
Real-time and Model-free Object Tracking using Particle Filter with
Joint Color-Spatial Descriptor

Shile Li1, Seongyong Koo2 and Dongheui Lee1

Abstract— This paper presents a novel point-cloud descriptor
for robust and real-time tracking of multiple objects with-
out any object knowledge. Following with the framework
of incremental model-free multiple object tracking from our
previous work [5][7][6], 6 DoF pose of each object is firstly
estimated with input point-cloud data which is then segmented
according to the estimated objects, and incremental model of
each object is updated from the segmented point-clouds. Here,
we propose Joint Color-Spatial Descriptor (JCSD) to enhance
the robustness of the pose hypothesis evaluation to the point-
cloud scene in the particle filtering framework. The method
outperforms widely used point-to-point comparison methods,
especially in the partially occluded scene, which is frequently
happened in the dynamic object manipulation cases. By means
of the robust descriptor, we achieved unsupervised multiple
object segmentation accuracy higher than 99%. The model-
free multiple object tracking was implemented by using a
particle filtering with JCSD as a likelihood function. The robust
likelihood function is implemented with GPU, thus facilitating
real-time tracking of multiple objects.

I. INTRODUCTION

Object tracking is one of the core functions that enables
autonomous robots to perform intelligent applications such
as learning from human demonstrations [9], especially for
grasping [13][16] and manipulation [8]. Its difficulty relies
on two main aspects: availability of target object information,
and uncertainty of the measurement data. For example, when
a robot faces to a new environment, prior information of
tracking targets is not always provided and the objects are
easily occluded by obstacles or parts of the robot itself from
the view point of the camera mounted on the robot.

These difficulties call for a model-free and robust tracking
method, one of which was proposed in [6]. With a widely
used and low-cost RGB-D camera, the tracking process has
three main steps: pose tracking, point-cloud segmentation,
and model update. The pose tracking estimates the target
object’s pose in newly arrived point-cloud data, then point-
cloud segmentation groups the data according to the esti-
mated objects (as an example, Fig. 1 shows the segmentation
results of the four individual objects that are contacted with
each other), and the model update changes the current object
knowledge (object model) such that it can be adapted to the
new observation based on the estimated pose.

These steps have mutual influences, where each step needs
the result from the previous step as an input to proceed.

1 Chair of Automatic Control Engineering, Department of Electrical Engi-
neering and Computer Engineering, Technische Universität München, 80290
Munich, Germany li.shile@mytum.de, dhlee@tum.de. 2 S.
Koo is currently with the Autonomous Intelligent Systems (AIS) Group,
Computer Science Institute VI, University of Bonn, Germany. Email:
koosy@ais.uni-bonn.de, this paper was submitted when he was in Munich.

(a) Input point cloud (b) Object segmentation

Fig. 1. An example of multiple object segmentation result in the case
of four individual objects that are contacted with each other, segmentation
result is indicated in different colors.

Therefore, it is important to enhance accuracy and robustness
in all steps to obtain better tracking performance.

This paper aims to devise a novel pose hypothesis evalu-
ation method to improve both tracking accuracy and seg-
mentation robustness for real-time model-free tracking of
multiple objects. For object pose estimation using recursive
Bayesian Filtering or optimization processes, often multi-
ple pose hypotheses are proposed, where the hypotheses
should be evaluated to reveal how each hypothesis closes
to the given observed data. With the point-cloud data, the
hypothesis evaluation is performed by comparing a set of
measurement points in the neighborhood of the pose hy-
pothesis (hypothesis data) and current knowledge of the
object. Designing a robust and efficient hypothesis evaluation
method is a challenging task, since the knowledge of object
cannot be specified and the sensor data are often noisy and
partially missed.

Here, we propose Joint Color-Spatial Descriptor (JCSD)
that represents a probability density of a measurement point
in the joint color-spatial space. Compared to widely used
point-to-point comparison methods [2][14], where likelihood
is estimated by summing up each point-pair likelihood (in
terms of color coherence, spatial distance etc.), the pose
hypothesis evaluation with JCSD outperforms, especially in
the partially occluded scene, which is frequently happened
in the dynamic object manipulation cases. Moreover, it is
computationally efficient enough to rebuild the descriptor at
each model update step, thus enabling real-time performance.
A new model update scheme is also proposed to smoothly
add new segmented point-cloud data into the object model to
maintain its adaptivity to the new sensor data and at the same
time its robustness against segmentation error. Compared to
[13][5][7], which used simplified object model (Gaussian
Mixture Model or supervoxel), precise object boundary shape

Pose
estimation

Segmentation Model
update

Sec. II-C, Sec III
Sec. II-D

Sec. II-D

Fig. 2. System overview for model-free object tracking. All bold symbols
are presented as point cloud.

can be retained, thus higher object segmentation accuracy
was achieved. The proposed method was implemented with
GPU by using a particle filtering [4][3] with JCSD as a like-
lihood function. As the robust likelihood function allows to
reduce the number of particles, a large number of hypotheses
evaluations that are required by multiple particle filters can
be calculated in real-time for tracking multiple objects at the
same time. Moreover, the experiment results showed that the
segmentation accuracy was achieved higher than 99%.

This paper is organized as follows. Model-free object
tracking system based on particle filter and the new model
update scheme is described in section II. The proposed new
hypothesis evaluation method is explained in section III.
The performance of our approach is shown with several
experiments in section IV. Finally, a conclusion is given in
section V.

II. MODEL-FREE OBJECT TRACKING SYSTEM

A. System overview

The proposed model-free tracking system consists of three
parts as shown in Fig. 2. When a new point-cloud comes, the
object’s pose needs to be estimated at first (pose estimation).
Then, a set of points from current sensor data, which belongs
to the object, is extracted based on the estimated pose
(segmentation). Finally, the object model is updated with old
model data and newly the extracted points (model update).

In this work, at time step t, a frame of sensor data, Zt ,
and an object model, Mt , are represented as a set of points,
{(p1,c1), ...,(pn,cn)}, each of which contains 3D location,
pi =(x,y,z), and its corresponding color, ci =(r,g,b). For the
multiple object case, {M(k)

t }K
k=1 are K object models at time

step t. Let’s assume that the initial object models {M(k)
t0 }

K
k=1

can be obtained from the non-contact case1 as shown in Fig.
3, where the input point-cloud can be easily segmented into
object individuals using an Euclidean clustering method [15].
Here, t0 is the time step for last frame of non-contact case.

When new frame data Zt arrives at time step t, the pose
estimation process is firstly applied based on a particle filter
with the proposed JCSD. Then, the previous object model
M(k)

t−1 is transformed from the object coordinate to the world
coordinate based on the estimated pose. Next, point-cloud
segmentation is performed based on the transformed object
models M̂(k)

t , which results in a subset of input point-cloud
data Z(k)

t . New object model M(k)
t is then built by fusing M̂(k)

t

1The transition from non-contact to contact case is detected using
algorithms provided by [7].

(a) Input point cloud (b) Euclidean clustering result

Fig. 3. An example of the non-contact case where four individual objects
are clearly separated with Euclidean clustering method.

and Z(k)
t . Finally, the new object model M(k)

t is transformed
back to its object coordinate.

B. Object pose representation

All points in the object model M are described relative to
the object coordinate, which is fixed on the centroid of the
initial object model Mt0 . At time step t, one object’s pose
state is presented as:

Xt = (x,y,z,roll, pitch,yaw). (1)

For clarity, we denote transformed point cloud M̂ from M
based on the pose state X as:

M̂ = X⊗M. (2)

C. Particle filter for pose estimation

Particle filter is a robust approach for tracking object pose,
it is not limited to a linear system and does not require
noise to be Gaussian [19][18]. At time step t, the posterior
probability of an object’s pose is approximated by a set
of hypothesis samples {X(i)

t }N
i=1 with their corresponding

weights {π(i)
t }N

i=1. The set of hypothesis {X(i)
t }N

i=1 is sampled
by using Sampling Importance Resampling method. Each
sample-weight pair is defined as a particle S(i)t = (X(i)

t ,π
(i)
t),

where the weight values are normalized as ∑
N
i=1 π

(i)
t = 1.

Each weight value is proportional to its corresponding hy-
pothesis likelihood, which is the probability that an object
model Mt−1 fits to the current measurement Zt based on the
hypothesis pose state X(i)

t :

π
(i)
t ∝ p(Zt |X(i)

t ⊗Mt−1). (3)

The likelihood estimation method will be described in Sec-
tion III.

The final estimation of the current state X∗t is then the
integration of all particle states based on their weights:

X∗t =
N

∑
i=1

π
(i)
t ·X

(i)
t (4)

D. Object segmentation and model update

Assuming that K objects are present, object segmentation
task is to label each point {pi}n

i=1 from Zt with an object
index oi, where oi ∈ [1,K] and n is the number of points in
Zt and K is the number of objects. oi can be determined

by calculating Euclidean distance from one point to each
object in their current estimated pose. The Euclidean distance
between ith point pi and kth object M̂(k)

t = X∗t ⊗M(k)
t−1 is

defined as d(k)
i , which is the distance between pi and the

closest point in M̂(k)
t :

d(k)
i = min

j
‖pi− p̂(k)

t, j ‖, (5)

where p̂(k)
t, j is the jth point of M̂(k)

t . This is implemented
using k-d tree search provided by Point Cloud Library [15].

The ith point is then labeled to the object, which results
in the smallest d(k)

i and if d(k)
i is smaller than a threshold τ:

oi =

{
argmink(d

(k)
i) if min(d(k)

i)5 τ

/0 if min(d(k)
i)> τ

(6)

The threshold τ is introduced here to avoid false association
of irrelevant points (points from other objects or background)
and is set as twice of the sampling distance between points
in the sensor data. The subset of identified input point-cloud
that is associated with the kth object is then presented as
Z(k)

t .
In the model update step, if the newly segmented point-

cloud {Z(k)
t }K

k=1 simply replaces the object model {M(k)
t }K

k=1,
possibly existing segmentation errors will cause inaccurate
object model estimation, and the errors are accumulated in
the tracking process due to the feedback loop. To overcome
this issue, we propose the following model update scheme
to merge old object model and new segmented data. At time
step t, we select α% (α ∈ [0,100]) points randomly from new
segmented data {Z(k)

t }K
k=1 and (100−α)% points from M̂(k)

t

to build the new object model M(k)
t . Intuitively, if the object

appearance changes rapidly during tracking, a larger update
ratio is required to adapt the model to recent observations,
otherwise a smaller update ratio is preferred to maintain
the stability of object model. Fig. 4 shows the examples
of the object model with α = 2%, which is empirically
obtained value for balancing the trade-off between stability
and adaptability of the model update considering the object
appearance changing speed in our tracking scenarios.

III. HYPOTHESIS EVALUATION

Hypothesis evaluation is a core part of the particle filtering
to estimate an object pose in the point-cloud data. As seen
in (3), it represents how likely a pose hypothesis is close
to the measurement data, and decides the weight value of
each particle. Thus, the form of the evaluation function
determines robustness and computational efficiency of the
tracking performance.

In order to evaluate between an object model and a point-
cloud data, some previous approaches used local comparison
where point-to-point correspondences are used. [14][2][1].
They estimated likelihood for each point pair and sum up the
result for all pairs. It is advantageous for tracking accuracy
but sensitive to the noise and partially missed data. On the
other hand, global comparison approach has been used for
object tracking in 2D video stream [10][12][11]. Most of the

Fig. 4. Two examples of how the smoothly adapted object model (figures
on the right column) can be updated comparing with current input point-
clouds (figures on the left column) and fixed initial object models (figures
on the middle column). An example on the upper row shows that the
initially occluded but currently appeared part (red circle) is updated in
the proposed object model. Another example on the lower row shows that
initially appeared but currently occluded part (red circle) can be updated as
well.

global comparison methods estimated color distributions of
object model and hypothesis data, and compared these two
distributions. Although it is a robust description, the tracking
accuracy is less than local comparison, because small change
of the object orientation does not affect the color distribution.

How to represent an object from a point-cloud such that
it is locally efficient and globally robust? First, we select a
set of evaluation points that are equally distributed in the
interested point-cloud space. Each evaluation point repre-
sents local part of an object by calculating the proposed Joint
Color-Spatial Descriptor (JCSD) based on its neighbouring
measurement points. Then, the object is globally represented
as a probability density of the JCSD that is estimated by
interpolating the JCSDs of the neighboring evaluation points.
In this way, local variation of an object can be reflected, and
at the same time, robust description is retained in the global
area of the object.

In this chapter, we propose Joint Color-Spatial Descriptor
to combine the advantages of the local and global comparison
methods. We first introduce the spatial representation of an
object without considering color and then will show how to
combine spatial representation and color feature into JCSD.

A. Spatial representation of an object

The spatial representation of an object is expressed as
spatial probability density at multiple evaluation points.
The spatial density of each evaluation point is obtained by
the Kernel Density Estimation (KDE) method. We denote
an arbitrary point-cloud P with n points. To build spatial
representation on P, first, a set of equal sized 3D grids with
grid length r are created on P as shown in Fig. 5. Then, all
grids’ corners {si}m

i=1 are selected as evaluation points, where
m is the number of corners. To estimate spatial density at the
ith evaluation point si, its neighboring points from P inside
the kernel bandwidth are used, where the kernel bandwidth
is set as the same as grid length r. Assuming the neighboring
point set of si is P(i) with ni points, then the spatial density

Fig. 5. A set of grids and corresponding evaluation points to represent
spatial distribution of an object. Here, they are illustrated in 2D case for the
simplicity. In the left figure, a bounding box with grid length r is covered on
the point-cloud P (colored points of a book). Evaluation points are located on
the grid corners {si}m

i=1. Spatial density of each evaluation point is calculated
with a kernel bandwidth of r. The right figure explains the influence of a
random point pi from P to the neighboring evaluation points. Here, the
point (blue color) only affect the four evaluation points (red color) because
of the kernel bandwidth size (red circles). In the 3D case, there exists eight
neighboring points on the corners of a cube.

of P(i) at si can be obtained by KDE as following:

f̂r(si) =
1
n

ni

∑
j=1

Kr(‖si−p(i)
j ‖), (7)

where Kr(x) is a kernel function that determines the con-
tribution of one point based on its distance. Here, we
used a triangular kernel with a benefit of its computational
efficiency:

Kr(x) =
max((r− x),0)

r
. (8)

With the constructed grids, we can achieve less total
computational complexity for spatial density estimation. For
an unorganized point-cloud, neighbor search for the evalu-
ation points often requires k-d tree search with O(m logn)
complexity for m evaluation points and n number of mea-
surement points. However, the proposed method can have
linear complexity O(n) without neighbor search. For each
point pi, a grid is first selected to which the point belongs.
Then only pi’s eight surrounding evaluation points’ spatial
densities will be updated with pi, because pi only contributes
to these eight evaluation points as shown in Fig. 5. Therefore
for each one of the n points from P, eight update operations
are needed, which results in O(8 · n) = O(n) in total. The
summary of the spatial density estimation for all evaluation
points is shown in Algorithm 1.

B. Joint color-spatial representation

In order to represent appearance of an object, color distri-
bution for each evaluation point should also be considered.
The color feature should not only have low-dimensional
space for the sake of computation memory size, but also
retain discriminative property. Additionally in a dynamic
environment, object pose and illumination intensity can be
changing. These aspects should also be considered in the
color feature selection. Wang et. al. proposed the Smoothed
Color Ranging (SMR) method to describe color with 8

Algorithm 1 Calculate spatial density at the evaluation points
Input: - {si}m

i=1 and P = {pk}n
k=1

Output: - { f̂r(si)}m
i=1

- { f̂r(si)}m
i=1← 0

for k = 1 : n do
- Determine grid index of pk.
- Determine the indexes {kl}8

l=1 of the 8 evaluation
points for pk based on its grid index.
- Update each relevant evaluation point of pk:
for l = 1 : 8 do

- f̂r(skl)← f̂r(skl)+
1
n Kr(‖skl −pk‖)

end for
end for

representative colors (red, yellow, green, cyan, blue, purple,
light gray, dark gray) [17]. In their work, SMR using HSV
(Hue, Saturation, Value) color space has been proven to be
invariant against illumination changes.

Using SMR color feature, spatial density will be calculated
eight times for each color range individually. To describe its
color distribution, a 8-dimensional feature vector h has at
most three non-zero elements and ‖h‖1 = 1 will be estimated.
For each evaluation point si, eight different spatial densities

{ f̂ (c)r (si)}
8
c=1 are evaluated to correlate spatial and color data.

For the cth color range, to estimate the density f̂ (c)r (si) in that
color range at evaluation point si, Equation (7) is updated to:

f̂ (c)r (si) =
1
n

ni

∑
j=1

eT
c ·h

(i)
j ·Kr(‖si−p(i)

j ‖), (9)

where ec ∈R8 has value 1 for cth element and 0 for all other
elements.

As a result, the JCSDs for P with m evaluation points
can be described as a Matrix JP ∈ R8×m, where jth column
contains the jth evaluation point’s densities in eight different
color ranges:

JP =

f̂ (1)r (s1) f̂ (1)r (s2) · · · f̂ (1)r (sm)

f̂ (2)r (s1) f̂ (2)r (s2) · · · f̂ (2)r (sm)
...

...
. . .

...
f̂ (8)r (s1) f̂ (8)r (s2) · · · f̂ (8)r (sm)

 . (10)

C. Likelihood estimation

The likelihood estimation is a task to measure how well
the object model Mt−1 fits the observation data Zt based on
the ith hypothesis state X(i)

t . First, hypothesis data needs to
be extracted from sensor data, which are the points near the
object’s last estimated pose for the time step t−1, because
we can assume that object movement is limited between two
consecutive frames. With this assumption, a part of points
of Zt that have large distance to the object model’s last
estimated pose X∗t−1 ⊗Mt−1 are removed. The remaining
point cloud Z′t with n points then compose the hypothesis
data. For the ith particle state X(i)

t , the hypothesis data is
transformed to the coordinate of the object to compare based
on inverse of X(i)

t , resulting in Z′(i)t = {z(i)1 , ...z(i)n }.

Hypothesis evaluation is performed on each point from
the hypothesis data Z′it by estimating its fitting score to
determine how well it fits to the object model’s JCSD, JMt−1 .
The fitting score for X(i)

t is then obtained by summing up
all points’ fitting score. The fitting score s(z(i)j) for the

jth point z(i)j from Z′(i)t is calculated based on its color

feature h(i)
j . The JCSD { f̂ (c)(z(i)j)}8

c=1 for the object model

at z(i)j is evaluated by using trilinear interpolation of the
eight surrounding evaluation points: {s jk}8

k=1, which are the
corners of a cube that surrounds z(i)j :

f̂ (c)(z(i)j) =
8

∑
k=1

∏
3
d=1(13−|z(i)j − s jk |)d

l3
grid

·JMt−1(c, jk), (11)

where c indicates the index of color range, 13 is a three-
dimensional vector with all ones and (x)d indicates the dth
element of vector x. The fitting score of point z(i)j is then

calculated by correlation between h(i)
j and { f̂ (c)(z(i)j)}8

c=1:

s(z(i)j) =
8

∑
c=1

eT
c ·h

(i)
j · f̂ (c)(z(i)j). (12)

As a result, the fitting score of ith particle si is then the
summation of fitting scores of all points from Z′it :

si =
n

∑
j=1

s(z(i)j). (13)

The summary of estimation of si is shown in Algorithm
2. After fitting score estimation for all particle states, the
likelihood p(Zt |Xi

t ⊗Mt−1) is calculated as

p(Zt |X(i)
t ⊗Mt−1) ∝ exp(−λ · (1− si− smin

smax− smin
)), (14)

where smin and smax are the minimal and maximal score
value among all hypothesis states respectively and λ is a
constant controlling the preference degree to particles with
higher fitting score.

Algorithm 2 Fitting score estimation
Input: - JCSDs of object model: JMt−1 , ith hypothesis data:

Z′(i)t = {z(i)1 , ...z(i)n } and its corresponding color features:
{h(i)

1 , ...h(i)
n }

Output: - Fitting score si of Z′it
- si← 0
for j = 1 : n do

- Determine JCSD at location of z(i)j : { f̂ (c)(z(i)j)}8
c=1

(Equation 12).
- Estimate fitting score of z(i)j : s(z(i)j) using correlation

between h(i)
1 and JCSD { f̂ (c)(z(i)j)}8

c=1 (Eqaution 13).

- si← si + s(z(i)j)
end for

IV. EXPERIMENT AND RESULT
In this section, we present a set of experiments that

demonstrate pose tracking accuracy, segmentation accuracy,
and real-time performance of our approach. As shown in
Fig. 6, the experiments were performed by using three table-
top scenarios with multiple object dynamic interactions as
follows.
• Stacking and unstacking two objects: A human hand

approaches object 1 and stacks the object onto another
object 2, then the hand leaves the scene for a while and
unstacks the object 1 to its original position.

• Contacting two objects: Two human hands grasp two
objects respectively. Then both hands manipulate the
objects such that both object make a contact with each
other and move together.

• Rotating an object: A human hand grasps one object
and rotates it arbitrarily.

The point-cloud data of a table are first excluded using
a plane extraction method in [15], then to reduce the size
of point-cloud, the remaining data were downsampled with
5mm sampling distance using VoxelGrid filter [15]. The
length of grid used for JCSD was 15mm for all experiments.
All experiments run on a standard desktop computer (CPU:
Intel i5-2500 3.30GHz; GPU: Nvidia GeForce GTX 560)
with ASUS Xtion Pro Live RGB-D camera.

A. Tracking accuracy

Since we performed model-free object tracking, it is hard
to obtain the ground truth data of the object and hand poses.
Instead of measuring the exact pose error, we used scene-
fitting distance to evaluate the tracking accuracy. The fitting
distance describes how well the object model fits to the
sensor data based on its estimated pose, it is defined as
the average distance of points from the object model in its
estimated pose M̂ to the closest point from current sensor
data. However, we excluded points from M̂ that are occluded
by current sensor data, because they result in large distance
even if the object model is in its true pose.

We compare our method with the point-point correspon-
dence method using the likelihood function from [2] in
terms of fitting distance. As shown in Fig. 7, our approach
outperforms the point-point correspondence approach in both
stack/unstack and multiple contact scenario, because in these
two scenarios, partial occlusion of boxes caused inaccu-
rate hypothesis likelihood of the point-point correspondence
method, consequently resulting in inaccurate pose estimation.

B. Segmentation accuracy

To obtain the ground truth segmentation data, we attached
Augmented Reality (AR) markers with 4cm× 4cm size on
the center of two objects and constructed manually their
corresponding cube type point-clouds. The AR markers pro-
duced 6 DoF poses, and these values were filtered by using
a Kalman Filter to obtain true marker poses. The ground
truth segmentation data is then obtained by positioning the
constructed cube model at the tracked marker poses onto the
scene data.

(a) Stacking and unstacking two objects

(b) Contacting two objects

(c) Rotating an object

Fig. 6. Object segmentation result. Notice our approach can clearly segment finger in stack/unstack and rotation case.

In this experiment, we set the model update ratio α = 2%
and used 200 particles for the particle filtering. Since we
removed the table point-cloud priorly, all points belong to
a certain object. The accuracy of the object segmentation is
defined as the ratio between the size of correctly associated
points and the overall point-cloud size:

Accuracy =
#correct associated points

#all points
, (15)

which is equivalent as the segmentation accuracy evalua-
tion method PMOTA (Point-level Multiple Object Tracking
Accuracy) that is presented in [7]. The average object seg-
mentation accuracy for all three scenarios is 99.4%. This
outperforms the result from [7], where they had similar
experiment settings and achieved ca. 90% segmentation
accuracy. The qualitative segmentation results can be seen
in Fig. 6.

C. Computation time

We first implemented our hypothesis evaluation method
with CPU programming. To evaluate one particle for an
object model with ca. 900 measurement points, our CPU
implementation requires in average 0.29ms while point-point
correspondence approach needs in average 0.9ms. This is
because our approach has linear complexity, whereas point-
point correspondence search requires k-d tree search, which
results in O(m logn) complexity.

We further implemented hypothesis evaluation method
with GPU programming to parallelize the particle weighting
process. To evaluate real-time performance, we used the
stacking/unstacking case, where three objects are present and
average point number is 3213 for each frame. For different
particle numbers, we calculated the required computation
time for each frame and the average fitting distance over
all frames. As expected, Fig. 8 shows with more parti-
cle number, computation time grows and fitting distance
decreases. After ca. 100 particles, there is no significant

time [frame]
0 100 200 300 400 500 600 700 800 900

fi
tn

e
ss

 d
is

ta
n

ce
 [

m
]

x 10-3

0

2

4

6

8

our approach
point-point
correspondencecontact

starts
contact

ends

object 1
stacked

object 1
unstacked

(a) Stacking and unstacking two objects scenario

time [frame]
0 100 200 300 400 500 600 700 800

fi
tn

e
ss

 d
is

ta
n
ce

 [
m

]

0

0.002

0.004

0.006

0.008

0.01

our approach

point-point
 correspondence

contact
starts

contact
ends

(b) Contacting two objects scenario

Fig. 7. Fitting distance comparison: blue line is from our approach, red
line is from point-point correspondence approach [2]. In both scenarios, as
soon as partial occlusion occurs, our approach outperforms.

0 500 1000 1500
40

50

60

70

80

90

1.4

1.6

1.8

2

2.2

2.4

fitting distance
time per frame

particle number

ti
m

e
 p

e
r

fr
a
m

e
 [

m
s]

fi
tt

in
g

 d
is

ta
n

ce
 [

m
m

]2.4

2.2

2.0

1.8

1.6

1.4

90

80

70

60

50

40
0 500 1000 1500100

Fig. 8. Computation time and fitting distance in relation with particle
number.

decrease of fitting distance while computation time still
grows. Therefore, a reasonable particle size is around ca.
100 with 21 FPS computation speed.

V. CONCLUSION

In this work, we proposed a novel multiple model-free
object tracking method with Joint Color-Spatial Descriptor
(JCSD) for the hypothesis evaluation step inside a particle
filtering framework. Using JCSD, we achieved more accurate
pose tracking result in partial occlusion cases compared
to point-point correspondence method [2]. The obtained
pose tracking result is accurate enough to achieve object
segmentation accuracy higher than 99%, which is higher
than the result from [7]. In addition to the accuracy, the
method is computationally efficient to be implemented with
GPU in real-time. The experiment results showed that with
the minimum number of particles the method can be used
for tracking three objects at the same time in 21 FPS.
Thanks to the accurate segmentation result of the unknown
objects in real-time, on-line object learning tasks will be
more investigated in future work.

ACKNOWLEDGMENT

This work has been partially supported by TUM Institute
for Advanced Study, funded by the German Excellence

Initiative.

REFERENCES

[1] James Anthony Brown and David W Capson. A framework for
3d model-based visual tracking using a gpu-accelerated particle fil-
ter. IEEE Transactions on Visualization and Computer Graphics,
18(1):68–80, 2012.

[2] Changhyun Choi and Henrik I Christensen. Rgb-d object tracking:
A particle filter approach on gpu. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1084–
1091.

[3] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction
to sequential Monte Carlo methods. Springer, 2001.

[4] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel
approach to nonlinear/non-gaussian bayesian state estimation. In IEE
Proceedings F (Radar and Signal Processing), volume 140, pages
107–113. IET, 1993.

[5] Seongyong Koo, Dongheui Lee, and Dong-Soo Kwon. Gmm-based
3d object representation and robust tracking in unconstructed dynamic
environments. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1114–1121, 2013.

[6] Seongyong Koo, Dongheui Lee, and Dong-Soo Kwon. Incremental
object learning and robust tracking of multiple objects from rgb-d point
set data. Journal of Visual Communication and Image Representation,
25(1):108–121, 2014.

[7] Seongyong Koo, Dongheui Lee, and Dong-Soo Kwon. Unsupervised
object individuation from rgb-d image sequences. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 4450–4457, 2014.

[8] Michael Krainin, Peter Henry, Xiaofeng Ren, and Dieter Fox. Ma-
nipulator and object tracking for in-hand 3d object modeling. The
International Journal of Robotics Research, 30(11):1311–1327, 2011.

[9] Dongheui Lee and Yoshihiko Nakamura. Mimesis model from partial
observations for a humanoid robot. The International Journal of
Robotics Research, 29(1):60–80, 2010.

[10] Katja Nummiaro, Esther Koller-Meier, and Luc Van Gool. An adaptive
color-based particle filter. Image and vision computing, 21(1):99–110,
2003.

[11] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J Little, and
David G Lowe. A boosted particle filter: Multitarget detection and
tracking. In Computer Vision-ECCV, pages 28–39. Springer, 2004.

[12] Vasilis Papadourakis and Antonis Argyros. Multiple objects tracking
in the presence of long-term occlusions. Computer Vision and Image
Understanding, 114(7):835–846, 2010.

[13] Jeremie Papon, Tomas Kulvicius, Eren Erdal Aksoy, and Florentin
Worgotter. Point cloud video object segmentation using a persistent
supervoxel world-model. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3712–3718, 2013.

[14] Jeremie Papon and Florentin Wörgötter. Spatially stratified correspon-
dence sampling for real-time point cloud tracking. In IEEE Conference
on Applications of Computer Vision (WACV), 2015.

[15] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library
(pcl). In IEEE International Conference on Robotics and Automation
(ICRA), pages 1–4, 2011.

[16] Alexander M Schmidts, Dongheui Lee, and Angelika Peer. Imitation
learning of human grasping skills from motion and force data. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1002–1007, 2011.

[17] Wei Wang, Lili Chen, Dongming Chen, Shile Li, and K Kuhnlenz.
Fast object recognition and 6d pose estimation using viewpoint ori-
ented color-shape histogram. In IEEE International Conference on
Multimedia and Expo (ICME), pages 1–6, 2013.

[18] Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and Zhan
Song. Recent advances and trends in visual tracking: A review.
Neurocomputing, 74(18):3823–3831, 2011.

[19] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A
survey. Acm computing surveys (CSUR), 38(4):13, 2006.

