
Locally-connected Hierarchical Neural Networks
for GPU-accelerated Object Recognition

Rafael Uetz and Sven Behnke
Autonomous Intelligent Systems Group

Institute of Computer Science VI
University of Bonn, Germany

uetz@ais.uni-bonn.de, behnke@cs.uni-bonn.de

Abstract

Convolutional neural networks have achieved good recognition results on image
datasets while being computationally efficient, i.e., scaling well with the number
of training patterns and the resolution of the patterns. Here we investigate a neu-
ral network model that has a similar hierarchical structure, but does not employ
weight sharing. Instead, each neuron has a fixed receptive field with unique con-
nection weights. To deal with the enormous number of weights resulting from
this architecture, we implemented a parallel version of the model using Nvidia’s
CUDA framework. This implementation is up to 82 times faster than a serial CPU
implementation. Our model achieves state-of-the-art recognition performance on
the NORB normalized-uniform dataset (2.87% error rate) and good results on the
MNIST dataset (0.76% error rate). This suggests that large networks with local,
non-shared connections might be an interesting architecture for object recognition
tasks. To further evaluate the model, we created a large, publicly available train-
ing and testing set, which consists of objects extracted from the LabelMe natural
image dataset.

1 Introduction

Recent theoretical and experimental results suggest that learning machines with deep, hierarchical
structures may outperform flat architectures in solving difficult object recognition tasks [2, 5]. One
such architecture is the Convolutional neural network (CNN) model [7], which has achieved state-
of-the-art recognition results [4, 11] for the MNIST [8] and NORB [3, 9] datasets.

In this paper, we propose a new neural network model called Locally-connected Neural Pyramid
(LCNP). Its hierarchical structure is similar to models such as CNNs and the Neural Abstraction
Pyramid [1]. However, the model does not employ weight sharing. Instead, each neuron has a
fixed receptive field with unique connection weights, resulting in a much larger overall number of
free parameters in the network compared to CNNs. This design decision is biologically motivated
because the same connection structure is massively used by the human brain [6]. Despite the “curse
of dimensionality”-hypothesis, our model achieves state-of-the-art results on the NORB dataset and
good results on the MNIST dataset.

To scale the model towards large object recognition tasks, we implemented it on GPU using the
Nvidia CUDA framework [10]. The inherent parallelism of the local connectivity allows for high
speedup factors compared to serial implementations. We do not describe the techniques used for
the parallel implementation here because we focus on the network model and on the experimental
results.

1

behnke
Schreibmaschine
In Proceeding of NIPS 2009 Workshop on Large-Scale Machine Learning: Parallelism and Massive Datasets, Whistler, Canada, December 2009.



(a)

layer 0

layer 1

layer L-1

maps {

...

...

output layer

fo
rw

a
rd

 p
ro

p
a
g
a
ti

o
n

(b)
map of layer l

map of layer l+1

receptive fields

Figure 1: (a) Basic structure of the LCNP. (b) Receptive fields of two exemplary neurons.

2 The Locally-connected Neural Pyramid (LCNP)

The basic structure of our model is depicted in Figure 1 (a). There are L ≥ 1 regular layers and one
output layer. Each regular layer l ∈ {0, . . . , L − 1} consists of at least one map, each map being a
two-dimensional, square array of Nl×Nl neurons. The neuron model is the same as for multi-layer
perceptrons [12]. We use the hyperbolic tangent as activation function. Maps of a specific layer
all have the same size, whereas the size of maps in consecutive layers decreases by a factor of 2 so
that Nl = 1

2Nl−1. The number of maps increases with each layer. This map structure ensures an
increasing spacial invariance while the number of features for each position increases at the same
time. In contrast to the regular layers, the output layer is a one-dimensional array of neurons, each
representing one object class (one-hot encoding).

Any two maps i and j of two consecutive regular layers l and l+1, l ∈ {0, 1, . . . , L−2}, respectively,
can potentially be connected by a map connection. A map connection is a local connection structure
between two maps where each neuron of map j has connections to an adjacent set of neurons in
map i, called the receptive field of the neuron in map j. We chose the size of the receptive field to
be 4× 4 neurons. As the maps of layer l are twice as large as the maps of layer l + 1, the receptive
fields overlap by 50 % in each dimension (see Figure 1 (b)). The highest regular layer L− 1 is fully
connected to the output layer.

The model is a pure feed-forward architecture. Learning is supervised and done via “plain-vanilla”
backpropagation of error. We use a fixed learning rate ηl = 0.01 ·2L−l for map connections between
layer l− 1 and l, l ∈ {1, . . . , L− 1}, and ηo = 0.0001 for the full connections between layer L− 1
and the output layer. All connection weights of the network are initialized randomly in the range
[− 1√

n
, 1√

n
], where n is the number of inbound connections for a specific neuron.

Any map of each regular layer can be used as an input map by setting the activation values of its
neurons to the desired input values. We apply two techniques to improve the recognition results:
Firstly, several kinds of input maps are used. For the MNIST and NORB experiments described in
Section 4, we used one input map resembling the raw grayscale images and four input maps resem-
bling edge channels. The latter are calculated by four simple edge filters of different orientations,
each with a 2×2 filter kernel. For the experiments with our LabelMe-12-50k dataset (described
in the next section), we used three color channels instead of the grayscale channel, resulting in a
total number of seven input maps. Secondly, the described input maps exist in every regular layer
(not just in the lowest layer). This is done by first subsampling the original input image multi-
ple times to the size of all regular layer’s maps. The described input channels are then calculated
from these subsampled images. An advantage of this method is that the edge filters on lower lay-
ers extract fine-grained edges while those of higher layers extract coarse-grained edges. Similarly,
the grayscale/color channels of lower layers represent fine details, whereas those of higher layers
represent coarse regions.

3 The LabelMe-12-50k dataset

Our main goal in creating a new dataset was to use natural images with a great variety of object
instances, lighting conditions, and angles of view. We chose to extract the training and testing im-
ages from the LabelMe dataset [13], which consists of more than 175,000 natural images, most of

2



tree car building window person keyboard sign clutter

Figure 2: Images from our training set. The object class is denoted below the image.

them showing street and indoor scenes. We extracted 40,000 color JPEG images for training and
10,000 for testing. Each image is 256×256 pixels in size and either shows one centered object or
a randomly selected region of a randomly selected LabelMe image (“clutter”). There are 12 object
classes: “person”, “car”, “building”, “window”, “tree”, “sign”, “door”, “bookshelf”, “chair”, “ta-
ble”, “keyboard”, and “head”. Further information on our dataset can be found on our website [14].
The dataset is also available for downloaded there. Figure 2 shows some images of the training set.

4 Experimental results

The recognition performance of our system was tested for three datasets:

1. The MNIST dataset [8], which consists of 70,000 grayscale images (60,000 for training
and 10,000 for testing). Each image shows one handwritten digit.

2. The NORB normalized-uniform dataset [9], which consists of stereoscopic grayscale im-
ages of 50 toys, belonging to 5 categories. Each of the 48,600 images (24,300 for training
and 24,300 for testing) shows one toy under different lighting conditions, elevations and
azimuths.

3. The LabelMe-12-50k dataset described above.

We used almost the same network structure and exactly the same parameters for training these
datasets. The only difference was the number of input maps per layer: 5 for MNIST (grayscale +
4×edges), 7 for LabelMe-12-50k (3×color + 4×edges), and 10 for NORB (grayscale + 4×edges
for each of the two stereoscopic channels). The network used for the measurements has five regular
layers with the dimensions 256×256, 128×128, . . ., 16×16, so images of LabelMe-12-50k exactly
fit into the maps of the lowest layer. Images of MNIST and NORB are initially enlarged to the same
size, so the number of free parameters was equal for all datasets. In addition to the input maps, there
are 2l non-input maps in each regular layer l ∈ {1, . . . , L − 1}, which have map connections to
each map (input and non-input) of layer l − 1. Training images were randomly shifted by ±5 % of
the map size during the training phase in order to improve generalization. Testing images were not
shifted. The order of the training patterns was permuted randomly in each epoch.

The recognition results are shown in Table 1. The training and testing error rates denote the percent-
age of incorrectly classified patterns of the whole training and testing set, respectively. All results
were measured after training for 1000 epochs and are averaged over 10 epochs. However, similar
recognition rates appeared much earlier. The testing error rate of MNIST was 3.86 % after one epoch
and < 1 % after about 35 epochs. For NORB, it was 18.35 % after one epoch and < 5 % after about
20 epochs. We did not observe any significant overtraining (however, overtraining was a problem
when not shifting the training images randomly).

For our speed measurements, we used an Intel Core i7 940 CPU and an Nvidia GeForce GTX 285
graphics card on a Linux system with 12 GB of RAM. With the network structure described above,
we obtained a speedup factor of 43.5 compared to a serial CPU version of the system (using one
CPU core only), which was compiled with g++ and the O2 flag set. As we did not optimize the
speed of the CPU version manually, the comparison of the speed serves as a rough baseline only.
Depending on the specific network structure, the speedup factor is between 7.7 and 82.2 for very
small and very large networks, respectively. The absolute GPU runtime for one training epoch of the
LabelMe-12-50k dataset is 70.2 seconds when using the network structure described above. As one
epoch consists of 40,000 images, the network processes about 570 images per second in the training
phase. In the recall phase, the network processes about 1,356 images per second.

3



Dataset Training error rate Testing error rate
MNIST 0.03 % 0.76 %
NORB normalized-uniform 0.05 % 2.87 %
LabelMe-12-50k 3.77 % 16.27 %

Table 1: Training and testing error rates

5 Conclusions

We presented a neural network model called Locally-connected Neural Pyramid (LCNP). The main
concepts of this model are its hierarchical structure, the local connectivity without weight sharing,
the use of subsampled inputs in all hierarchical layers, and the local preprocessing of the input
patterns. The recognition performance of our model is competitive with state-of-the-art approaches.
For the MNIST dataset, most approaches achieving better results (see [8] for a comprehensive list)
use sophisticated preprocessing algorithms and/or unsupervised pretraining. For the NORB dataset,
our results are (to our knowledge) the best ones achieved so far. The parallel implementation of our
model allows for large-scale object recognition systems and an unprecedented size of training and
testing datasets.

Future work will focus on training with extremely large natural image datasets by keeping com-
pressed JPEG images in the main memory and uncompressing them “on the fly” during the training
phase. We are also planning to employ de-noising autoencoders for unsupervised pretraining and
recurrent network structures for an iterative refinement of the output.

References
[1] Sven Behnke. Hierarchical Neural Networks for Image Interpretation, volume 2766 of Lecture Notes in

Computer Science. Springer, 2003.

[2] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2:1,
2009.

[3] Fu Jie Huang and Yann LeCun. The Small NORB Dataset, V1.0, 2005. http://www.cs.nyu.edu/
˜ylclab/data/norb-v1.0-small/.

[4] Fu-Jie Huang and Yann LeCun. Large-Scale Learning with SVM and Convolutional Nets for Generic
Object Categorization. In Proc. CVPR’06. IEEE Press, 2006.

[5] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best multi-stage
architecture for object recognition? In Proc. International Conference on Computer Vision (ICCV’09).
IEEE, 2009.

[6] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessel. Principles of Neural Science. McGraw-Hill,
4 edition, 2000.

[7] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[8] Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits. http://yann.lecun.
com/exdb/mnist/.

[9] Yann LeCun, Fu Jie Huang, and Lon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In Proceedings of CVPR04. IEEE Press, 2004.

[10] NVIDIA Corporation. CUDA Programming Guide, version 2.2, 2009.

[11] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient learning of
sparse representations with an energy-based model. Advances in Neural Information Processing Systems,
19, 2006.

[12] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65(6), 1958.

[13] B. C. Russell, A. Torralba, K.P. Murphy, and W. T. Freeman. LabelMe: a database and web-based tool
for image annotation. International Journal of Computer Vision, 77(1–3):157–173, 2008.

[14] Rafael Uetz. The LabelMe-12-50k dataset. http://www.ais.uni-bonn.de/download/
datasets.html.

4


