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ABSTRACT:

For autonomous navigation of micro aerial vehicles (MAVs), a robust detection of obstacles with onboard sensors is necessary in order to
avoid collisions. Cameras have the potential to perceive the surroundings of MAVs for the reconstruction of their 3D structure. We
equipped our MAV with two fisheye stereo camera pairs to achieve an omnidirectional field-of-view. Most stereo algorithms are designed
for the standard pinhole camera model, though. Hence, the distortion effects of the fisheye lenses must be properly modeled and model
parameters must be identified by suitable calibration procedures. In this work, we evaluate the use of real-time stereo algorithms for
depth reconstruction from fisheye cameras together with different methods for calibration. In our experiments, we focus on obstacles
occurring in urban environments that are hard to detect due to their low diameter or homogeneous texture.

1. INTRODUCTION

In recent years, micro aerial vehicles (MAVs) such as multicopters
have become increasingly popular as a research tool and for ap-
plications like inspection tasks. Due to their low costs, small size,
and the ability to hover, it is possible to reach locations, which
are inaccessible or dangerous for humans or ground vehicles. Up
to now, most MAVs are remotely controlled by a human operator
and when constructing autonomous MAVs, payload limitations
are one of the main challenges. Due to their small size and low
weight, cameras are potential sensors for several tasks: from visual
odometry over simultaneous localization and mapping (SLAM)
and 3D surface reconstruction to visual obstacle detection. In
contrast to infrared-based depth cameras, stereo vision works both
indoors and outdoors, and does not suffer from scale ambiguity
like monocular cameras do. Nevertheless, for computing accurate
disparity maps they might require elaborate and slow stereo vi-
sion processing. While for many uses, some errors in detection
of visual features are acceptable, reliable navigation in complex
3D environments cannot tolerate missing detections, as the MAV
could collide with them, nor false positive detections, as they
restrict the free space the MAV needs for navigation.

Our MAV, shown in Fig. 1, is equipped with four uEye 1221LE-M
cameras forming two stereo camera pairs, facing forward and
backward. For an omnidirectional view, the cameras are equipped
with fisheye lenses—each with a field of view of up to 180◦. To
ensure reliable obstacle detection, a continuously rotating 3D
laser scanner (Droeschel et al., 2014) and a ring of ultrasound
sensors are used. The cameras provide dense measurements with
high frequency in comparison to the other sensors: They capture
images with 20Hz while the laser scanner operates with 2Hz.
We use the MAV for autonomous navigation in the vicinity of
obstacles (Droeschel et al., 2015).

In order to take advantage of the different properties and strengths
of the complementary sensors, their measurements are fused into
an egocentric multimodal obstacle representation. Figure 2 shows
an exemplary scene where a vertical cable is not perceived by
the continuously rotating 3D laser scanner but is visible in the
disparity map of the stereo cameras.

Figure 1: Our MAV is equipped with a variety of complementary
sensors including two stereo camera pairs facing forward and
backward.

The contribution of this paper is an evaluation of the suitability
of stereo algorithms for obstacle detection on MAVs. We inves-
tigate multiple real-time stereo algorithms in combination with
different calibration techniques. The major challenge hereby is
the modeling of the fisheye lenses, which capture highly radial dis-
torted images that need to be rectified in real-time on the onboard
computer.

2. RELATED WORK

In recent years, research towards autonomous control of MAVs
in complex 3D environments increased considerably. The ability
to reliably detect and avoid obstacles is of utmost importance
for these tasks. Many research groups equip their MAVs with
cameras, but reliable visual detection of obstacles is challenging.

While approaches using a single monocular camera are in principle
possible, they require either extensive training data from a skilled
pilot in the application domain (Ross et al., 2013), or movement
of the MAV in order to perceive surface points from different
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Figure 2: Fusion of dense stereo measurements and measurements from a continuously rotating laser scanner in an occupancy grid
map. a) The raw image of a vertical hanging cable at 3m distance. b) A dense disparity map showing the detection of the cable. c) A
horizontal cut through the occupancy grid map with laser measurements only. d) The grid map after fusing with the stereo measurements.
The obstacle is circled blue, whereas the position of the MAV is circled red. White cells correspond to free space, black cells to occupied
space, and gray cells to unknown space.

perspectives. Therefore, stereo cameras are used to estimate depth
instantaneously, although onboard computation of dense stereo is
challenging and necessitates ample processing power.

To cope with the high computational requirements special purpose
hardware can be used to calculate the disparity image (Oleynikova
et al., 2015). Another recent approach handles the computational
limitations by estimating disparities only at a single depth (Barry
and Tedrake, 2015).

In (Heng et al., 2011) a quadrotor is equipped with two stereo cam-
era pairs to estimate an occupancy grid map for obstacle avoidance.
They maintain the output of the OpenCV implementation of the
block matching algorithm as 3D point clouds in a 3D occupancy
map.

For a more reliable state estimation, cameras are often used in
combination with an IMU. With this minimal sensor setup, MAVs
are able for autonomous vision-based navigation indoors and out-
doors (Schmid et al., 2014). Other groups use the output from
stereo matching algorithms as input to visual odometry and offline
visual SLAM for autonomous mapping and exploration with a
MAV (Fraundorfer et al., 2012).

The majority of these setups use cameras with a small field of view
(FOV) less than 130◦, so that the general pinhole camera model
can be applied. Only limited work has been proposed for the use
with fisheye lenses. For example (Häne et al., 2014) use fisheye
stereo cameras, which are mounted on a car and on an AscTec
Firefly quadcopter, to create dense maps of the environment by
using an adapted camera projection model. Dense disparity maps
are computed in real-time on a modern GPU using an adapted
Plane-Sweep.

For the computation of disparity maps from stereo cameras a
variety of stereo algorithms exists, which can be classified into
local, global, semi-global, and seed-and-grow methods (Scharstein
et al., 2001).

Local methods have the advantage that they are fast to compute,
but they are in most cases not able to retrieve a dense represen-
tation of the scene. Representatives of local methods are, e.g.,
Block Matching (Szeliski and Scharstein, 2002), Adaptive Win-
dows (Kanade and Okutomi, 1991), (Yoon and Kweon, 2006) and
Plane-Sweep (Collins, 1996), (Gallup et al., 2007). They often use

cost functions measuring the similarity over local image patches,
like the sum of squared distances (SSD), the sum of absolute dis-
tances (SAD) or the normalized cross-correlation (NCC). One
challenge of local methods is the choice of the window size: if
chosen too small or too large, problems with finding the right
corresponding patch arise, because either not enough information
is integrated or irrelevant image parts are considered. Especially
in image regions with low texture, local methods often fail due to
their use of only local similarity.

On the other hand, global methods compute a disparity distribu-
tion over all pixels by minimizing a global 2D energy function—
generally consisting of a data fitting term and a smoothness term.
Since they search for a global minimization, which finds a cor-
respondence for every pixel, they are able to compute a dense
disparity map. In most cases, this optimization is NP-hard—so the
global methods need much more resources and computation time
than local methods. Popular approximations are Graph Cuts (Kol-
mogorov and Zabih, 2001), Belief Propagation (Felzenszwalb and
Huttenlocher, 2004), or Variational Methods (Kosov et al., 2009).

Semi-global methods, e.g. (Hirschmüller, 2008), try to find a
balance between global energy minimization and low computation
time by combining the local correspondence search with several
1D global energy functions along scan-lines. Another possibility
for finding stereo correspondences are so-called Seed-and-Grow
methods (Cech and Sara, 2007), (Kostkov, 2003). Starting from
random seeds, disparities are grown.

For our task, we focus on algorithms which run in real-time and,
in the best case, compute a dense disparity map. We compare
representatives of local, semi-global and global methods which
are implemented in OpenCV (Bradski, 2000) as well as a prob-
abilistic approach available as ROS1 package. A drawback of
the usage of these algorithms for our task is that they were not
designed for fisheye lenses. Therefore we need to evaluate their
suitability for visual obstacle detection with fisheye stereo. As
all methods need rectified image pairs, we evaluate them together
with different available camera calibration methods. We focus on
the OpenCV stereo calibration available in ROS as well as a stereo
calibration, which uses a camera model especially designed for
fisheye lenses (Abraham and Foerstner, 2005).

1Robot Operating System, http://www.ros.org
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Figure 3: a) Pinhole camera model. b) Fisheye camera model.

3. CAMERA CALIBRATION

The main goal of the calibration of our cameras is to rectify the
stereo images, so that corresponding epipolar lines lie in the same
image rows. We compare two different models: the pinhole cam-
era model, which is widely used as basic camera model, and the
epipolar equi-distant model suited well for fisheye lenses.

3.1 PINHOLE MODEL

We make use of the available stereo calibration in ROS, which
implements the OpenCV camera calibration based on the Mat-
lab calibration tool by Bouguet2 and on the calibration technique
by (Zhang, 2000). It automatically detects the calibration object, a
2D-checker board, presented to the stereo cameras and estimates
the intrinsic and extrinsic parameters of the stereo setup. The un-
derlying camera model is the pinhole camera model, illustrated in
Fig. 3(a), projecting a 3D point (X,Y, Z)T into image coordinates
(u, v)T with:
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The distortion coefficients k1, ..., k6 model the radial distortion
and p1, p2 the tangential distortion. We will evaluate how well
this calibration can be applied to model our fisheye stereo setup.

3.2 EPIPOLAR EQUI-DISTANT MODEL

As a second calibration method, we employ the epipolar equi-
distant model for fisheye cameras (Abraham and Foerstner, 2005).
This model describes the projection of a spherical image onto a
plane as shown in Fig. 3(b). In this model, a slightly different
projection function is used:

2Calibration Toolbox, www.vision.caltech.edu/bouguetj/calib doc

Table 1: Overview of the four different calibrations we evaluated.

Name Distortion model Rectification on
Physical Physical (A1, A2) Sphere
Chebychev Chebychev (3rd degree) Sphere
Planar Physical (A1, A2) Plane
OpenCV Pinhole Plane

u = fψ + cu, v = fβ + cv,

ψ = arctan
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)
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Y

Z

)
.
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For modeling the lens distortion, two different approaches are eval-
uated: (1) using physical-based polynomials or (2) using Cheby-
chev polynomials. Both methods are described in (Abraham and
Foerstner, 2005). For the rectification of a stereo camera system,
one has the possibility to choose between the projection onto a
plane or onto a sphere with epipolar lines.

An overview of the different calibration models that we evaluate
is given in Table 1.

4. STEREO ALGORITHMS

For the selection of different state-of-the-art stereo algorithms,
which are publicly available and ready to use, we search for meth-
ods that find correspondences in real-time. We select different
algorithms from local, semi-global, global, and probabilistic types.
In addition to the runtime, we evaluate the amount of noise and
speckles in the resulting disparity maps.

A very popular local correspondence algorithm is Block Match-
ing (BM) (Konolige, 1997), computing stereo matches that min-
imize the SAD over a local neighborhood. Similar to this, Semi
Global Block Matching (SGBM), based on Semi-Global Match-
ing (Hirschmüller, 2008), is available in OpenCV, which com-
bines a SAD-based local cost-function and a smoothness-term in
a global energy function. In contrast to these more or less local
methods, Variational Matching (VAR) (Kosov et al., 2009) is used
as a global algorithm to minimize an energy functional over all
pixels. A probabilistic approach for stereo matching is Efficient
Large-Scale Stereo Matching (ELAS) (Geiger et al., 2010). By
using a triangulation over so-called support points, which can be
robustly matched between the two views, a prior for the dispar-
ity search is computed and Bayes’ law is applied to compute a
MAP-estimate for the remaining pixel, yielding a dense disparity
image.

We tested various parametrizations of the different algorithms to
minimize noise and wrong correspondences. For all algorithms,
we used a maximal disparity range of 100px, leading to a detection
of obstacles at distances larger than ∼50 cm:

Z =
fB

d
=

256px · 20 cm
100px

= 51.2 cm. (4)

To minimize wrong matches in the disparity images of the block
matching algorithms, we set the SAD-window size to 19px. Fur-
thermore, we use the available pre- and post-processing steps,
which include a normalization filter for the image intensities and
a speckle filter to eliminate speckles in the disparity image. For
Variational Matching, we use three pyramid layers with 25 itera-
tions of the algorithm on each layer. For the smoothness term, we



employ the Tichonov Penalization which enforces linear smooth-
ness over the disparity distribution. ELAS already comes with
different parameter presets, which we only modify slightly for our
needs: Also here, we set the disparity to 100px and enable the
adaptive mean filter.

5. EXPERIMENTS AND RESULTS

Figure 4: We evaluated the stereo algorithms on five different
obstacles with challenging diameters. Top row: Tree (25 cm),
street light pole (12 cm). Middle row: Site fence (0.2 cm - 4 cm),
vegetation. Bottom row: Horizontal and vertical cables (1 cm).

For evaluation, we repeatedly measured the distances from the
MAV to five different obstacles discretized in 1m steps from 1m
to 10m. As shown in Fig. 4, we selected natural urban obsta-
cles with different diameters: a tree (�25 cm), a street light pole
(�12 cm), a site fence (�0.2 cm–4 cm), vegetation, and a power
cable (�1 cm), spanned vertically and horizontally. Particularly
difficult to detect are the obstacles with very small diameter and
the horizontal cable. The MAV was fixed in height for better com-
parison. We used manual and laser scan measurements as ground
truth. In total, we recorded 132 datasets with an image resolution
of 752×480 pixels.

All computations have been carried out on an Intel Core i7 CPU
with 2.2 Ghz. The recorded images have been rectified using the
four different calibrations, which were estimated beforehand as
described in Section 3. When rectifying the images to a plane, a
part of the recorded scene—visible in the raw image—is cut off
due to the geometry of the fisheye images. In consequence, the
information gained by using a wide FOV is lost in the undistortion
step where we project the spherical image onto a plane. After-
wards, the disparity maps are generated by the stereo matching
algorithms. For evaluation, we manually annotate a pixel mask
for every object by labeling pixels that belong to the obstacle.

An example of this processing pipeline can be seen in Fig. 5. The
captured fisheye image is rectified using Chebychev calibration
and the disparity map is computed by ELAS.

We focus on the following aspects for the evaluation of the suit-
ability of the chosen stereo algorithms:

Figure 5: General pipeline of the experiments: In this example
the raw fisheye image (a) of the street light pole at 3m distance
is rectified using the Chebychev calibration (b). Afterwards, the
disparity image is computed using ELAS (c). For measuring the
detection sensitivity and the distance error we use a mask, visu-
alized in green, to distinguish between obstacle and background
pixels (d).



Table 2: Averaged runtimes and densities of the stereo algorithms.

BM SGBM ELAS VAR
fps 19.44 13.55 11.53 7.98
Runtime (ms) 51.44 73.80 86.73 125.31
Density 25.44% 39.55% 84.8% 99.45%

Times measured on an Intel Core i7 processor with 2.2 GHz.

• Runtime: How computational intensive is the algorithm?

• Density: How dense is the disparity map?

• Sensitivity: Does the algorithm detect the obstacle?

• Accuracy: How accurate is the computed disparity?

• Calibration: How does the calibration affect the result?

5.1 RUNTIME AND DENSITY

To autonomously avoid obstacles, it is of utmost importance that
the MAV is able to detect the obstacle in real-time. For evaluating
the computational costs, we average the runtime of the different
algorithms over all available data. Table 2 shows the runtimes
measured in ms and frames per second (fps). The density of the
computed disparity map is also listed, since it correlates with
the runtime. The less points for disparity computation are used,
the faster the map can be computed. We aim for fast and dense
algorithms, to perceive as much depth points as possible from the
scene. It can be clearly seen that the local BM algorithm excels
in terms of speed with 19.44 fps, but estimates disparity only for
about 25% of the image. On the other hand, VAR as a global
method is able to construct a dense disparity map with 99.45%
coverage, but is the slowest of the four methods. ELAS makes a
very good trade-off between fast computation and the density of
its disparity map, yielding a comparatively dense map (84.8%) at
11 fps.

5.2 DETECTION SENSITIVITY AND DISTANCE ERROR

For reliable navigation of autonomous MAVs, it is necessary that
the obstacles in the close vicinity are detected. We evaluate the
detection in terms of a hit rate S, which represents the rate of
successfully detected obstacle points:

S =
true positives

true positives + false negatives
. (5)

Ideally, S should be 1, meaning all disparity measurements be-
longing to the obstacle have been computed. In order to calculate
this hit rate, we differentiate pixels belonging to the obstacle from
the background pixels by using the manually labeled pixel mask
and neglect pixels not belonging to the obstacle. These remaining
pixels contribute to the detection sensitivity as depth estimates. In
Fig. 5(d) the contributing pixels are colored green.

Fig. 6 shows that obstacles with larger diameter have a higher
detection rate than obstacles with a smaller diameter, e.g., like
the cable. Furthermore, it makes significant difference if the
cable is vertically or horizontally spanned. Due to the correspon-
dence search along horizontal epipolar lines and the homogeneous
texture of the cable, it is not possible for the algorithms in our
evaluation to find correspondences for the horizontal spanned ca-
ble. While BM and SGBM perform poorly on the cable for both
orientations, ELAS and VAR at least have a high detection rate
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(a) Detection sensitivity of the street light pole
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(b) Detection sensitivity of the vertical cable
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(c) Detection sensitivity of the horizontal cable

Figure 6: Detection rates of the obstacles with different diameter.
While the street light pole has a high hit rate the horizontal cable
is hard to detect.

for the vertical spanned cable. None of the algorithms was able to
detect the site fence reliably.

Similarly, we also evaluated the accuracy of the distance estimated
to obstacles. To this end, we computed the root-mean-squared er-
ror (RMSE) between the estimated distances and the ones obtained
from the manual measurements and laser scans. We compute the
average distance of all measurements belonging to the obstacle,
which are determined by comparing them with the manually la-
beled image mask. The error for obstacles that are difficult to
detect is in general higher than for those that are easily detected
due to their larger diameter. This can be observed in the direct
comparison of the detections of the street light pole in Fig. 8 and
the vertical cable in Fig. 9.

Fig. 8 shows the error related to the distance of the obstacle.
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Figure 7: Disparity images of BM rectified using Chebychev
calibration. False positives are colored red and the obstacle is
overlayed with green. With the default settings shown in (a) the
disparity map suffers from noisy estimates and speckles. (b) shows
the resulting map after applying the speckle filter, resulting in less
false positive measurements. The experiments showed that with
increasing distance the number of speckles further increases.

Although, the error increases with the distance, the errors of the
epipolar equi-distant models grow slower as with the projections
onto a plane, For example, with the OpenCV calibration, the error
at 5m distance to the street light pole is 3m, which is significantly
higher than the errors of the Chebychev calibration (RMSE below
1m). In comparison to the other algorithms, the estimated depths
from ELAS show the lowest variance even at far distances. Besides
that, the estimated disparity map from BM, SGBM and VAR are
affected by outliers, especially with increasing distance. In all
datasets, ELAS excels in terms of error and variance, which can be
explained by its underlying probabilistic approach based on strong
a-priori knowledge. In contrast, the block matching algorithms
suffer from false positives also called speckles in the disparity
images. While ELAS and VAR show no false positives at near
distances to the obstacle, the disparity images of BM and SGBM
include 0.1% (241px) and 1.1% (3976px) false positives at 3m
distance to the street light pole.

Since the default setting of the speckle filter results in a high
amount of speckles, we increase the window size of the filter. In
our experiments a window size of 40px showed best results, i.e.,
less speckles in the disparity image. Still, a few speckles remain,
which would lead to wrong restrictions in the available free space.
The impact of the speckle filter for the block matching algorithms
is shown in Fig. 7.

While the high variance of BM and SGBM can be explained
by the speckles in the disparity image, the variance of VAR is
influenced by the so-called filling-in-effect, which is typical for
global methods. The disparities of image regions where no depth
estimate can be computed are approximated from neighboring
estimates.

5.3 CALIBRATION

In Fig. 8, we already observed the error of the measurements of a
street light pole with different calibrations. In terms of accuracy,
the calibration with Chebychev polynomials achieves the best
results. Up to 5m, variance and error increase slowly compared to
the other calibration methods. This behavior can also be observed
at the detection of the other obstacles. For all obstacles—except
for the horizontal cable and the site fence where all methods fail—
the Chebychev calibration shows the best results. Furthermore,
the results show that the different algorithms work better with
different calibration methods. For example, ELAS has a lower
error in combination with the Chebychev calibration, while the

other algorithms show best results with the Physical and OpenCV
calibration.

Moreover, when using the OpenCV calibration, all algorithms
have problems finding correspondences in the image corners. This
can be explained by the greater distortion resulting from the stan-
dard lens distortion model used by OpenCV.

A further drawback of the methods which rectify onto a plane is
that a significant part of the image cannot be used. Our exper-
iments showed, that obstacles that were positioned at an angle
larger than 45◦ to the optical camera axis are not visible any longer
in the rectified image. This prevents omnidirectional obstacle per-
ception.

In contrast to the calibration methods that rectify the image on a
plane, the equi-distant calibrations were designed for the rectifica-
tion of images captured with fisheye lenses, and are able to find
correspondences in the image corners.

6. CONCLUSION

We evaluated the suitability of four different state-of-the-art stereo
algorithms for reliable obstacle detection on images from stereo
cameras with fisheye lenses. In order to deal with the higher dis-
tortion of the fisheye lenses, we used different calibration methods
to model the lens distortion and to rectify the stereo images. Over-
all, all algorithms were able to detect sufficient large obstacles
(�10cm), although they were not designed for images with such
high distortions.

Since the epipolar equi-distant calibrations are designed for fisheye
lenses and retain more image information, they are better suitable
for the task of omnidirectional obstacle perception with stereo
cameras. At close distances, the stereo algorithms have an error
below 1m. Obstacles with sufficient diameter could be detected
reliably up to 10m with an average error below 3m. On the other
hand, we experienced problems with the detection of obstacles that
have a very small diameter, e.g., the site fence (� 0.2 cm–4 cm).
None of the evaluated stereo algorithms could detect it reliably.
Likewise, the detection of the cable was very challenging. While
the vertical spanned cable could be detected up to 5m by ELAS,
the detection of the horizontal spanned cable failed. This is an
inherent problem caused by the horizontal baseline of the cameras.
To reliably detect cables in all orientations, multi-camera depth
estimation is necessary.

Finally, our experiments indicate that the choice of the calibration
method depends on the employed stereo algorithm. ELAS shows
best results, has fewest outliers and computes a dense disparity
map in combination with the Chebychev calibration. Thus, we
prefer it over BM or SGBM for visual obstacle detection, which
work best with planar rectification. The epipolar equi-distant
stereo calibration is better suited for an accurate detection when
using fisheye lenses.
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Figure 8: RMSE and corresponding variance of the depth measurements of the street light pole under different calibrations. Error and
variance are in general increasing with the distance.
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Figure 9: RMSE and corresponding variance of the depth measurements of the vertical cable under different calibrations. Error and
variance are in general increasing with the distance.
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