis of the root. It is implemented as a plug-in of the ImageJ software
(Rasband, 2011)”. Detailed explanations on how SmartRoot works can be found in Lobet
et al. (2011).

2.4 Simulation of root water uptake

As stated before, one of the main aims of this paper is to establish an automated
reconstruction method that reliably creates a continuous, hierarchical root system from
3D volume graphics data sets. Therefore as final check of the convenience of the obtained
root system, we have simulated root water uptake by the Doussan et al. (1998) model. It
aims in finding the pressure head and root water uptake distribution in the root given
certain collar boundary conditions and soil pressure head distribution. In the Doussan
model, the pressure head in the roots is obtained by solving a system of equations:

C ∗Ψ = Q, [2]

where C is the conductance matrix, Q contains the soil physical parameters (water content,
hydraulic conductivity), and Ψ is the root (xylem) water potential. A complete description
of this equation is given in Doussan et al. (1998). The boundary conditions were defined
at the root collar as a water flux of 1 cm day−1. The model was initialized in pressure
head (−100 cm) and constant axial and radial conductivities of the roots were assumed for
the entire root network. The conductivity values used in the simulations were obtained
from literature to be 1.67 · 10−9 cm s−1cm−1 (recalculated from 1.7 · 10−7 m MPa−1s−1,

10



(Bramley et al., 2007) ) for the radial conductivity, the highest value they found for lupin,
and 2.45 · 10−7 cm4s−1cm−1 for the axial conductivity from the same source.

3 Results and Discussions

The obtained MRI image of the lupin root is presented in Fig. 3a. Discontinuities along
root branches can easily be observed (see also Fig. 2). These large gaps are not realistic,
they are the result of high threshold values imposed to differentiate the root structure
from the surrounding soil. This effect demonstrates that reconstruction of the root system
architecture (RSA) is needed to obtain a continuous structure which is necessary for sim-
ulation and evaluation of hydraulic events. The manually reconstructed root architecture
as obtained from the Pi-casso virtual system is presented in Fig. 3b. The reconstruction
allows root system skeletonisation, e. g. transformation of MRI image into a compatible
file, which contains spatial coordinates of nodes, branch order and information about seg-
ments dimension necessary for simulating root water uptake. The root skeleton obtained
from Pi-casso semi-manual reconstruction has 1 ax (main root), 105 branches, 106 tips,
and 3308 segments. In comparison, the root architecture obtained by automatic recon-
struction is presented in Fig. 3c. The root skeleton obtained by automatic reconstruction
has 1 ax (main root), 226 branches, 227 tips, and 2667 segments. When visually compared
with “semi-manual”, the “automatic” RSA show small differences in the connectivity
of the branches due to the fact that the automatic reconstruction is based on Dijkstra
algorithm, which searches for the minimum-cost path to connect two neighboring nodes,
which is not necessarily optimal according to a biological model. In order to quantify
the differences between the two reconstructions, various indices were estimated based
on the reconstructed RSA and summarized in Tab. 1. It can be seen that the obtained
RSA vary in number of branches, segments, and connectivity of the segments, but do not
vary extensively in the average diameter of the segments (0.137 cm for semi-manual and
0.143 cm for automatic RSA); total root surface (127 cm2 for semi-manual and 124 cm2

for automatic RSA); total root length 293 cm for semi-manual and 282 cm for automatic
RSA), and total root volume (4.7 cm3 for semi-manual and 4.7 cm3 for automatic RSA).
In general, both RSA exhibit comparable values for these parameters.

These parameters are compared for a better assessment with parameters obtained
by tracing the same root from a 2D photo using SmartRoot image analysis toolbox
developed by Lobet et al. (2011). The 2D photo together with its tracing is shown in
Fig. 3d. It shows overlapped branches which cannot trivially be traced individually, as
well as thin roots close to higher order branches that have been considered as one thicker
or thinner segment when root diameter was estimated. The calculated parameters from
the 2D skeletonization are also included in Tab. 1. The total root lengths obtained by all
three methods agree quite satisfactory. This proves that MRI has detected the majority
of all roots. The major difference is smaller average segment diameter obtained from
2D (0.078 cm) compared to the reconstructed data (0.137 and 0.143 cm, respectively).
This results in smaller root surface areas and smaller total root volumes. The reasons for
this effect are not yet fully clear. One possible explanation is the partial volume effect
of MRI data, which classifies all voxels as roots irrespective of whether they are filled
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completely or only partially by a root.
Further, we quantify for the observed variations with the depth of the soil domain by

describing the root architecture as density functions of both, geometrical and topological
properties (Fig. 4) according to the mathematical approach of Dupuy et al. (2010). The
soil domain is discretized and the density profiles of various root system parameters are
calculated from the spatial location of the root segments and tips as functions of grid
element volume. The root length density is the total segment length divided by the grid
volume and integrated over the axial slice. Analogously, the root surface and root volume
densities are defined as integral segment and volume per slice. Root branch and apex
densities aim in finding the distribution of the nodes at which branching occurs and the
distribution of the apexes over the slice volume. The root length density, root surface
density and root volume density are nearly identical in values and shape of the profiles.
Also, the shapes agree very well with the root density profile obtained directly from the
evaluation of the MRI images by axial integration (Pohlmeier et al., 2012b).

The distribution of the number of roots per depth of the soil differs slightly between
the two structures with less roots for automatic RSA, especially in the upper part of the
soil domain. This could be explained by different threshold values imposed in both, semi-
manual and automatic reconstruction to suppress the signal from soil. Due to differences
in the data processing (single threshold for semi-manual RSA and two thresholds for
automated RSA, see Sec. 2.1.4) these threshold values can’t be set equal. Therefore,
sparse pixels defining very fine roots with signal intensity close to the threshold value
may faint out together with soil signal. The shape of the apex densities is similar for
both root structures with the difference that for automatic RSA the profiles are shifted
to higher values. This can be explained by the differences in the number of traced root
segments. The automated reconstruction generates more root branches and thus root
apices, by artificially cutting root segments which should be connected. However,this is
not a defining parameter of the roots since in both methods the number of segments can
be easily influenced and modified by the user. Branching density profiles show that for the
automatic RSA the branching occurs in a more shallow soil layer than for semi-manual
RSA. This can be a measure of the differences in the connectivity of the branches which
varies for the automatic reconstruction due to the limitations of Dijkstra algorithm.

In order to assess how these differences in the root architecture affect the root water
uptake, simulations using both root structures were performed using the algorithm
developed by Doussan et al. (1998). The results of the simulation are shown in Fig. 5.
The water potential and radial flux of the semi-manual automatic RSA are displayed, with
visible differences both in values as well as in their distribution along the root network.
The evolution of the water potential and water flux follows closely the transpiration
rate applied at the root collar, but the response decreases in the direction of the root
base, for both structures as a result of uniformity assumed in the hydraulic conductivity
distribution. The differences in the distribution of water potential and radial flux are a
clear indication of the differences between roots structure since the most visible differences
are localized in areas with differences in the connectivity of the branches. The most
obvious difference occur in the central, top region. In the semi-manual RSA the local
fluxes are distributed over more root segments than in the automatic RSA. Hence, in
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Nr. Parameter Units Manual Automatic SmartRoot

1 Nr. of axes - 1 1 1
2 Nr. of branches - 105 226 187
3 Nr. of segments - 3308 2667 1799
4 Avg. diameter of the segments cm 0.137 0.143 0.078
5 Standard deviation of avg. diameter - 0.056 0.05 0.03
6 Minimum diameter cm 0.026 0.055 0.025
7 Maximum diameter cm 0.332 0.408 0.331
8 Total root length cm 293.5 281.7 281.7
9 Total root surface cm2 127.3 123.9 90.93

10 Total root volume cm3 4.765 4.705 3.78
11 Average root collar flow cm day−1 0.007 0.008 –

Table 1: Roots calculated parameters. Note that the average transpiration value was
calculated for an imposed potential transpiration of 1 cm day−1

this region the local flow velocities are with about 0.7 cm day−1 somewhat smaller than
in the automatic RSA (about 1.2 cm day−1).

4 Summary and Conclusions

In the present study, we tested two methods of reconstructing the 3D root system
architecture of a lupin plant, grown in sandy soil, from high-resolution MRI images, with
respect to root system connectivity, water uptake and transport properties. The first
method was semi-manual reconstruction using virtual reality and the second method was
an automatic reconstruction based on local detection of tubular structures and globally
enforced connectivity. The methods were validated by a 2D classical skeletonization. The
obtained root structures showed variations in the connectivity of segments. Less differences
were encountered in the root parameters (number of branches and segments, diameters
of the segments, total surface, and total volume). This is assumed to be influenced
by different threshold values imposed in semi-manual and automatic reconstruction of
the roots to differentiate the root structure from the soil domain. From the outcome
of the two reconstructions, it was shown that automatic annotation gives objective
results of equal quality to the semi-manual one, suitable for large-scale experiments
and repeatable for the same type of soil and root. Qualitatively, both methods shift
root diameter towards larger values in comparison with the MRI image resolution. To
assess the influence of the observed differences between the root structures on root water
uptake and xylem pressure head distribution, simulations using Doussan numerical model
were performed in a homogeneous soil and assuming a homogeneous distribution of root
hydraulic conductivity. From the outcome of the simulations, it was shown that the
distribution of the water flux and xylem water potential is slightly different for each root
structure, with lower values for the automatic reconstruction. The main differences in
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water flux and xylem water potential are localized in areas where the two root structures
show differences in segments connectivity. This is expected, since in the automatic
annotation algorithm no experimental information about root segments connectivity is
introduced. Incorporating such knowledge is subject of further research.
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Figure 5: Results of water flux simulation in the root system with the Doussan model
using the semi-manual (left column) and automated RSA (right column). Top
row: Water potential and bottom row: water flux distribution. The circles mark
region of different connectivity assumed by the automatic method (upward
growing roots).
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