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Combining Semantic and Geometric Features for
Object Class Segmentation of Indoor Scenes

Farzad Husain, Hannes Schulz, Babette Dellen, Carme Torras and Sven Behnke

Abstract—Scene understanding is a necessary prerequisite for
robots acting autonomously in complex environments. Low-cost
RGB-D cameras such as Microsoft Kinect enabled new methods
for analyzing indoor scenes and are now ubiquitously used in
indoor robotics. We investigate strategies for efficient pixelwise
object class labeling of indoor scenes that combine both
pretrained semantic features transferred from a large color image
dataset and geometric features, computed relative to the room
structures, including a novel distance-from-wall feature, which
encodes the proximity of scene points to a detected major wall
of the room. We evaluate our approach on the popular NYU
v2 dataset. Several deep learning models are tested, which are
designed to exploit different characteristics of the data. This
includes feature learning with two different pooling sizes. Our
results indicate that combining semantic and geometric features
yields significantly improved results for the task of object class
segmentation.

Index Terms—Semantic scene understanding, categorization,
segmentation.

I. INTRODUCTION

NDERSTANDING complex scenes has gained much

in importance as the applications of service robots for
homes and offices is increasing. Dense structural description of
the indoor scenes is vital for performing accurate analyses. To
serve this purpose, the usage of RGB-D cameras is becoming
ubiquitous, as they provide color images and dense depth maps
of the scene. Tasks such as “picking up objects” and “planning
manipulation actions” [1-3] are simplified once the precise
location of objects in the scene is identified. One way to
facilitate object localization is to perform pixelwise semantic
labeling of the scene [4]. This involves identification and
labeling of different object classes based on the semantics of
the scene. Recently, Convolutional Neural Networks (CNNs)
have shown impressive results for semantic labeling [5, 6]. The
architecture of the CNN together with the used input features
are important factors determining the quality of learned scene
semantics. This work addresses these aspects with proposed
novelties to improve the accuracy in semantic labeling.
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Fig. 1. Tllustrating the distance-from-wall feature. (a) Color image with its
blue channel replaced with the binary mask based on the bounding hull
heuristic from [7]. The walls are detected from the bounding hull region.
(b) Depth image, (c) and (d) show the minimum distance of each point in the
scene from the walls before and after thresholding, respectively.

The accuracy of semantic labeling depends on the
consistency of the model description of the scenes under
naturally occurring variations such as camera pose, lighting
conditions, and position of the objects. Object surfaces such
as “floors” and “walls” are easy to identify and segment, as
they usually follow a similar pattern. Movable objects such as
“small structures”, “furniture” and “wall hangings” are harder
to identify. This is also evident by comparing the individual
class labeling accuracies of different approaches (see Table V).
In order to mitigate this, Silberman and Fergus [7] proposed
a depth normalization scheme where the furthest point is
assigned a relative depth of one. Using the depth normalization
scheme improved the segmentation results, which motivated
us to explore further the explicit modeling of the indoor
environments.

For indoor environments, the height of an object above the
ground plane gives a strong indication for the corresponding
object class. For example, a “tv” is usually placed at a higher
position from the ground plane than a “bed” or a “sofa”.
Schulz et al. [8] showed that this feature improves the results
for object class segmentation problem. We use the HHA
representation of Gupta et al. [9], which encodes the depth
data into three channels, height above the ground, horizontal
disparity, and angle of the normals with the inferred gravity
direction. This encoding has been demonstrated to give good
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results for object detection and labeling tasks.

As the indoor scenes are always captured in a confined
environment, i.e., in the presence of surrounding walls,
we propose to exploit this structural information. Based
on a bounding hull heuristic developed by Silberman and
Fergus [7], we construct a novel feature that we name
distance-from-wall, which indicates the proximity of scene
points to some major detected room wall. This feature is
defined as the minimum point-to-plane distance between a
scene point and the planes detected at the outermost region
of a scene, saturated beyond a certain distance threshold.
Figure 1 shows an example of the computed distances from
two walls for a sample taken from the NYU v2 dataset [10]. It
can be observed that—compared to the original depth image
in Fig. 1(b)—the objects closer to the wall become more
distinguishable after thresholding in Fig. 1(d). Wall distances
greater than a fixed threshold are clipped, since we can
assume that their precise wall distance is not informative. The
proposed distance-from-wall feature facilitates the detection
of objects such as “windows”, “wall hangings” and “tv”
which are usually found in close proximity to the walls. As a
result, we observed an improvement in the overall object class
segmentation accuracies.

One issue arising when training CNNs on RGB-D inputs
is the limited size of the available RGB-D data sets.
It has been shown that semantic CNN features obtained
by training classification tasks on large data sets can be
transferred to related tasks, such as object detection [11, 12],
subcategorization, domain adaptation, scene recognition [13],
attribute detection, and instance retrieval [12]. This transfer
of pretrained semantic features proved also to be useful for
RGB-D object categorization, instance recognition and pose
estimation [14], and for the task of RGB-D object class
segmentation [5].

Our objective is to build a robust CNN architecture that
predicts a semantic label for each pixel in the scene. We
train CNN models with two different sets of pooling sizes
end-to-end with the color image, the HHA encoding [9],
and our proposed distance-from-wall feature. We transfer
pre-trained semantic features from a CNN model trained on
the ImageNet dataset '. The parameters of the networks are
learned so that they minimize the pixelwise cross-entropy
loss between the predicted labels and the ground truth. We
demonstrate the effectiveness of our approach by evaluating
each of the proposed modalities separately and also comparing
it with the other state-of-the-art approaches on the widely used
NYU v2 dataset [10].

The main contributions of this paper are:

o proposal of a new feature termed distance-from-wall,

o a novel CNN architecture using two different pooling
sizes, yielding improved results, and

« evaluation and comparison with other state-of-the-art
approaches, showing improved overall performance.

Uhttp://www.image-net.org/

II. RELATED WORK

The conventional approach to semantic labeling is carried
out in multiple stages [4, 15—19]. This involves presegmenting
the scene into smaller patches followed by feature extraction
and classification. The final classification results are dependent
on the results obtained at each stage of the approach. Another
way is to train a deep CNN in an end-to-end fashion, i.e.,
directly from input pixels to semantic labels [5, 8, 20].

Zhang et al. [4] performed a multiscale segmentation of
image and point cloud followed by extraction of feature
vectors. The feature vectors were classified separately per
modality by a random forest (RF) and the classification
results were fused and further refined using a pairwise CRF
(Conditional Random Field) to enforce spatial consistency.
Handcrafted features such as “area,” “diameter” and
“orientation” were used to identify different features. However,
feature learning from combined raw data and hand-crafted
features often yields better results as it exploits both the
hidden cues and human knowledge. Miiller and Behnke
[19] is an example of such an approach, where the authors
combine a height-above-ground feature with pixel-wise RF
classification [21] and learn binary potentials between
superpixels based on manually designed features.

Wu et al. [22] and Hermans et al. [17] presegment
a scene and afterwards build a model that exploits their
semantic relations. Wu et al. [22] used a CRF-based model
to relate pixel-wise and pair-wise observations to labels for
hierarchical semantic labeling. Hermans et al. [17] used a
randomized decision forest for semantic segmentation, where
the results were further refined using a dense CRF. Similarly,
segmentation followed by a random forest classification to
initialize the unary potentials of a CRF was proposed by Wolf
et al. [18].

Schulz et al. [8] trained a deep CNN using image patches
as input to the network, where the patch size was adjusted
according to the measured depth of the patch center. This
increased scale invariance and led to improved object class
segmentation results.

In order to increase scale invariance in deep CNNs, Farabet
et al. [20] and Eigen and Fergus [5] used input at multiple
scales. A simplified version of the histogram of oriented
gradient (HOG) descriptor applied to the depth channel
provided depth information to the CNN of Hoft et al. [23].

To increase the spatial accuracy of semantic segmentation,
Eigen and Fergus [5] and Long et al. [6] proposed two
different CNN models. Eigen and Fergus [5] divided a CNN
into three sub-networks which gradually predicted output
from a coarse to fine level. The network is initialized
with ImageNet-trained AlexNet [24]. Additionally, loosely
related computer vision tasks—estimating depths and surface
normals—were optimized by adjusting the loss function. Long
et al. [6] combined upsampled predictions from intermediate
layers with the final layer which lead to more refined
results. A single-image classification network was adapted to
a fully convolutional network and fine tuned for semantic
segmentation.

Another line of research is to exploit temporal integration
from RGB-D video sequences. For example, Stiickler et al.
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[25] perform RGB-D SLAM to estimate the camera motion
and aggregate semantic segmentations from multiple views
in 3D. Pavel et al. [26] directly train hierarchical recurrent
convolutional neural networks on object class segmentation
from RGB-D video. In this work, we do not address temporal
integration and process only individual RGB-D frames.

III. PROBLEM FORMULATION

Given a color image and a dense depth map X of a scene,
our goal is to obtain a label y, € € for each pixel location
Xp € X that corresponds to the object class at the pixel location.

In our task, we deal with natural indoor scenes which are
usually unbalanced with respect to the size and number of
objects. For example, the number of pixels belonging to the
floor class is much greater than that of those in the furniture
class. Hence we use a weighted, multiclass cross entropy loss
function [5]:

L=— Z Z OpCip ln(é,;’b),

i€cX be¥

where

oy, = median-freq(%’) / freq(b),

¢;.. is the predicted class distribution at location 7, and c; . is the
respective ground truth class distribution. The factor & weighs
each class according to its frequency with which it appears in
the training set, and median-freq(¢) is the median of all class
frequencies.

IV. APPROACH

We use a convolutional neural network in two stages, as
illustrated in Figs. 2 and 3. In the first stage, we train the
network with two different sets of pooling-operator sizes. In
the second stage, we concatenate the feature maps of the last
layer of the two networks from the previous stage and train the
network again. This two-stage approach yields refined results
(see Sec. IV-A). Finally, we enrich the set of concatenated
features with geometric wall proximity information from the
distance-from-wall feature (Sec. IV-B).

A. Network architecture

Our network takes three inputs, i.e., color image, HHA
encoding, and distance-from-wall feature. The color image
is passed through a stack of five convolutional layers. The
HHA encoding and distance-from-wall feature are processed
by only four and three convolutional layers, respectively. This
scheme is illustrated in Fig. 2. The weights of the first two
layers for color image and the first layer for HHA encoding
are transferred from the OverFeat network [27]. This network
was designed by the CILVR Lab at NYU? and was trained
on the ImageNet dataset for color image categorization. The
weights of these two layers are kept fixed during our training
and serve as semantic feature extractor. The network also
contains pooling layers, a dropout layer and is divided into four
configurations as described in Table I. We train the network

Zhttp://cilvr.nyu.edu/doku.php
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Fig. 2. First stage of our proposed model architecture for object class
segmentation. Inputs are the color image, the HHA encoding [9], and the
distance-from-wall feature (Sec. IV-B). Layer 1 (96 feature maps) and Layer 2
(256 feature maps) for color image and Layer 1 for HHA (96 feature maps)
have filters pretrained on the ImageNet dataset which are not changed during
training. Afterwards, the feature maps together with the distance-from-wall
feature are concatenated and fed to a 3-layer trainable CNN. The output layer
has the same number of feature maps as the number of object class labels.
The output maps for the two different pooling sizes are used as input for
Stage 2.
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Fig. 3. Second stage of our proposed CNN architecture for object class
segmentation. The output feature maps obtained after training the CNN in the
first stage (Fig. 2) are used as input. The pooling operation in Stage 1 is done
with two sets of sizes. Hence, two sets of output feature maps are obtained
which are here referred to as (1/4) and (1/8). These maps are concatenated
and used as an input for training a single-layer network. The output layer for
this network has the same number of feature maps as the number of object
class labels.

with two different pool sizes after the first convolutional layer.
Hence, the final feature map size in Configuration A is either
four times or eight times smaller, depending on the pool
size. The same applies to configuration B. Configurations
A and B do not need training as the filters are transferred
from the OverFeat network. Configuration C contains only the
distance-from-wall feature. The outputs from Configurations
A, B and C are concatenated and fed to Configuration D,
which we train using the labeled training examples.

The networks are trained for two different sets of pool sizes.
The final output from Configuration D is concatenated and
trained again as shown in Fig. 3 before the upsampling. A
single convolutional layer with the number of filters equal to
the number of object classes and a size of (3x3) is learned. By
concatenating networks with different pool sizes, we exploit
invariance to local deformations while preserving information
on spatial location, which increases the segmentation accuracy.

B. Distance-from-wall

We have devised a simple yet robust heuristic to detect the
walls at the outermost region of an indoor scene. This involves
segmenting the point cloud and picking up those segments that
lie within the outermost boundary region. Afterwards, the two
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TABLE I
CONVOLUTIONAL NEURAL NETWORK CONFIGURATIONS

Layer Filter Size Stride No.of maps Map size
Configuration A

Input (color) - - 3 image_size
Convl 11x11 1 96 image_size
Pooll 2x2,4x4 24 96 image_size/(2,4)
Conv2 11x11 256 image_size/(2,4)
Pool2 2x2 2 256 image_size/(4,8)
Configuration B

Input (HHA) - - 3 image_size
Convl 11x11 1 96 image_size
Pooll 4x4, 8x8 4,8 96 image_size/(4,8)

Configuration C

Input (Dist-from-wall) - - 1 image_size/(4,8)

Configuration D

Input (Conf. A+B+C) - - 256+96+1 image_size/(4,8)
Convl 11x11 1 128 image_size/(4,8)
Dropout (0.25) - - - -

Conv2 11x11 1 64 image_size/(4,8)
Conv3 11x11 1 No.ofclasses image_size/(4,8)
Upsample - - No.ofclasses image_size

largest segments are selected and a planar surface model is
used to compute the distance from each point to those planar
surfaces. The steps are illustrated in Fig. 4 and are detailed
below.

1) Segment the point cloud: We partition the point cloud
into surface segments using two different approaches. The first
approach fits planes to the point cloud using RANSAC (see
Fig. 4(c)). The second approach segments the 3D points based
on quadratic surface fitting as described by Husain et al. [28]
(see Fig. 4(d)). We use these two different approaches, because
depending on the complexity of the scene, one approach
performed better than the other. The method by Husain et al.
[28] performed better in complex scenes containing mostly
non-planar surfaces, whereas RANSAC performed better when
the scene was dominated by planar surfaces.

2) Detect the outermost boundary: In order to detect
the outermost boundary, we use the technique described
by Silberman and Fergus [7], i.e., if the depth of a point is
within 4% of the maximum depth within each column of the
image grid then it is marked as the boundary region. Fig. 4(a)
shows the boundary region shaded in blue color. We only take
the segments that lie in the outermost boundary as possible
candidates for walls as shown in Figs. 4(e) and (f).

3) Select the largest two segments when viewed from the
top: To generate an approximate top view, we assume that
the vertical camera-axis always points towards the upwards
direction. We select at most two segments from the segmented
point cloud that have the largest triangular width and are not
coplanar, when viewed from the top. Afterwards we select
the segments that have the largest sum of widths. Hence,
among Figs. 4(g) and (h), the two segments from Fig. 4(g)
are selected.

4) Computing the distance from the wall feature: Once the
two segments are selected, we compute for all scene points
the minimum point-to-plane distance using a planar-surface
equation. Since in each scene we have at most two planes

®) l ﬂ
\
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Fig. 4. Ilustrating the procedure for the computation of the
distance-from-wall feature. (a) Color image with the boundary region
shaded in blue, (b) depth image, (c) segmentation using RANSAC, (d)
segmentation of depth image using the method proposed by Husain et al.
[28], (e) and (f) selecting only the segments from the boundary region,
(g) and (h) are top views of the point clouds based on the two largest
single-colored plane segments from (e) and (f), respectively, (g) is selected
because it has the largest sum of the widths (the double sided arrows in
(g) and (h)) of the enclosed segments, (i) and (j) are the distances of each
point from the two planes detected based on the two segments in (g), (k) is
the minimum distance for each point from both planes and (1) is the final
distance feature after thresholding. The color image is shown for illustration
only and not used in computing the distance feature.
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yielding a point-plane distance value each (see Figs. 4(i) and
(4)), we take the minimum to get the final distance-from-wall
(see Fig. 4(k)),

: 1.2
Dprixel = mln(n'x > T )7

where 7! and 72 are the point to plane distances of point x
to plane w' and 72, respectively. We use a threshold value
of one meter. All points whose value exceeds the threshold
are clipped as shown in Fig. 4(1). The rationale behind this
particular value is that the objects within a 1 meter proximity
of walls are likely to have depth readings differing slightly,
but distinctly from the wall itself, such as “lamps”, “wall
hangings”, and “cupboard”. Such objects are highlighted from
the rest of the scene after applying this threshold. Objects
further away than one meter do not typically occur in specific
distances to the wall and the feature becomes meaningless.

V. EXPERIMENTS

In this section, we describe the evaluation results on the
NYU v2 dataset. We use the four object classes [10] in
Sec. V-A and the 13 object classes [29] in Sec. V-B.

The dataset contains a total of 1449 samples of different
indoor scenes. We use the training/test split as provided by
the dataset authors. The parameters for gradient descent, i.e.,
the learning rate, momentum and the number of iterations are
adjusted by first separating 10 % of the training examples and
using them for validation.

In order to evaluate our approach, we use two common
measures of performance:

« average pixel accuracy Y;n;/Y;t; and

« average class accuracy (1/n.)Y;(nii/t),
where n;; is the number of correctly classified pixels for class
i, t; is the total number of pixels for class i, and n.; is the
number of classes.

In order to get an insight on the benefits of our
proposed models, we evaluate different aspects separately.
This includes the network from first stage, referred to as
net-ABCD and without the distance-from-wall feature as
net-ABD, the network from second stage referred to as
net-ABCD-combined and also without the distance-from-wall
feature as net-ABD-combined. We distinguish between the two
upsampling factors for the different pooling sizes in the first
stage as U4 and US.

A. NYU v2 with four classes

We present the results for the NYU v2 dataset, using four
classes as defined by Silberman and Fergus [10]. Table II
shows a comparison of the individual labeling accuracies for
each of the four classes. We get better results after combining
the two networks, in the struct class (81.9% vs. 81.6% and
79.9%) and furniture class (72.8% vs. 66.6% and 72.0%).
Table III shows a comparison of the average class accuracies
and the average pixel accuracies, corresponding to the results
in Table II. The net-ABCD-combined shows improved overall
results as compared to net-ABCD-U4 and net-ABCD-US.
Our results are competitive to the cascaded multi-scale
CNNs approach [5]. However, because of cascading different
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TABLE 11
INDIVIDUAL CLASSES OF NYU V2 (FOUR CLASSES).
Accuracy (%)
Method floor  struct  furniture  prop
Couprie et al. [29] 87.3 86.1 453 35.5
Khan et al. [30] 87.1 88.2 54.7 32.6
Stiickler et al. [25] 90.7 81.4 68.1 19.8
Miiller and Behnke [19] 94.9 78.9 71.1 42.7
Wolf et al. [18] 96.8 77.0 70.8 45.7
net-ABD-U4 (without dist-from-wall)  96.6 82.5 62.8 63.2
net-ABD-US8 (without dist-from-wall)  94.9 78.1 75.9 60.5
net-ABCD-U4 95.9 79.9 72.0 63.5
net-ABD-combined (w/o dist-from-wall) 94.8 78.2 69.2 69.9
net-ABCD-U8 94.8 81.6 66.6 70.3
Eigen and Fergus [5] (AlexNet) 93.9 87.9 79.7 55.1
net-ABCD-combined 95.0 81.9 72.8 67.2
TABLE III
OVERALL PERFORMANCE ON NYU V2 (FOUR CLASSES).
Accuracy (%)

Method class avg.  pixel avg.
Couprie et al. [29] 64.5 63.5
Khan et al. [30] 69.2 65.6
Stiickler et al. [25] 70.9 67.0
Miiller and Behnke [19] 72.3 71.9
Wolf et al. [18] 72.6 74.1
net-ABD-U4 (without distance-from-wall) 76.3 74.6
net-ABD-U8 (without distance-from-wall) 77.4 76.4
net-ABCD-U4 77.8 76.5
net-ABD-combined (without distance-from-wall) 78.2 76.5
net-ABCD-U8 78.3 76.4
Eigen and Fergus [5] (AlexNet) 79.1 80.6
net-ABCD-combined 79.2 78.0

networks, the latter model required training in two steps.
Additionally, the feature learning at multiple scales approach
in [5] seems to be beneficial, when compared to our single
scale model.

Figure 5 shows selected examples from the test set of
the NYU v2 dataset. Results obtained with and without the
distance-from-wall feature are shown. It can be observed that
the furniture (brown color) and the prop (pink) class are better
segmented. For example, in Fig. 5(2c) it can be seen that the
“tv” is easily distinguishable in the distance-from-wall feature
and it is better segmented (see Fig. 5(2d) and (2e)) when this
feature is used.

TABLE IV
OVERALL PERFORMANCE FOR THE NYU V2 (13 CLASSES).

Accuracy (%)

Method class avg.  pixel avg.
Couprie et al. [29] 36.2 524
Hermans et al. [17] 48.0 54.2
net-ABD-U4 (without distance-from-wall) 50.9 58.3
net-ABD-U8 (without distance-from-wall) 54.9 61.1
net-ABCD-U4 56.2 62.5
Wolf et al. [18] 56.9 64.9
net-ABD-combined (without distance-from-wall) 58.1 64.1
Eigen and Fergus [5] (AlexNet) 59.4 70.5
net-ABCD-U8 59.5 65.7
net-ABCD-combined 59.6 66.4
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(a) (k)
Fig. 5.

(c) (d) (e)

Selected test set examples showing the improved labeling after using our proposed feature, (a) color image, (b) ground truth labeling, (c)
distance-from-wall, (d) predicted labels without distance-from-wall and (e) predicted labels with distance-from-wall. White color in Figs. (b), (d) and (e)
represents the unknown label.

TABLE V
INDIVIDUAL CLASS LABELING ACCURACY FOR NYU V2 (13 CLASSES).

Accuracy (%)

Method bed books ceiling chair floor furniture objects picture sofa table tv wall  window
Couprie et al. [29] 303 317 332 444 68.0 28.5 109 385 258 180 188 894 37.8
Hermans et al. [17] 684 454 834 419 915 37.1 8.6 358 285 277 384 718 46.1
net-ABD-U4 (without distance-from-wall) 21.1 223 944 195 932 69.9 492 689 273 416 395 623 53.4
net-ABD-U8 (without distance-from-wall) 48.0 323 933 371 947 774 48.0 451 443 417 306 583 71.2
net-ABCD-U4 525 425 933 321 933 67.2 484 635 532 341 258 662 58.0
Wolf et al. [18] 582 453 928 577 975 57.3 374 323 498 518 264 744 432
net-ABD-combined (without distance-from-wall) 422  37.6 929 343 947 63.9 50.8 70.0 415 536 425 704 61.0
Eigen and Fergus [5] (AlexNet) 577 399 776 711 959 64.1 549 494 458 450 252 879 57.6
net-ABCD-U8 519 46,5 918 41.0 948 66.7 449 617 494 490 41.6 735 60.5
net-ABCD-combined 441 429 927 385 952 66.6 539 635 468 494 42,6 747 63.5

B. NYU v2 with 13 classes

We present the results for the NYU v2 dataset, using 13
classes as defined by Couprie et al. [29]. Table V shows a
comparison of the individual labeling accuracies for each of
the 13 classes. It can be observed that our approach performs
better for the smaller object categories that are usually closer
to the wall such as “picture”, “tv”’, and “window”. Table IV
shows a comparison of the average class accuracies and
the average pixel accuracies corresponding to the results in
Table V. Similar behavior can be observed, as was the case
of four classes, i.e., better results with net-ABCD-combined
as compared to net-ABCD-U4 and net-ABCD-US.

VI. CONCLUSIONS

We have proposed a new model based on deep learning for
the task of semantic object class segmentation. The model
employs a multi-pooling architecture and takes the color
image, the HHA encoding, and a novel distance-from-wall
feature as input. The distance-from-wall feature is able
to successfully highlight objects that are in close vicinity
to the walls. This enables the deep learning model to
learn from a more detailed representation of a scene. Our
extensive evaluation on the NYU v2 dataset demonstrates
the effectiveness of our proposed feature by showing better
overall object class segmentation results. This paper shows
that features of relative position are helpful for semantic
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segmentation. In the future, we plan to increase invariance to
camera position even further by taking into account additional
properties such as 3D room layout.
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