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Abstract. For the autonomous navigation of the robots in unknown environ-
ments, generation of environmental maps and 3D scene reconstruction play a
significant role. Simultaneous localization and mapping (SLAM) helps the robots
to perceive, plan and navigate autonomously whereas scene reconstruction helps
the human supervisors to understand the scene and act accordingly during joint
activities with the robots. For successful completion of these joint activities, a
detailed understanding of the environment is required for human and robots to
interact with each other. Generally, the robots are equipped with multiple sensors
and acquire a large amount of data which is challenging to handle. In this paper
we propose an efficient 3D scene reconstruction approach for such scenarios us-
ing vision and graphics based techniques. This approach can be applied to indoor,
outdoor, small and large scale environments. The ultimate goal of this paper is to
apply this system to joint rescue operations executed by human and robot teams
by reducing a large amount of point cloud data to a smaller amount without com-
promising on the visual quality of the scene. From thorough experimentation, we
show that the proposed system is memory and time efficient and capable to run
on the processing unit mounted on the autonomous vehicle. For experimentation
purposes, we use standard RGB-D benchmark dataset.

1 Introduction

The availability of affordable sensor systems and state-of-the-art tools and techniques
for current robotic systems have made it useful for the researchers to develop au-
tonomous robots which can easily be integrated in real world. The applicability of
such robotic systems range from indoor to outdoor robots, surgical robotic arms, as-
sistive robots, industrial robots and rescue robots, where the robots are capable to per-
form rescue tasks together with humans [1]. For indoor and the outdoor robotics one of
the challenging tasks is to generate the 3D maps of the environment. Such maps help
the robots to quickly acclimatize to their surroundings and to localize themselves in
these maps. This is generally achieved by using Simultaneous Localization and Map-
ping (SLAM) algorithm where a robot localizes itself in a self-generated map of the
surrounding [2][3][4][5]. By using these semantic maps the robots can plan, perceive
and navigate autonomously in unknown environments.

For a robot-centric rescue operation, a comprehensive situational awareness is a
crucial step for the success of robotic aided search and rescue missions. The human op-
erators need to make decisions which are based on the information directly derived from
the situation [7][8][9]. The research has shown that the quality and reliability of these
decisions depend on the impression of situational awareness rather than the amount of
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Fig. 1. Example scene generated from a single view from RGB-D benchmark dataset [6]. (Left)
Map generated by rendering each point of a downsampled point cloud. The cloud is downsampled
from 307200 points to ∼20K. (Right) 3D view from same sequence by rendering the triangular
mesh using improved texture quality of an undistorted texture map. The final size of this cloud is
∼680KB as compared to original cloud of size ∼10MB. By utilizing memory and time efficient
characteristics of our approach we achieve a data reduction up to 5-12% with better visual quality
on the given sequence. For details, refer to section 4.

data provided to the human [10][11][12], i.e. stakeholders do not need all available data
but enough data to assess a situation. Moreover in rescue scenarios, some of the areas
are not accessible to humans and are suitable for the robots to access and convey useful
information to the person remotely connected with them [12][13][14]. In such situations
robots can be helpful for the rescue team members if they can access these areas (like
tunnels, fire-caught areas) and can efficiently transmit every instance of the sensory data
in realtime. In USAR scenarios, a combination of unmanned ground vehicle (UGV) and
unmanned aerial vehicle (UAV) acquires a large set of laser scan data and videos of the
operational area. Since these robots are connected with each other and to their human
team members through a limited transmission bandwidth which may degrade during a
field operation. The robot needs to adjust to the communication capacity at each point
in time [7][12][15]. In order to make this communication possible between human-
robot team member, it is however required to reduce the amount of the data without
compromising on the quality of the useful information. For such situations, we propose
a memory and time efficient approach to process this data on the onboard processing
unit of the vehicle. The goal is to carefully calculate the amount of data which is suf-
ficient to perceive such scenarios and adequate to transmit over the limited bandwidth
in real time. We benefit from efficient algorithms which can run in real time on the PC
mounted on the robot and reconstruction of the scene can remotely be performed on
ordinary CPU instead of using high quality GPU. The final visual quality, memory and
time efficiency are not compromised by introducing sparseness in the point cloud data.

The solution is devised by using an intermediate vision and graphics based approach
to generate real time 3D model of the environment. Generally, a laser scanner mounted
on the robot acquires scans at 30Hz and needs to transmit it to the remote station. For
example, a Kinect sensor acquires a point cloud of size more than ∼300K points at
30Hz. This data is reduced to a few thousands of points describing a large area visible
to the robot. Since this reduced point cloud contains a small number of points which are
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not sufficient to visualize the scene by rendering each point (as can be seen in the left
of Figure 1). We render its triangular surface mesh. For a few thousands of points 3D
reconstruction can be performed on remote computer by acquiring downsampled point
clouds and corresponding RGB images directly transmitted by the robot. A dense point
cloud with RGB values provides a detailed representation of the scene but amount of
data is large and requires more memory to store and more time to transmit and process
this data. On the other hand, with a sparse point cloud representation to a few thou-
sands meaningful points, it is challenging to attain a high visual quality. We achieve a
better texture quality by generating an undistorted texture map of the environment and
efficiently rendering the triangular mesh. In this way, we achieve a better final visual
representation of the scene. The experimentation section 4 shows the results in detail.

2 Related Work

Transmitting the useful data from a robot to its stakeholders is limited by physical con-
straints. In particular wireless communication channels can be disturbed by several en-
vironmental factors like electromagnetic interference, reinforced concrete walls or just
by distance [16][12]. Experimentation and field studies showed that such problems can
be addressed by different methodology [15][17][18][19], however the most gainful ap-
proach seems to be data parsimony. In other words, in USAR domain only those data
transmission methods are preferable which transmit needed data as compared to the
methods which passes as much data as possible [20]. Birk et al. partially address this is-
sue by presenting an approach which takes three dimensional point data and compresses
those surface points to corresponding plane patches, i.e. instead of representing the data
as costly point clouds they calculate plane patches of the underling surfaces [21]. This
approach takes in consideration the need of weak communication skills by minimizing
the data volume, nevertheless it does not utilize color information and the plane patches
optimized for human rescue workers perception. A similar approach is utilized by Pop-
pinga et al. which extract convex surface polygons from the point cloud data [22]. This
method reduces the data volume up to 50% of the original size. However this approach
does not consider special needs of human operators and do not enhance the result by
color information. Wiemann et al. reach a compression ratio of up to 65% by using an
even more deep polygonal search [23]. But color information is not used in this ap-
proach. A slightly different methodology is evaluated by Schnabel et al. [24]. A tree
like data structure is utilized to optimize the storage of point in such a way that re-
dundant points are not considered. The authors also make use of color information by
storing for each point in the tree the corresponding color data. They achieve a compres-
sion ratio up to 30% however this approach does not consider the visual presentation
requirements for human operators and bandwidth in USAR application. On contrary,
our approach uses an improved data reduction in time efficient manner and utilizes the
color information for human perception of the unseen environments.
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3 Our Approach

The goal of this paper is to generate a 3D model of a remote scene where 30 frames
per seconds are acquired by the robot and required to be transmitted in real time over a
limited communication channel capacity. During the design phase, we pay a special at-
tention to the quality of the model, memory efficiency and real time applicability of the
system. The input to our system is point cloud data and synchronized RGB images. For
benchmarking purpose, we use standard database consisting of RGB and depth images.
Point clouds acquired from each depth images are filtered and downsampled. We dis-
card points with no associated depth values. This cloud is further filtered by removing
the outliers. Finally the cloud is downsampled by using voxel grid filter. This filtration
step removes the noisy points along with outliers and generates a sparse point cloud
with a few thousand points in about 20-30 milliseconds approximately. This relatively
small set of points can easily be triangulated and efficiently rendered. However, the
quality of the texture is important at this stage. We show from our approach that after
reduction of points to a very low number, the visualization quality of the cloud is not
compromised. Instead of using costly Delaunay triangulation, we use fast surface trian-
gles of surface mesh [25]. Since we triangulated the filtered cloud, it is possible to get
triangles with larger sizes which are not smooth with respect to the real surface of the
scene and deteriorate final rendered views. To smooth the surface of the final map, we
render only those triangles which lie below a certain threshold. This threshold is applied
to the perimeter of the triangle. During the fast triangulation calculation if maximum
length of the edge is set to d then this threshold is set to 3×d. Figure 2 shows the detail
of different modules from our approach.

3.1 Point Matching and Keyframes

In general, multiple sensors are mounted on the autonomous robots to collect a large set
of RGB-D data. For example, a Kinect sensor acquires 30 frames of 640×480 RGB and
16-bit depth images per second. In order to reduce this large amount of data, we find
keyframes and generate the 3D views from each of these frames. The keyframes can be
found by using general approaches [26][27][28]. For each RGB image Speeded Up Ro-
bust Features (SURF) [29] are calculated after smoothing the image with Gaussian filter
with σ = 0.85. Since the test database contains mostly the translatory motions, so we
assume a very small rotation of the camera. However for the purpose of generalization,
RANSAC approach can be used for outliers removal [27].

3.2 Filtration and Downsampling

For outdoor field robotics laser sensor are capable to acquire multiple point clouds per
second with several hundred thousand points per cloud. The acquired data may contain
large sensor and acquisition noise which is not required be transmitted. For RGB images
different compression methods and standard codecs are available which facilitate their
efficient transmission in real time. However, a challenging task is to transmit point cloud
data while not compromising on the quality of the data. In order to efficiently filter the
point cloud data we use standard filtering approaches and voxelization to downsample
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Fig. 2. Overview of our approach. The input to the system is depth image sequence (or point
clouds) and synchronized RGB images. The output is 3D reconstruction of the environment which
is efficient in computing, storage and capable to apply in real time.

a large point cloud data to reduced set of points which are suitable for triangulation and
rendering.

Firstly, We remove those points from the cloud which have no associated depth
value. This filtration simply removes all those points where the depth value is either
zero or undefined. Secondly, the remaining set of points is filtered by removing the
outliers. By setting a filter withK = 50 and T = 1.0, where K = number of neighboring
points to use for mean distance estimation and T = standard deviation multiplier, outliers
are removed. We use point cloud library (PCL) implementation for these filters [30].
During these two filtration processes, we use a point cloud of size 307200 which is
approximately reduced up to (80%-88%) of the original point cloud size. Note that this
result depends upon sensor noise and quality of the cloud however produces significant
points reduction. By downsampling this reduced cloud using voxel grid with voxel size
of 1.0cm, we finally obtain a downsampled cloud to ∼20K points. It is important to
note that the computational time for downsampling a cloud is maximum ∼30ms and it
can be executed in real time on ordinary CPU. This final cloud is useful to generate a
sparse mesh by triangulation. We triangulate this mesh using fast surface triangulation
method by Marton et. al. [25].

3.3 Texture Mapping and Rendering

In general, the effects of perspective distortions can be ignored during rendering pipeline
if the size of the object is smaller then the distance between the object and camera. How-
ever, after filtration process we obtain a sparse point could of arbitrary size. This may
produce triangles of larger size which leads to texture distortion in final visualization.
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Fig. 3. SURF point matches between consecutive frames. Outliers are removed by applying a
distance constraint on the vertical and horizontal shift between key points in consecutive frames.
If the number of matched points N > 4, we consider these frames and calculate the transfor-
mation between two frames. Otherwise this frame is discarded and next frame in the sequence is
incrementally considered for point matching.

The affine warping is not directly used because it is not invariant to 3D rigid trans-
formations the triangles. In order to avoid visual distortion, we introduce a texture map
which is simply an image with undistorted texture corresponding to each triangle. Later,
rendering is performed using this texture map instead of using the corresponding RGB
image.

Since 3D position of each triangle vertex as well as the camera parameters are
known, we can determine the homogeneous mapping between the image plane and the
texture coordinates. This mapping which is usually known as Homography H is given
by following formula:

H = K[R −Rt] (1)

where K denotes the camera matrix, R denotes the rotation and t denotes the trans-
lation vector. It can easily be shown, that the formula above maps a 2D point of the
texture image to the corresponding 2D point of the rendered image of the triangle. The
2D projection p of a general 3D point q in homogeneous coordinates can be written as
follows:

q = K[R −Rt]p (2)

It can be seen that each homogeneous 3D point lying on a plane with z = 0, i.e.
p = (x y 0 1) leads to above equation 2.

q = K
[
r1 r2 r3 −Rt

] 
x
y
0
1

 (3)
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q = K.
[
r1 r2 −Rt

] xy
1

 = Hp (4)

with p being the homogeneous 2D point in texture coordinates. Since the camera
parameters are known beforehand, the only values to be obtained are the rotation matrix
R and the translation vector t. We use a fixed size shape to store the texture of each
triangle. This shape is the upper triangle of a rectangular image for the texture values.
In order to fit the texture from any triangle to our fixed shape, we use an additional
affine transformation A. The final homogeneous transformation M is the given by:

M = AK
[
R −Rt

]
= AH (5)

This transformation is determined in two steps. Firstly, we find the homography H ,
by obtaining the rotation and transformation of the triangle, by supposing that the initial
triangle lies on the texture plane, the first vertex lies on the origin (0, 0, 1) and the first
edge lies on the x-axis. Secondly, the affine transformation A is then calculated, so that
the mapped triangle on the texture plane fits the upper triangle of the texture map.

4 Experimentation

For experimentation purpose, we test our results on RGB-D benchmark dataset [6]. The
first sequence freiburg1 contains 798 synchronized depth and RGB images of an office
environment.

For each RGB image, keypoints are calculated after smoothing each image with
Gaussian filter. We set values of σ = 0.85 [27]. We observe that using image smoothing
point matching is closer to accurate. These keypoints and descriptors are calculated
using SURF method. However other keypoints like FAST and BREIF may also be used
here (for details, refer to section 2). Each SURF descriptor is a vector of size 1 ×
128. These descriptor are matched using Fast Approximate Nearest Neighbor Search
(FLANN) [31] implementation of OpenCV library. The correspondences between two
frames usually contain outliers. In order to remove these outliers, we restrict the feature
point search to a small window size in the vicinity of a given keypoint in next image.
The size of this window is chosen by calculating the shift in horizontal and vertical
direction of the camera. Since there is slight camera motion in consecutive frames so
a point in current frame lies in a small region in the same location in next frame. Any
false detection of keypoint either in current or next frame is removed using this window
search. The approximate size of this window is set to 20 × 20 during all experiments.
For each keypoint, depth value is extracted from corresponding depth image. We further
ignore all those keypoints where the depth value is zero.

The results produced in this paper are tested on the machine with Intel i7-3720QM
2.60GHz processor with 8 GB RAM. A detailed information of the results obtained at
each step of our approach is given in Table 1. Using this approach we reduce the point
cloud data up to 5-12%, however this loss of data is compensated by efficient rendering
of the triangles using improved texture quality of texture map. The texture map in sec-
tion 3.3 is computed in ∼0.24 seconds by removing the perspective distortions in the
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No. of
points

No. of tri-
angles

Down-
sample
time (sec)

Size of
final map
(KB)

Rendering
time (sec)

Original
Cloud

307200 406533 NA 9395.5 0.27

Our Ap-
proach

22474 40168 0.03 8.5 0.03

Table 1. Average values over eight random point clouds from freiburg1 dataset. The figures shows
different values of the key steps used in this paper. A comparison to full point cloud to reduced
point cloud is given.

given scene and therefore it makes it feasible to render the triangular mesh generated
from downsampled point cloud. In order to verify the memory efficiency of the final
representation, We also calculate octomap [32]. The final map is stored up to ∼35 KB
in octomap format. The visual quality of the final point cloud is not compromised which
can be seen in Figure 4. The holes in the final visualization of the views arise due to
presence of the some of the outliers which are discarded by applying a threshold on the
perimeter of the triangles.

5 Conclusions

In this paper, we have proposed an efficient approach to reconstruct an environment
while simultaneously reducing the amount of data while preserving the visual quality of
the scene. The purpose of this approach is to apply it in robotic aided USAR scenarios
where human and robot teams are performing different activities together. Since the
amount of data acquired by the robots is large, we focus our attention to reduce the size
of the data while not compromising on the quality of data. In this way, we provide a
solution for situational awareness by reducing the amount of RGB-D Data required to
transmit from robot to user. We evaluated and compared the approach using a standard
RGB-D benchmark dataset and achieved a downsampled representation up to (5-12)%
of the original cloud while keeping the visual quality still understandable for human
users. For future work we plan to make usage of this approach for real world robotic
aided search and rescue operations.

Acknowledgment

This research is funded by the EU FP7 ICT program, Cognitive Systems & Robotics
unit, under contract 247870, ”NIFTi” (http://www.nifti.eu). and European Consortium
for Informatics and Mathematics (ERCIM).

References

1. Kruijff, C.D.G.J.M.: EU FP7 NIFTi ”Natural human-robot cooperation in dynamic environ-
ments”. (2010) Funded by the EU FP7 as part of its ICT program, contract #247870.



Lecture Notes in Computer Science 9

Fig. 4. Sample views generated from the approach used in this paper. (Top row) 3D reconstruction
of three different views of the first sequence of the dataset. (Bottom row) 3D reconstruction of
three different views of large cupboard of the dataset.

2. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3d visual slam with a
hand-held rgb-d camera. In: Proc. of the RGB-D Workshop on 3D Perception in Robotics at
the European Robotics Forum, Västerås, Sweden (2011)
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