
Gradient-Driven Online Learning of Bipedal Push Recovery

Marcell Missura and Sven Behnke

Abstract— Bipedal walking is a complex and dynamic whole-
body motion with balance constraints. Due to the inherently
unstable inverted pendulum-like dynamics of walking, the
design of robust walking controllers proved to be particularly
challenging. While a controller could potentially be learned with
a robot in the loop, the destructive nature of losing balance
and the impracticality of a high number of repetitions render
most existing learning methods unsuitable for an online learning
setting with real hardware.

We propose a model-driven learning method that enables a
humanoid robot to quickly learn how to maintain its balance.
We bootstrap the learning process with a central pattern gen-
erator for stepping motions that abstracts from the complexity
of the walking motion and simplifies the problem setting to the
learning of a small number of leg swing amplitude parameters.
A simple physical model that represents the dominant dynamics
of bipedal walking estimates an approximate gradient and
suggests how to modify the swing amplitude to restore balance.
In experiments with a real robot, we show that only a few failed
steps are sufficient for our biped to learn strong push recovery
skills in the sagittal direction.

I. INTRODUCTION

Robust walking is a key prerequisite for legged robots
to unleash their full potential of traversing a variety of
terrains. However, a reliable walk controller that enables two-
legged robots to leave the safety of constrained laboratory
environments has not yet been achieved. Leading methods,
such as the one proposed by Kajita et al. [1], generate basic
walking on flat surfaces, and reject only minor disturbances.
Push recovery, walking on rough terrain, and agile control
of the walking direction are topics of ongoing research.

Designing a robust walk controller is particularly chal-
lenging due to the fact that bipedal walking is a balance-
critical motion. Steps must be landed in the right place at the
right time, otherwise the walker may fall and sustain damage.
The principal dynamics of a biped is similar to an inverted
pendulum, which—once disturbed—quickly diverges away
from the upright position. This property necessitates a timely
response to disturbances in order to act before the state of
balance escapes capturability. At the same time, walking is
a rather complex motion due to the high number of degrees
of freedom in the humanoid body. Real-time computation
of a balance-constrained, high-dimensional walking motion
requires abstraction using a low-dimensional model, which
typically leads to modeling approximations or artificial con-
straints which prevent the exploitation of the energy-efficient
natural dynamics of bipeds.

All authors are with the Autonomous Intelligent Systems Group, Uni-
versity of Bonn, Germany. Email: missura@ais.uni-bonn.de. This work
has been partially supported by grant BE 2556/6-1 of German Research
Foundation (DFG).

Fig. 1: Humanoid robot Copedo regains its balance after a
strong push from the back.

Using machine learning with hardware in the loop is
thought to be a promising alternative to analytic design for
producing a capable controller. However, model-free learning
of a high-dimensional motion generation for the motors of
a humanoid robot such that a robust and controllable walk
is achieved, is challenging. With the help of a motion skele-
ton and a fitness function that guides the learning process
towards upright walking, classical evolutionary algorithms
and reinforcement learning methods can be successful in
simulation [2]. When a real robot is in the loop, the feasible
number of trials and the risk of damaging the hardware
become limiting factors, and dictate that the learning process
must reach a reliable walking performance after a low
number of experiences. Flight animals learn to walk within
a few hours after birth, because their basic motion pattern
generation and the dispostion to step in the right direction
are innate and must only be tuned. This biological example
suggests that initialization with a hard-wired motion pattern,
and a rough concept of balance, is beneficial to successfully
learn how to walk. We follow this paradigm and investigate
a new learning method that incorporates a Central Pattern
Generator (CPG), which produces coordinated stepping mo-
tions and simplifies the problem setting to the learning of
leg swing amplitudes rather than whole-body control. A
simple physical model speeds up the learning process by
suggesting swing amplitude modifications with an estimated
gradient. The learning algorithm is executed online during
walking and improves the balancing capabilities of a biped
by aggregating the feedback it gains from the physical model
in a function approximator. We showcase our method in a
real-robot experiment where a biped learns to recover its
balance after being subjected to strong pushes from the back.
Even though initially the learning controller has no notion
of the right step size, a few steps are sufficient for it to learn

behnke
Schreibmaschine
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015.

how to avoid a fall.

II. RELATED WORK

Zero Moment Point (ZMP) preview control [1] is the most
popular approach to bipedal walking. A number of pre-
planned footsteps are used to define a reference trajectory
for the ZMP—the base of the inverted pendulum under
the foot. A continuous Center of Mass (CoM) trajectory
that minimizes the ZMP tracking error is then generated
by solving a quadratic programming problem in a Model
Predictive Control setting [3]. The optimization is compu-
tationally expensive, but can be performed in real time.
Whole-body control arises by computing joint trajectories
with inverse kinematics in a way that the pelvis follows
the CoM trajectory and the swing foot follows a smooth
trajectory that connects the footstep locations in Cartesian
space. The joint trajectories are tracked with high-precision
position controlled motors. By using the ZMP preview con-
trol scheme, high-quality hardware [4] can walk reliably on
flat ground as long as disturbances are small. Adaptive foot
placement has only recently been achieved by Urata et al. [5],
who replaced the computationally expensive CoM trajectory
optimization with a faster method that samples a whole set of
ZMP/CoM trajectory pairs. Triggered by a disturbance, their
algorithm selects the best available motion according to given
optimization criteria. Highly specialized hardware was used
to carry out the real robot experiments. A drawback of the
ZMP preview control algorithm is that the robot is forced to
follow the motion of a low-dimensional model as closely
as possible. This typically results in an unnatural, plane-
restricted motion of the pelvis with bent knees. To preserve
the theoretical stability of the precomputed CoM trajectory,
precise position tracking requirements are imposed.

An entirely different approach to bipedal walking origi-
nates from passive dynamic walking pioneered by McGeer
[6]. His experiments proved that not only control, but also
actuation can be entirely removed from the system. The pas-
sive dynamics of legs with unactuated joints is sufficient to
walk down a shallow slope. The graceful and energy-efficient
motion of his bipedal constructions strongly resembles the
human walk and suggests that the core principle of biological
gaits may also be passive dynamics without control effort.
Central pattern generated walking adds powerful actuation
and control of the walking speed and direction, but no control
of balance. In recent own work, we developed the Capture
Step Framework [7] that complements a CPG gait [8] with
balance control. The Capture Step Framework includes an
analytic balance controller that uses the CPG to control the
robot to step to the right locations in order to maintain
its balance and track a commanded step size. It has been
demonstrated to generate a stable, omnidirectional walk with
strong disturbance rejection capabilities on a real robot1 [9].
The non-intrusive balance control augmentation does not
derogate the natural dynamics and allows the CPG to produce
a high-dimensional walking motion with stretched knees.

1Video: http://youtu.be/PoTBWV1mOlY

As an alternative to restrictive analytic approaches, online
learning strategies can potentially learn how to augment a
gait with balance control. Rebula et al. [10], improved the
reactive step of a simulated biped from a standing position
by learning to step onto an offset from the capture point.
Focusing on the walking speed, bipedal and quadrupedal
gaits were successfully optimized using Policy Gradient
methods in high-dimensional state spaces [11], [12]. With the
same learning method, adjusted to a neuronal gait controller,
the sagittal-only robot Runbot learned to walk fast and to
cope with irregular terrain [13]. All these experiments started
from an open-loop stable, hand-designed gait.

A quickly learning bipedal system was presented by
Tedrake et al. [14]. Using online stochastic policy gradient
estimation, the robot Toddler learns to walk on different
surfaces in less than 20 minutes. The robot was designed
in such way that it can passively walk down a slope without
actuation. The success of this experiment can mostly be
attributed to a strong simplification of the learning task to
low-dimensional control of ankle actuation that imitates a
passive dynamic gait without the need for a slope.

Yi et. al. [15] investigated online learning on real hardware
using a reinforcement learning method. Their approach is
also built on top of an open-loop gait trajectory generator and
learns to optimize the input parameters of three biologically
inspired disturbance rejection strategies. To make online
learning on real hardware feasible, the reinforcement learning
was simplified by a discretization of the input space and
the assumption that the control parameters are restricted to
parametric functions.

Morimoto et. al used Gaussian processes [16], [17] and re-
ceptive field weighted regression [18] to learn a Poincaré map
that approximates the periodic dynamics of a biped. Using
this map to select suitable actions, a policy gradient-based
reinforcement learning method was used to train bipedal gaits
in simulation and on real robots. Upright walking with an
unspecified walking velocity in the absence of disturbances
was achieved.

In previous own work, we published a learning frame-
work [19] that learns to control the leg swing amplitudes of
a CPG in order to improve the walking performance of a
biped. The learning control can replace or coexist with the
analytic balance controller of the Capture Step Framework.
We investigated the aspects of learning to balance, reference
tracking, and the robustness of the learning method in simu-
lation. In this contribution, we focus on the most challenging
part: learning to balance on real hardware.

III. ONLINE LEARNING FRAMEWORK

The architecture of our learning controller is illustrated in
Fig. 2. In the following sections, we briefly introduce the
components of the framework. We then turn our attention to
the concepts of the learning process.

A. Bipedal Robot

A bipedal robot is an essential part of the control loop. It
receives joint target positions q from the control software and

Motion Generator

State Estimation Bipedal Robot

Š

SE ,θE

A

q

q̂ , θ̂ , ̂̇θ

θ , θ̇

Balance Control

θE

SE

Fig. 2: The architecture of our online learning gait control
framework. Using the sensor data received from the robot
(bottom right), the State Estimation component (bottom left)
determines the step size SE and the trunk angle θE at the
end of each step. The Balance Control (top left) has the task
of obeying the commanded step size Š while maintaining the
balance of the biped. From the errors the robot makes during
walking, the Balance Control component learns the leg swing
amplitude A. The Motion Generator (top right) generates
joint position targets q for periodic stepping motions with
the desired leg swing amplitude A.

provides sensor data about its internal state. It is equipped
with joint encoders, accelerometers, and gyroscopes that
measure the joint angles q̂ and allow for estimating trunk
angle θ̂ and angular velocity of the trunk ˆ̇

θ, respectively.
We have constructed a number of robots with the ability to
tolerate the mechanical stress of a fall and to get back up
on their feet. This skill is indispensable for learning how to
walk, as falling is a natural part of the learning process. The
humanoid robot Copedo we used to conduct our experiments
is shown in Fig. 1. Copedo is 114 cm tall and weighs 8 kg.
It is actuated by Robotis Dynamixel EX-106+ servos, which
we operate in a low-gain position control mode in order to
achieve compliant actuation. The emulated elasticity of the
actuators results in a soft motion that forgivingly absorbs
small disturbances and gracefully protects the motors from
hardware damage and overheating, but it also increases the

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Jo
in

t A
ng

le
 [r

ad
]

Time [s]

right knee tx right knee rx

Fig. 3: Commanded (tx) and measured (rx) joint angles of
the right knee during walking in place. To demonstrate the
joint elasticity, the robot was pushed down on the right hip at
1.5 seconds. The blue bar indicates the time of the push. The
position tracking error increases significantly in this phase.

position tracking error, making the robot more difficult to
control. Fig. 3 shows joint angle data measured on the
robot during a short period of in-place walking. During
the experiment, the robot was pushed down on the right
hip to demonstrate the compliant behavior. Online learning
of motor control is an ideal way of combating imprecise
actuation, latency, and sensor noise—challenges that are
inherent to the operation of real hardware.

B. Motion Generator

To generate stepping motions, a low-level CPG [8] is used
that produces periodic motion signals for the leg joints. It
exposes a parameter vector A = (Ar, Ap, Ay) that contains
dimensionless activation signals to control the leg swing
amplitudes in the roll, pitch, and yaw directions. The sagittal,
lateral, and rotational components of the physical step size
SE = (SEx, SEy, SEψ) are unknown monotonous functions
of the swing activation vector A. The motion generator takes
the responsibility of bounding and smoothing A in order
to avoid hardware damage. The CPG combines well with
our compliant actuator mode in a way that its configuration
parameters allow to manually adjust the step motion pattern
to account for the imprecision caused by the low-gain
position control. The leg swing oscillation is generated by
default with a nominal frequency. The step timing controller
of the Capture Step Framework [7] adapts the flow of the
motion phase in order to land the steps at the right time.

C. State Estimation

In the state estimation module, we reconstruct the tilted
whole-body pose of the robot. We first estimate the trunk
inclination θ = (θr, θp) and angular velocity θ̇ = (θ̇r, θ̇p) in
the roll and pitch directions based on the accelerometer and
gyroscope measurements. Then, we use the measured joint
angles q̂ to set the kinematic model of the robot in pose
using forward kinematics equations, and rotate the model
around the center of the support foot such that the trunk
angle matches the estimated values. When the swing foot
has a lower vertical coordinate than the support foot, the
roles of the feet are switched. In the moment of the support
exchange, we obtain the step size estimate SE by computing
the distance and rotation between the feet, and the trunk
angle θE . These two quantities are used to train the balance
controller.

D. Balance Control

A higher control instance commands a step size Š in order
to steer the robot in its environment. This is illustrated on the
top left of Fig. 2 as an input to the Balance Control module.
The Balance Control has the task of obeying the commanded
step size while maintaining the balance of the biped. During
walking, the Balance Control component observes the state
of balance and the error the robot makes with respect to the
desired step size Š, and learns to improve the overall walking
performance by controlling the step size using the leg swing
activation parameter A of the CPG. In the next section, the
learning process is introduced in more detail.

IV. LEARNING METHOD

Formally, the Balance Control is a function

A = B(θ, θ̇, Š), (1)

which computes the leg swing amplitude activation vec-
tor A = (Ar, Ap, Ay) in response to the trunk angle
θ = (θr, θp), its angular velocity θ̇ = (θ̇r, θ̇p), and the de-
sired step size Š = (Šx, Šy, Šψ). While the complexity of
function B is already much lower than what would be
needed for whole-body control, we simplify it further by
factorizing the Balance Control function into independent
control functionsArAp

Ay

 =

Br(θr, θ̇r, Šy)

Bp(θp, θ̇p, Šx)
By(Šψ)

 (2)

for the roll, pitch, and yaw leg swing activation signals.
Please note that the roll leg swing activation corresponds
to the lateral step size, the pitch leg swing activation cor-
responds to the sagittal step size, and the yaw leg swing
activation corresponds to the rotational step size. The fac-
torization is motivated by the dimensional decomposition
of the walking motion illustrated in Fig. 4. Interestingly,
the inverted pendulum-like motions in the sagittal and the
lateral directions exhibit strongly distinct behaviors. In the
sagittal plane, the center of mass crosses the pivot point
of the pendulum in every gait cycle, while in the frontal
plane, the center of mass oscillates between the support
feet and never crosses the pivot point. We have used the
dimensional decomposition concept in previous work to
design an analytic balance controller [7]. The dimensional
decomposition suggests that we can learn separate, possibly
conceptually different controllers, for the sagittal and the
lateral directions. We assume the effect of the rotational
direction to be negligible for balance and model it with
a simple mapping that converts the desired step size to
the activation of the rotational leg swing amplitude. In this
contribution, we concentrate entirely on the sagittal direction
and show that due to the strong reduction of the input and
output dimensions in combination with a model-based update
rule, a robust sagittal balance controller can be learned from
only a few steps.

We represent the sagittal Balance Control function Bp with
a function approximator and initialize it with zero output.
For the training of the function approximator, we measure
two quantities of interest in the instant of the touch-down of

(a) Sagittal (b) Lateral

Fig. 4: Stick diagrams of a compass gait. (a) In the sagittal
direction, the center of mass crosses the pendulum pivot point
in every gait cycle. (b) In the lateral direction, the center of
mass oscillates between the pivot points.

ϕ

ẍ

θ

ẍ

Sx

Fig. 5: The pendulum-cart model (left) resembles the angular
dynamics of a biped (right). When the cart accelerates, the
pendulum angle is accelerated in the negative direction.
A biped accelerates by increasing its step size and can
counteract undesired angular momentum.

the swing foot. We measure the state of the sagittal balance
simply as the trunk pitch angle θEp at the end of the step,
and we measure the reference step size tracking error as
S̄x = SEx − Šx. From these two quantities, we compute a
gradient G(θEp, S̄x) to improve the physical step size for the
conditions that were encountered during the step.

To derive a suitable modification of the step size that
attempts to maintain an upright posture of θp = 0, we
borrow a concept from the pendulum-cart model illustrated
in Fig. 5. The simplest controller that manages to balance the
pendulum on the cart when the pendulum angle φ ≈ 0, is a
proportional controller ẍ = kφ for a gain k. A biped is not
a cart, but it can accelerate its center of mass by increasing
or decreasing its step size. We can translate the proportional
controller from cart to biped by converting acceleration to a
step size modification and obtain a rough approximation of
a balancing step controller

∆Sx ≈ k θEp, (3)

which estimates a sagittal step size modification ∆Sx to
control the trunk pitch angle. For example, if at the end of
a step the trunk pitch angle θEp is positive, i. e. the robot is
rotated “forward”, the robot needs to take a larger step next
time in the same situation in order to end up with a more
upright posture.

As the right place to step to counteract undesired angular
momentum does not necessarily coincide with the desired
step size, a trade-off must be found between stepping into a
desired location and avoiding a fall. We combine the control
law (3) we derived from the cart-pendulum model, and the
footstep error S̄x, into the gradient function

G(θEp, S̄x) = θEp − pθ tanh(pSS̄x). (4)

The characteristic saturation of the hyperbolic tangent func-
tion bounds the influence of the step size error S̄x to a
configurable limit of pθ for two specific purposes: i) the
parameterized saturation makes sure that the robot learns
to track the reference step size carefully in order to avoid
sudden changes of the CPG activation signal that are likely
to cause instability, and ii) critical inclinations of ‖θp‖ � pθ
dominate the gradient, ensuring balance takes priority over
reference tracking when a fall is imminent. pS is a weight

to fine-tune the influence of the step size error within the
permitted bounds. Throughout our experiments, we used
pθ = 0.1 and pS = 30. Note that the gain k has been
dropped from the gradient equation, because it is absorbed
by the learning rate that we multiply the gradient with when
we apply the update rule to the function approximator in
Equation (5) below.

At the end of each step, we train the Balance Control
function approximator with the update rule

Bp(θpi, θ̇pi, Šx) := Bp(θpi, θ̇pi, Šx) + η G(θEp, S̄x),∀i ∈ I,
(5)

where η = 2.0 is a learning rate, I is an index set, and
{θpi, θ̇pi}, i ∈ I is the set of trunk pitch angles and angular
velocities that were measured during the step. In words,
we query the function approximator at the locations that
were seen during the step, add the gradient to the returned
values, and present the result as the new desired output to
the function approximator.

The main control loop queries the Balance Control func-
tion approximator with a frequency of 83.3 Hz to drive the
walking motion. It is essential that the function approximator
can respond well within a 12 ms time frame, even when it
is being updated with new data, in order to avoid blocking
the main control loop. We use an open-source implemen-
tation of the LWPR [20] algorithm that fully satisfies our
requirements.

V. EXPERIMENTAL RESULTS

0.75 m

1.6 m

3 kg

Fig. 6: Our
experimental
setup.

We demonstrate our method with an
experiment performed with a real hu-
manoid robot. The experimental setup is
illustrated in Fig. 6. We swing a 3 kg mass
attached to a 1.6 m rope onto the back of
the robot from a distance of 0.75 m. The
mass is pulled back and released by hand.
A yellow pole marks the starting point to
aid manual repeatability. The robot is po-
sitioned at the spot where the rope reaches
the vertical position. We command the
robot to walk in place by setting Š = 0.
The Balance Controller is initialized with
a zero step size and trained online during

the experiment. The impact is rather strong and the Balance
Controller has to learn to step forward in order to cope with
the push, but as soon as balance is restored the robot should
stop walking forwards and return to the commanded step size
of zero. Although the experiment is in the sagittal direction,
the motion of the robot is not restricted in any way. The
step timing component of the Capture Step Framework is
active. The step timing varies only slightly, but the use of the
timing controller helps to avoid the accumulation of small
errors that lead to lateral instability, which could interfere
with our experiments. A video of this experiment2 shows an
uncut example of how Copedo successfully learns to absorb
the impact. Due to the initialization with a zero step size and

2Video: http://youtu.be/qeWjy36gCBU

the strength of the impact, Copedo falls forward after the first
push. However, the controller learns from the steps during
the fall and is able to successfully absorb the second push.
When observing the attempted steps following the first push
in slow motion, one can see how the controller is learning
and attempting to increase the step size. Photographs of the
experiment are shown in Fig. 1. It is not necessary for the
robot to fall in order to train the sagittal balance controller.
Light pushes that drive the robot to the limit of its balance are
sufficient. It highlights the robustness of the learning concept
that it can learn even during a fall.

Fig. 7 shows the relevant data that allows us to analyze
the learning process in detail. The experiment lasted 30
seconds in total. A first push was applied to the robot after
14 seconds, and a second push was applied after 24 seconds.
The pushes are marked with vertical lines in the plots. The
first and second plots show the trunk pitch and pitch rate,
respectively. The trunk pitch values show how the robot fell
forward after the first push, but not after the second push. In
the pitch rate signal, two arrows mark the first peak after each
push showing that both pushes were equally strong. The pitch
rate signal is quite noisy. After the second push, the pitch
rate is negative at 25 seconds, when the robot steps forward
and corrects the trunk pitch angle to an upright position. The
third plot shows the gradient that was computed after each
step. The gradient increases and the robot learns during the
three steps after the first push while it is falling forward and
larger and larger steps would need to have been taken to
regain balance. When the fall is detected at approximately
15.5 seconds, the gait controller switches to a fallen state,
where walking and learning are suppressed. When an upright
pose is detected, the controller automatically switches the
walking and the learning back on. This is the case shortly
before 20 seconds, where an undesired gradient can be seen
to have been computed. Wrong gradients can be computed
while the robot is standing, but is still in the process of
manually being moved into the correct position. LWPR
assigns more weight to new data and eventually forgets old
data, and thus it makes sure that bad data do not degrade
performance for an extended period of time. After the second
push, the gradient stays near zero. The robot already learned

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

trunk pitch

-1
-0.5

 0
 0.5

 1

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

pitch rate

-0.2

 0

 0.2

 0.4

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

gradient

-0.2
-0.1

 0
 0.1
 0.2

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time [s]

step size

Fig. 7: Data recorded during a push recovery experiment.

Step 6

-2.4

-1.2

0.0

1.2

2.4
θ. p

[r
ad

/s
]

Step 10 Step 20

-1.5
-1
-0.5
 0
 0.5
 1
 1.5

Step 21

-2.4

-1.2

0.0

1.2

2.4

θ. p
[r

ad
/s

]

Step 22 Step 23

-1.5
-1
-0.5
 0
 0.5
 1
 1.5

Step 42

-0.7 -0.35 0.0 0.35 0.7
θp [rad]

-2.4

-1.2

0.0

1.2

2.4

θ. p
[r

ad
/s

]

Step 43

-0.7 -0.35 0.0 0.35 0.7
θp [rad]

Step 44

-0.7 -0.35 0.0 0.35 0.7
θp [rad]

-1.5
-1
-0.5
 0
 0.5
 1
 1.5

Fig. 8: Evolution of the learned feedback controller during
the push-recovery experiment. The black dots mark the data
points that were used to update the function approximator at
the end of the step.

the correct step size to cope with the push and no further
adjustment is needed. The fourth plot shows the step size
measured during the experiment. It is interesting to note that
the robot responded with a smaller step size to the second
push than to the first push, and yet the robot did not fall. The
evident reason for this is that since the controller already
learned from the first push, it was able to react earlier to
the second push and could balance the robot with less effort
elegantly with a single step. As can be inferred from the
inverted pendulum dynamics, the sooner the corrective action
is taken, the smaller the correction needs to be.

The evolution of the function approximator during the
learning experiment can be observed in Fig. 8. The black
dots on top of the color maps of the function approximator
show the data points that were used to update the controller
after the last step. The first row consists of states of the
function approximator before the first push. While the robot
is walking in place, no significant change can be observed.
We use a relatively large kernel size within the LWPR. The
small cluster of data in the middle of the trunk pitch phase
space is covered by a single linear kernel. The first push is
followed by Steps 21, 22, and 23 in the second row, during
which the robot is falling. The LWPR algorithm places new
kernels along the observed trajectory of the pitch angle state
in the phase space and covers a large portion of it with non-
zero leg swing amplitude activation values. In the last row,
Step 42 is the last step before the second push, where the
robot is still stable. Step 43 is the capture step that absorbs
the push, and, finally, Step 44 is a step of nearly zero size,
during which the residual instability is dispersed passively.

VI. CONCLUSIONS

We presented a simple and robust online learning concept
that achieves significant improvement of sagittal balance
from a low number of experiences. The underlying strategy is
to address the high-dimensional problem of walking motion
generation by a Central Pattern Generator that encodes the
coordination of single joints and exhibits a low-dimensional
leg swing activation parameter that can be used to influence

the step size. A dimensional decomposition of the balance
control task into independent controllers for the lateral and
the sagittal directions further simplifies the learning problem.
Then, the sagittal leg swing is learned online based on error
feedback and a simple pendulum-cart model assumption that
allows the computation of an approximate gradient to correct
the step size. A few steps are sufficient for the controller
to produce convincing push-recovery capabilities. To our
knowledge, the speed of our learning concept as well as
the achieved sagittal balance are among the best results
accomplished on a bipedal robot to date.

REFERENCES

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, and
K. Yokoi. Biped walking pattern generation by using preview control
of zero-moment point. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 2003.

[2] T. Geijtenbeek, M. van de Panne, and A. F. van der Stappen. Flexible
muscle-based locomotion for bipedal creatures. ACM Transactions on
Graphics, 32(6), 2013.

[3] P.-B. Wieber. Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations. In IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), 2006.

[4] S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko,
F. Kanehiro, and K. Yokoi. Biped walking stabilization based on linear
inverted pendulum tracking. In IEEE Int. Conf. on Intelligent Robots
and Systems (IROS), 2010.

[5] J. Urata, K. Nishiwaki, Y. Nakanishi, K. Okada, S. Kagami, and
M. Inaba. Online decision of foot placement using singular LQ
preview regulation. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2011.

[6] T. McGeer. Passive dynamic walking. International Journal of
Robotics Research, 1990.

[7] M. Missura and S. Behnke. Omnidirectional capture steps for bipedal
walking. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2013.

[8] M. Missura and S. Behnke. Self-stable omnidirectional walking with
compliant joints. In Workshop on Humanoid Soccer Robots, 2013.

[9] M. Missura and S. Behnke. Balanced walking with capture steps. In
RoboCup 2014: Robot Soccer World Cup XVIII. Springer, 2014.

[10] J. Rebula, F. Canas, J. Pratt, and A. Goswami. Learning capture points
for humanoid push recovery. In IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2007.

[11] T. Hemker, M. Stelzer, O. von Stryk, and H. Sakamoto. Efficient
walking speed optimization of a humanoid robot. International
Journal of Robotics Research, 28(2):303–314, 2009.

[12] N. Kohl and P. Stone. Policy gradient reinforcement learning for
fast quadrupedal locomotion. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 2004.

[13] T. Geng, B. Porr, and F. Wörgötter. Fast biped walking with a sensor-
driven neuronal controller and real-time online learning. International
Journal of Robotics Research, 2006.

[14] R. Tedrake, T. W. Zhang, and H. S. Seung. Learning to walk in 20
minutes. In 14th Yale WS on Adaptive and Learning Systems, 2005.

[15] S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee. Online learning of
a full body push recovery controller for omnidirectional walking. In
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2011.

[16] J. Morimoto and C. G. Atkeson. Nonparametric representation of
an approximated Poincaré map for learning biped locomotion. In
Autonomous Robots. Springer, 2009.

[17] J. Morimoto, C. G. Atkeson, G. Endo, and G. Cheng. Improving
humanoid locomotive performance with learnt approximated dynamics
via guassian process for regression. In IEEE Int. Conf. on Intelligent
Robots and Systems (IROS), 2007.

[18] J. Morimoto and C. G. Atkeson. Learning biped locomotion. In IEEE
Robotics and Automation Magazine, 2007.

[19] M. Missura and S. Behnke. Online learning of balanced foot placement
for bipedal walking. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2014.

[20] S. Vijayakumar, A. D’souza, and S. Schaal. Incremental online
learning in high dimensions. Neural Computation, 17(12):2602–2634,
2005.

