
Flexible-Joint Manipulator Trajectory Tracking with
Learned Two-Stage Model employing One-Step

Future Prediction
Dmytro Pavlichenko

Autonomous Intelligent Systems
University of Bonn, Germany

Email: pavlichenko@ais.uni-bonn.de

Sven Behnke
Autonomous Intelligent Systems
University of Bonn, Germany

Email: behnke@cs.uni-bonn.de

Abstract—Flexible-joint manipulators are frequently used for
increased safety during human-robot collaboration and shared
workspace tasks. However, joint flexibility significantly reduces
the accuracy of motion, especially at high velocities and with
inexpensive actuators. In this paper, we present a learning-
based approach to identify the unknown dynamics of a flexible-
joint manipulator and improve the trajectory tracking at high
velocities. We propose a two-stage model which is composed of
a one-step forward dynamics future predictor and an inverse
dynamics estimator. The second part is based on linear time-
invariant dynamical operators to approximate the feed-forward
joint position and velocity commands. We train the model end-
to-end on real-world data and evaluate it on the Baxter robot.
Our experiments indicate that augmenting the input with one-
step future state prediction improves the performance, compared
to the same model without prediction. We compare joint position,
joint velocity and end-effector position tracking accuracy against
the classical baseline controller and several simpler models.

I. INTRODUCTION

Robot manipulators have been used for decades, and tra-
jectory tracking control has been extensively researched to
achieve fast and accurate motion. In the case of classical in-
dustrial manipulators, approaches like iterative learning control
(ILC) [1] can efficiently achieve this goal. ILC assumes that
the exact same trajectories are repeated in a well-structured
environment. In recent years, the role of robotic manipulators
is extending beyond such scenarios: direct human-robot collab-
oration in shared workspaces induces significantly increased
safety requirements. Frequently, their satisfaction starts at the
hardware level by the use of compliant series-elastic actuators.
However, flexible manipulators produce less accurate motions
and the complex underlying dynamics models are often un-
known. The simplest way to address this issue is operation
at low velocities. Unfortunately, this limits the efficiency of
the system. The objective of this paper is to achieve accurate
trajectory execution at high velocities for inexpensive flexible-
joint manipulators.

Neural networks (NNs) are known for their ability to
generalize and model complex non-linear relations. We present

This work was funded by grant BE 2556/16-2 (Research Unit FOR 2535
Anticipating Human Behavior) of the German Research Foundation (DFG).

Fig. 1: Two-stage model, employing input augmentation with
one-step future prediction for inverse dynamics approximation.

a methodology for neural-learned feed-forward outer-loop con-
trol based on linear time-invariant (LTI) dynamical operators.
In particular, as a part of our model we use the novel
dynoNet [2], which resembles the features of RNN [3] and
1-D convolution [4]. The LTI layers are specifically designed
for sequence modeling and system identification, successfully
approximating complex non-linear causal dynamics, while
being differentiable and suitable for backpropagation. Thus,
we utilize them for approximating the inverse dynamics of
flexible-joint manipulators. We propose a two-stage model
(Fig. 1). The motivation for such model architecture is to
hardwire the ”Infer what will happen in the future, then think
what would be the best action now to prevent the foreseen
inaccuracies” structure within the network. We elaborate that
such an architecture moves away from the pure reactive policy
towards the more intelligent planning-ahead behavior. This
can be viewed as a simplistic model-predictive framework.
The first part approximates the forward dynamics of the
manipulator. The output of this model is used to augment
the input to the LTI-based model, which approximates the
inverse dynamics, producing the feed-forward joint position
and velocity commands, which are then being fed to the inner-
loop feedback controller of the robot manipulator. Explicitly
utilizing both forward and inverse dynamics helps to maximize
the extraction of information from the scarce real-world data.
The models are trained end-to-end on the real-robot data in a
supervised manner using plain backpropagation.

behnke
Schreibmaschine
5th IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, November 2021.

We represent each point of the manipulator trajectory as a
tuple 〈θ, θ̇, θ̈〉, where θ is a joint positions vector. Explicit
inclusion of velocity and acceleration provides information
about the dynamics to the NN directly, as opposed to forcing
the NN to infer it from the series of joint positions. This state
formulation should allow learning the dynamics of the ma-
nipulator from a smaller dataset. It is especially important in
case of flexible-joint manipulators, which often do not have an
accurate dynamics model which could be used to pre-train the
model in simulation. Thus, limited real-world data should be
used for training. We evaluate the performance of our method
on the real Baxter robot against the baseline controller, a multi-
layer fully-connected NN, RNN, and plain dynoNet without
future prediction step. The training is done on a small real-
world dataset. Our approach significantly improves trajectory
tracking accuracy, compared to the baseline controller, and
outperforms other models. The method allows executing fast
trajectories with higher accuracy.

The main contributions of this work are:
• Two-stage model architecture with one-step future pre-

diction for feed-forward trajectory tracking, trained end-
to-end with backpropagation,

• investigation of effectiveness of LTI-based models for
robotic manipulator inverse dynamics approximation.

II. RELATED WORK

Trajectory tracking has been thoroughly studied for decades.
One of the classical methods is iterative learning control [1]
(ILC): it iteratively updates the control input with track-
ing error and after a small number of iterations is able
to perfectly track a desired trajectory. ILCs main limitation
is non-transferability: the optimization has to be performed
from scratch for each new trajectory. Differential dynamic
programming [5] (DDP) is another approach, which utilizes a
linear quadratic regulator (LQR) in order to iteratively update
the control inputs. This approach requires much computational
power and is impractical to apply online.

In recent years, trajectory tracking was often addressed by
means of NNs [6] [7]. Such increased attention is explained by
their comprehensive ability to generalize and model complex
nonlinear dynamics. Radial basis function (RBF) NNs are a
popular model choice [8] [9] [10]. Xia et al. [11] used RBF-
NN to mitigate the effects of friction in swing-up control of a
two-joint manipulator. However, such models contain a large
number of parameters, and it is a challenging task to tune
the hyper-parameters, such as number of Gaussian kernels,
their centers and shapes. A wavelet fuzzy neural network is
proposed for predictive control by Lu [12]. The model is based
on a set of fuzzy rules, where each rule is linked to the wavelet
function from the consequent rules. The model is trained
with backpropagation. The drawback of this architecture is
its complexity and computational expensiveness. Gaussian
process regression (GPR) is used by Rueckert et al. [13] to
perform kinematic control of a surgical cable-driven manip-
ulator. Saveriano et al. [14] modeled the residual dynamics
using GP-based model together with reinforcement learning.

The main drawback of GP-based models, in comparison to
neural networks, is that they grow together with the data,
thus requiring a lot of resources for evaluation and execution.
Mahler et al. [15] demonstrated that LSTM networks can out-
perform the GP-based method for modeling inverse dynamics.
While many works focus on the model architecture, Morse
et al. [16] apply meta-learning to obtain state-dependent loss
functions, which demonstrates another viable approach.

Much research is built around ILC [17] [18]. For instance,
in work by Schwarz et al. [19] the compliant position control
is achieved through learning the parameters of DC motors
and friction models with a help of ILC. The method was
tested in real world with humanoid robot gait. This approach
avoids performing a separate run for each parameter, but
instead identifies all parameters at once. A combination of L1

adaptive control and ILC is used for transfer learning between
systems with different dynamics by Pereida et al. [20]. An
extended L1 controller runs in the inner closed-loop control
level and achieves robust and repeatable behavior. ILC is
used as an outer-loop control, where the transfer of learned
experience is realized. The system is tested on two quadrotors
with different dynamics and outperforms systems composed of
ILC and proportional-derivative (PD) or proportional-integral-
derivative (PID) controllers. Another use of ILC involves
production of the ground truth input trajectories to train NNs
which approximate the inverse dynamics of the system by
Chen et al. [21]. The authors apply this approach to an
industrial manipulator, training the model in simulation. The
model is then applied to the real robot with transfer learning.
A separate NN is trained for each joint using backpropagation.
The approach demonstrates a significant improvement of the
trajectory tracking accuracy both in simulation and in the real
world. However, this method cannot be applied to systems
which do not have good dynamics approximation for simula-
tion, which is frequently the case for compliant systems. In
addition, the assumption of decoupled joints does not hold
when dealing with flexible joints.

Chen et al. [22] present two approaches for performing
feed-forward trajectory tracking with series-elastic actuators.
The first approach uses RNN which approximates forward
dynamics in combination with ILC, which then utilizes this
model to find an optimal command sequence. The main
drawback of this approach is a significant runtime required
for ILC to converge, which makes this method impractical to
be applied online. The second approach utilizes bi-directional
RNN (BRNN) [23] to approximate the inverse dynamics
directly, such as in [24] [25]. This allows to directly obtain
required control inputs in a short time. Both approaches are
trained with backpropagation on three hours of sinusoidal
and random trajectories recorded on the real Baxter robot.
Resulting models improved the trajectory tracking over the
baseline PD controller. In contrast, we propose a model
which utilizes causal LTI dynamical operators. In addition,
we also encapsulate a pre-trained model for forward dynamics
approximation to augment the input to the inverse dynamics
model. This two-stage approach, inspired by Zeng et al. [26],

Fig. 2: Proposed model. Input is the current desired state of the manipulator (joint position, velocity, acceleration) plus the next
desired state. Blue: Forward Inference Network (FIN), which approximates the forward dynamics. Green: dynoNet Wiener-
Hammerstein model (DWH), which takes the same input, augmented with the future state estimation from FIN. It outputs the
feed-forward joint position and velocity commands. (c): Concatenation. FC: fully-connected layer. LTI: linear time-invariant
dynamical operator-based block.

allows the model to take into account the future prediction in
order to estimate the feed-forward command which mitigates
future inaccuracies. Combined with more abstract input repre-
sentation (two timesteps of joint positions, velocities and ac-
celerations instead of multiple timesteps of joint positions), the
proposed model is able to learn and generalize from a smaller
amount of real-world data. In addition, our model produces not
only feed-forward joint positions commands, but velocities as
well, which allows to further improve the trajectory tracking
accuracy. Finally, we train the model on a smaller dataset
of functional trajectories, emulating learning from a regular
operation, as opposed to learning from trajectories of specific
artificial shapes, such as sine waves.

III. METHOD

Given a desired trajectory θd which consists of T equally
spaced in time points θd(t) ∈ RN , t ∈ [1...T] in a joint
space with N joints, our objective is to produce feed-forward
commands θf which would lead the manipulator to follow θd.
In this section, we present the details on the two-stage model
for the manipulator inverse dynamics approximation.

A. Data Collection

In order to learn the inverse dynamics approximation, we
generate 45 minutes of functional trajectories θd for the left
arm of the Baxter robot. Random sinusoidal trajectories are
often used to form the base of the training set [21] [22].
However, recording of such dataset takes the valuable robot
hours away from the user. Thus, we wanted to emulate
learning from the data which was collected when performing
actual tasks. That is why we refer to such trajectories as
functional. This is advantageous, because data collection can
take place transparently while the robot is performing useful
tasks. Subsequently, the learned model extends the range of
executable tasks and reduces execution time, improving the
overall capabilities of the flexible-joint manipulator.

The training set consists of pick-and-place trajectories with
equal portions of them executed with 0.6, 0.8 and 1.0 rad/s

maximum velocities. We did our best to cover the major
part of the workspace in front and to the side of the robot.
When executing a trajectory θd, the actual response of the
robot θa and θ̇a is recorded. Since Baxter has no way to
measure the actual acceleration θ̈a, we approximate it by a
cubic spline interpolation of the θ̇a. Approximately 60% of
the trajectories contain 1-2 additional waypoints between the
start and the goal. This increases the variety of the movements
and simulates maneuvers such as avoiding an obstacle.

B. Two-stage Model

We propose a two-stage model which consists of two parts
(Fig. 2). The first part is the Forward-Inference Network
(FIN): a fully connected multi-layer NN which approximates
manipulator forward dynamics. The second part is based
on LTI dynamical operators, as implemented in the novel
dynoNet1. LTI operators were shown to be efficient [2] when
learning the complex causal non-linear dynamics, while being
suitable for an end-to-end backpropagation. These properties
are advantageous for learning the dynamics of the flexible-joint
manipulator. That is why we chose LTI-based blocks to be the
core of our model. The model resembles a MIMO Wiener-
Hammerstein structure, according to the block-oriented model-
ing framework [27]. Thus, it is referred to as dynoNet Wiener-
Hammerstein model (DWH). DWH uses the original input
augmented with the FIN prediction to approximate the inverse
dynamics. We refer to the whole model as FIN-DWH. The
two-stage architecture with one step future prediction aims to
push the model from purely reactive policy behavior towards
more intelligent planning ahead, which would allow achieving
a higher accuracy of the trajectory tracking.

The Baxter arm has N = 7 joints, thus θ(t) ∈ R7. Since
the joints of Baxter are coupled [22], it is not feasible to train
a separate model for each joint. Instead, we approximate the

1https://github.com/forgi86/dynonet

https://github.com/forgi86/dynonet

underlying dynamics by considering all joints simultaneously.
So, the input to the FIN-DWH model is a 42-element vector:

[θd(t), θ̇d(t), θ̈d(t), θd(t+ 1), θ̇d(t+ 1), θ̈d(t+ 1)], (1)

where θd(t) is the current desired state of the manipulator
and θd(t + 1) is the next desired state. The output of the
network is then a 14-element vector [θf (t+1), θ̇f (t+1)] where
θf (t + 1) is the feed-forward command which should lead
the manipulator to the state θd(t + 1). The proposed method
is open-loop and does not include live feedback from the
robot. There is an assumption that the consequent execution
of the corrective feed-forward commands should result in
the manipulator following the desired trajectory perfectly.
This allows to train offline with the collected data as it is,
without the need to introduce an additional dynamics model
to produce the ground-truth control inputs, as described in
the next subsection. We analyze the practical shortcomings of
the aforementioned assumption by performing the experiments
with a previously unseen payload. Since the complete feed-
forward command sequence from our model is available before
it is executed, we apply a zero-phase Savitzky-Golay filter to
each individual joint position and joint velocity trajectory with
window 21 and polynomial order 2 to alleviate any potential
non-smooth fragments in the control signal.

The best-performing Baxter baseline controller is ”Inverse
Dynamics Feed Forward Position control”2. This controller
calculates the necessary torque from the supplied positions,
velocities and accelerations using the internal dynamics model.
Thus, we train our model to produce velocities θ̇f (t + 1)
as well. We do not train the model to output joint accel-
erations θ̈f (t + 1) because they could not be measured by
the robot hardware and training with approximated spline
accelerations as a target would most likely lead to an inferior
performance. To give an intuition about how the position
baseline controller and the inverse dynamics feed-forward
position baseline controller compare, the average cumulative
joint position tracking error per point is 0.157± 0.082 rad in
the first case against 0.069± 0.032 rad (µ± σ) in the second
case. The latter is more than two times accurate. Thus, we
train the model to provide feed-forward velocity input and
compare against this more accurate baseline. Note, that it is
straightforward to use only the position or velocity vector from
the output in case when position or velocity control is used.
The existing error in trajectory tracking accuracy shows that
the internal dynamics model does not represent the complex
coupled-joints real-robot dynamics accurately enough. The
proposed data-driven method does not replace the classical
baseline controller, but forms an outer-loop, complementing
the existing dynamics model and learning to compensate for
the observed inaccuracies.

By explicitly including velocity and acceleration into the
input, we provide enriched information about the manipulator
state without forcing the network to infer derivatives from the
time series of joint positions. In addition, since a tuple of

2https://sdk.rethinkrobotics.com/wiki/Joint Trajectory Action Server

〈θ, θ̇, θ̈〉 contains certain information about the dynamic state
of the manipulator, we can significantly reduce the number
of time steps needed as an input. In this work, we use only
two time steps, as described above. Moreover, velocity and
acceleration represent certain patterns in robot dynamics in
a more general way than sequences of joint positions alone,
which values depend on the specific manipulator position in
the workspace. This should allow the model to learn from
fewer data points, which is critical when the learning is per-
formed directly on the real-manipulator data. The trajectories
used for training contain points separated by ∆t = 1

F s where
F = 20 Hz. In case of any encoder inaccuracies of consistent
magnitude, a larger time span between sample points allows
decreasing their influence. In addition, larger ∆t also reduces
the influence of latency. The inner-loop feedback controller of
the Baxter joints operates at a much higher frequency.

For approximating the forward dynamics of the manipulator,
we define the FIN model: a simple NN consisting of three
fully connected layers. It takes a 42-element vector as an input
and produces a 14-element vector [θa(t+1), θ̇a(t+1)], where
θa(t+1) is a predicted state of the manipulator after executing
the command θd(t + 1) as it is. We use the ReLU activation
function as non-linearity. FIN model has 5,294 weights in total.
The following DWH model approximates the inverse dynamics
and consists of two identical independent branches. Each
branch takes in the original 42-element input concatenated
with the 14-element output of FIN model, resulting in a 56-
element input. Each branch then outputs a 7-element vector.
One branch produces positions, the other – velocities. The
architecture of a branch is as follows: first the LTI block with
a = 2 and b = 2, which outputs 14 features (motivated to
represent a rough position + velocity approximation). a and b
define the polynomial order for the denominator and nominator
of a rational transfer function (see [2] for details). The LTI
block is followed by two fully connected layers. The result
of these layers is then fed to the last LTI block which as
well has a = 2 and b = 2 and produces the final 7-element
vector. The overall architecture of the model is shown in Fig. 2.
Each branch has 4,043 parameters, which results in total of
4,043×2 = 8,086 parameters for the DWH model. The LTI
layers are parameterized in terms of rational transfer functions,
and thus apply infinite impulse response (IIR) filtering to
the input. Stacking this hardwired linear structure in multiple
layers together with fully connected layers was shown [2] to
approximate the complex non-linear dynamics. By providing
the forward dynamics estimation obtained from the FIN, we
allow the model to take into account the predicted future in
which we would execute the next command as it is. This
can be interpreted as a simplistic version of model-predictive
control with only one step of looking ahead. As we show in
our evaluation, this additional input improves the performance
of the model.

C. Training

Given the set of desired trajectories θd, θ̇d and θ̈d, as well
as the set of the actual robot responses θa, θ̇a and θ̈a, we train

https://sdk.rethinkrobotics.com/wiki/Joint_Trajectory_Action_Server

the two-stage model in two steps.
First, we train the FIN model. Since we have the desired

trajectories and the actual responses, the composition of the
training input-output tuples is straightforward. We train the
network using stochastic gradient descent (SGD) with a mini-
batch of 32 data points in a fully supervised manner. We
use the Adam optimizer with a learning rate of 10−4 to
minimize the mean square error (MSE) loss and employ L2
regularization.

The training of the full FIN-DWH model is not as straight-
forward, because the ground-truth commands θf are unknown.
It would be possible to employ ILC to obtain them, but since
we do not have a good model for simulation, this would
have to be done on the real robot, significantly increasing
the number of robot-hours needed to produce such a dataset.
Instead, we use the same data as for FIN training, and apply
the Hindsight Experience Replay (HER) technique [28]. This
method can be described in short as pretending that what we
achieved was what we actually wanted and is commonly used
in reinforcement learning to mitigate the negative effects of
sparse delayed rewards. We use θa as the goal trajectory and
then θd becomes the ground-truth input. After inverting the
training examples, we perform the same training procedure
as above: 32 data points per minibatch, Adam optimizer with
learning rate of 10−4 with the MSE loss and L2 regularization.
Note, that we keep the weights of the FIN frozen during the
whole training of the FIN-DWH model. This ensures that the
DWH model is supplied with forward dynamics prediction.
Moreover, we have observed that allowing the network to
update the FIN weights during the training led to inferior
performance. This supports our idea that when training on
a limited dataset, careful hard-wiring of dataflow structure is
of high importance.

Although we train the model directly with trajectories with
different velocity profiles, it is possible to train the model
by gradually increasing the difficulty. Such training scenario
would fit transparently into the real-world application scenario,
when allocating robot hours only for training is infeasible and
learning from the real tasks is required. In this setting, the
tasks would be first executed with low velocities, to minimize
the trajectory tracking inaccuracies and allow to successfully
complete the tasks. Then, as the model improves the tracking
accuracy, the velocity would be gradually increased.

IV. EVALUATION AND EXPERIMENTS

To evaluate our approach, we conduct experiments on the
real Baxter robot. We compare the performance to the baseline
Baxter controller (Inverse Dynamics Feed Forward Position
control). In addition, we also compare our method against
the three other models. The first model consists of three fully
connected layers: 42× 64→ 64× 32→ 32× 14. It has 5,294
parameters and is further referred to as FC. Note, that we also
experimented with a larger FC model with four layers and
16,302 parameters, however, it did not demonstrate a superior
performance. The second model is a three-layer RNN, which

a) b)

Fig. 3: Maximum joint speed in a trajectory vs: a) average
position error, b) average velocity error, per trajectory point.

has 7,772 parameters and is referred to as RNN. It has anal-
ogous to FC structure: (42 + h)× 64→ 64× 32→ 32× 14,
with two additional layers to produce a 14-element hidden
state h: (42 + h)× 32→ 32× h. The third model is dynoNet
Wiener-Hammerstein (DWH) with 6,518 parameters. It has
the same structure as the network described in Section III,
except that it does not have a FIN model to estimate the
future outcome of feed-forward control. All three models take
42-element vectors as input and produce a 14-element vector
of feed-forward joint positions and velocities. All models use
ReLU non-linearity and were trained on the same dataset until
convergence, minimizing MSE loss with Adam optimizer. We
did our best to find the best set of hyper-parameters for each
model using grid search. For the FC model they were: learning
rate of 2.0 · 10−4 and minibatch size of 24 data points. For
the RNN model they were: learning rate of 1, 5 · 10−4 and
minibatch size of 48 data points. For the DWH and FIN-
DWH we used the same hyper-parameters (learning rate of
10−4 and minibatch size of 32 data points), since the core of
both models is the same. This allows to better observe how the
proposed two-stage architecture influences the performance of
the model, compared to the same model without the future
forward dynamics prediction step.

A. Quantitative Evaluation

To quantitatively evaluate the proposed approach, we gen-
erated 100 unseen trajectories for the left arm of Baxter.
Although our model can be used for trajectories with arbitrary
speed profile, we find it especially interesting to evaluate
methods on the fast trajectories because in this case the
compliance of the manipulator causes the most inaccuracies
due to hard to model inertia effects on flexible joints. In
Fig. 3 one can see the plot of maximum allowed speed in a
trajectory vs. average cumulative error of joint position and
velocity per point in a trajectory executed with a baseline
controller. Clearly, the higher the maximum allowed speed
is, the less accurate are the movements of the manipulator.
The error grows slower with maximum speed increase because
not all joints are able to reach this maximum speed during a
trajectory. Thus, in our experiments, the maximum joint speed
was set to 1.0 rad/s. We measure the average cumulative error
per point in a trajectory for the joint position, joint velocity and
end-effector position. We also measure the extra time needed
to converge to the final point in a trajectory, as well as the

Fig. 4: Shoulder yaw trajectory. Top-left: position vs time.
Bottom-left: velocity vs time. Top-right: position error vs
time. Bottom-right: velocity error vs time. Blue (solid line):
desired trajectory. Red (dashed line): execution with base-
line controller. Green (dash-dotted line): execution with our
method. Magenta (dotted line): feed-forward command of our
method. The baseline controller alone leads to several major
deviations, while our method allows to compensate for the
inertia affecting the elastic joints and follows the trajectory
with higher accuracy.

runtime of each model. Given an actual trajectory θa and a
desired trajectory θd with T points and N joints, we calculate
the average cumulative joint position error en per point as
follows:

en =
1

T

T∑
t=1

N∑
n=1

|θd(t, n)− θa(t, n)|. (2)

The procedure is analogous for the average joint velocity error
and average end-effector position error.

In Table I, the average cumulative joint position and velocity
errors are shown. In all tables we provide 95% confidence
intervals (CI) of the mean. One can see that all the models
made an improvement over the sole baseline controller. How-
ever, the FC model clearly shows the worst performance. This
is the case because raw fully-connected layers do not have
an underlying structure to capture the unknown dynamics.
RNN and DWH models show quite similar performance,
although DWH has slightly better results. Finally, the FIN-
DWH improves over the plain DWH, demonstrating that the
one-step prediction of the future allows producing a more
accurate control input. In Table II, the average end-effector
position error per point as well as the extra time to converge
to the final point are shown. The extra time is defined as a
difference between the actual trajectory execution time and the
desired execution time. This difference arises when the state
of the manipulator in the final trajectory point is significantly
deviated from the desired state and extra time is needed to
reach it. A similar tendency on the performance of the models
can be observed. On average, the baseline controller has a 3 cm
deviation from the desired path, while our method achieves an
improvement of three times, reducing it to 1 cm on average.

Fig. 5: An example trajectory. Top: path of the end-effector
in 3D. Bottom: end-effector position error. Blue (solid line):
desired trajectory. Red (dashed line): execution with base-
line controller. Green (dash-dotted line): execution with our
method. Execution with the baseline controller leads to several
major deviations, while our approach allows to follow the
trajectory with higher accuracy.

The extra time to arrive at the destination point is reduced by
significant 92%, which happens because the motion is much
smoother overall, making the immediate accurate arrival at
the final point possible. The average runtimes per trajectory
(usually consisting of 60-90 time steps) are as follows. FC:
0.031 s, RNN: 0.062 s, DWH: 0.067 s, FIN-DWH: 0.085 s. All
computations were executed on an Intel i7-6700HQ 2.6 GHz
CPU. Further improvements of the runtimes are possible. By
listing them here, we give an intuition about the relative
computational load of the compared models.

In Fig. 4, we show an example test trajectory of the shoulder
yaw. One can see that the trajectory achieved solely by the
baseline controller deviates from the target much more than
the FIN-DWH generated trajectory. There are four big peaks
of the position error and three big peaks of the velocity
error. It can be noticed that the minima of the position
error correspond to the maxima of the velocity error and
vice versa. This can be explained by the controller trying to
compensate for the position error by increasing velocity to
”catch up”, however, this consequently leads to the overshoot
of the velocity, which is repeated. We attribute this effect to
the compliance of the manipulator. It can be seen that our
model learned to compensate for this, modifying the joint

TABLE I: Comparison of average cumulative joint position
and velocity error per point.

Method
Joint position

error, rad
Joint velocity

error, rad/s
Baseline 0.069±0.0062(—) 0.325±0.028(—)
FC 0.047±0.0061(32%) 0.243±0.021(25%)
RNN 0.042±0.0042(39%) 0.227±0.017(30%)
DWH 0.040±0.0037(42%) 0.218±0.016(32%)
FIN-DWH 0.036±0.0033(47%) 0.213±0.015(35%)

95% confidence interval is provided after ”±”. Improvement over the
baseline is in brackets.

commands when needed (see the dotted yellow line), achieving
a much more precise trajectory tracking of both joint position
and velocity. In Fig. 5, we show the path and the error of
the end-effector position. One can see that with the baseline
controller, the end-effector makes several swings, deviating
significantly from the desired trajectory. The peaks of the
deviations correspond to the peaks of shoulder yaw deviations,
because shoulder joints are the ones most affected by inertia,
bearing the weight of the whole arm. It is also worth noticing
that the baseline trajectory takes around half a second of extra
time to reach the final position, while our method requires
almost no extra time. Overall, our approach showed better
performance than the other three models, and significantly
improved over the baseline controller, producing smooth high-
velocity trajectories. Achieving higher accuracy over the raw
DWH model, the addition of the FIN module was shown to
be beneficial.

In addition, we execute 20 random trajectories from the
previous experiment, while holding a payload of 0.25, 0.5 and
1.1 kg. Note, that the maximum payload for Baxter is 2.3 kg.
In Table III, the average cumulative joint position and velocity
errors are shown. It is possible to see that while carrying the
smallest payload of 0.25 kg, both the baseline and the proposed
FIN-DWH model perform similarly to the run without the
payload (Table I). Increasing the payload to 0.5 kg causes a
more noticeable decrease of the trajectory tracking accuracy.
Finally, with a significant load of 1.1 kg, the trajectory tracking
accuracy declines substantially, influenced by the inertia forces
of larger magnitude. The largest deviations were observed
in parts of the trajectories with relatively fast changes in
acceleration. The proposed model was trained on payload-
free trajectories and does not incorporate live feedback from
the robot. Nevertheless, this experiment demonstrates that the
learned dynamics model of the manipulator helps to reduce
the negative impact of the unaccounted payload and achieve
more accurate trajectory execution.

B. Practical Example

In Fig. 5, one can see that under the control of the baseline
controller, the end-effector arrives to the goal pose in a curve,
overshooting the desired path. Such behavior makes it very
difficult to perform picking tasks with high speeds, because
the end-effector often collides with objects at the pre-grasp

TABLE II: Comparison of average end-effector position error
per point and average extra time to reach the endpoint.

Method EEF position error, cm Extra time, s
Baseline 2.981±0.355 (—) 0.75±0.091 (—)
FC 1.397±0.243 (53%) 0.28±0.029 (62%)
RNN 1.151±0.142 (61%) 0.12±0.013 (84%)
DWH 1.109±0.131 (62%) 0.09±0.010 (88%)
FIN-DWH 1.015±0.122 (66%) 0.06±0.008 (92%)

95% confidence interval is provided after ”±”. Improvement over the
baseline is in brackets.

pose. This often results in failed grasping attempts and can
potentially damage the robot and its surroundings. A typical
mitigation approach would be to define another pre-grasp pose
and, upon arrival there, continue at a very low speed to the
actual pre-grasp pose. This slows down the task execution,
however. In this example, we demonstrate the effectiveness of
our approach by reaching a pre-grasp pose at high speed. We
execute the same trajectory first with the baseline controller
and then with the proposed model as an outer loop controller.
Two sequences of pictures in Fig. 6 show the execution of
these trajectories. In Frame c) the baseline controller deviates
from the path, leading to the collision with the object in Frame
d). This results in the object being tipped over in Frame e).
In contrast, our method tracks the trajectory more accurate
and has a smoother velocity profile, which avoids the typical
overshooting. This results in the successfully reached pre-
grasp pose without colliding with the object. A video of the
experiment is available on our website3.

C. Discussion

The conducted experiments demonstrated that the proposed
two-stage model architecture with one-step future prediction
achieves a substantial improvement of the trajectory tracking
accuracy, compared to the sole baseline controller, and out-
performs the trivial models. The raw DWH model represents
a reactive policy, which approximates the inverse dynamics

3https://www.ais.uni-bonn.de/videos/IRC 2021 Pavlichenko

TABLE III: Comparison of average cumulative joint position
and velocity error per point while carrying a payload.

Payload,
kg Method

Joint position
error, rad

Joint velocity
error, rad/s

0.25
Baseline 0.074±0.014 0.341±0.064

FIN-DWH 0.039±0.008 0.217±0.035
(47%) (36%)

0.5
Baseline 0.080±0.016 0.347±0.067

FIN-DWH 0.042±0.009 0.226±0.038
(47%) (34%)

1.1
Baseline 0.108±0.019 0.378±0.083

FIN-DWH 0.071±0.013 0.256±0.046
(34%) (32%)

95% confidence interval is provided after ”±”. Improvement over the
baseline is in brackets.

https://www.ais.uni-bonn.de/videos/IRC_2021_Pavlichenko

a) b) c) d) e)

Fig. 6: Pre-grasp trajectory execution. Top row: using only the baseline controller. Bottom row: using our model as an outer-
loop controller. a) Start. b) Approach. c) Close proximity to the goal. In case of the baseline controller, inaccurate motion
leads to a collision with the object. d-e) Pre-grasp pose reached. However, in case of the baseline controller, the collision led
to tipping over the object. Our approach allowed to reach the goal position smoothly.

of the manipulator. In contrast, the future prediction step of
the FIN-DWH model allows to utilize the learned forward
dynamics of the flexible-joint manipulator in order to find
a corrective action, taking into account the predicted future
inaccuracies. By making use of both forward and inverse
dynamics, such an architecture allows extracting more useful
knowledge from a significantly limited real-world dataset. The
manipulators with flexible joints often do not have accurate
dynamics models to perform training in simulation and/or have
instance-specific dynamics properties due to wear and tear.
Thus, the proposed method is useful for improving trajectory
tracking of such robots. The achieved improvements do not
come at a cost of increased stiffness and are based solely on
learned dynamics of coupled joints.

One could argue that it is possible to develop a classical
controller with higher accuracy of trajectory tracking than the
Baxter baseline. However, this would require tedious tuning
performed by an experienced professional on a time-span of
several days. Moreover, such procedure is typically instance-
specific and may need to be repeated after wear and tear
accumulate during the use of the robot. At the same time,
the proposed framework does not rely on any robot-specific
parameters and requires only 45 minutes of data for the
models to be trained. In addition, the learned models can be
easily retrained to adjust for wear and tear, using the most
recent recorded trajectories at any time, since the training
procedure takes several hours on a regular computer. Finally,
developing and tuning a classical controller which takes into
account coupled joint dynamics is an extremely challenging
task, which we resolve by following the data-driven approach.

The main limitation of the presented approach is its open-
loop nature. Thus, any unexpected disturbances are unac-
counted for, and remain for the inner-loop controller to be
dealt with. As it was shown in the experiment with pay-
loads, an increase of such unaccounted disturbance degrades
the effectiveness of the method. Nevertheless, the model,
learned by our method still achieves more accurate trajectory
tracking, compared to the sole baseline controller, even with

unaccounted disturbances. The underlying low-level classical
controller provides guarantees on system stability. As the
proposed method does not use feedback, it can be easily
integrated into a software pipeline as a top-level addition over
the existing low-level controller. Our methodology is agnostic
of the type of the underlying classical controller and does not
have robot-specific parameters, making it possible to apply it
to most robotic manipulators without major changes.

V. CONCLUSION

We presented a two-stage model based on linear time-
invariant (LTI) dynamical operators for feed-forward outer
loop control of a manipulator with flexible joints and unknown
complex dynamics. The first part of the model estimates the
future state of the system one step ahead with an unchanged
control command. This estimation is used to augment the input
for the second part of the model, which produces feed-forward
joint position and velocity commands. The aim of this two-
stage architecture is to push the model from reactive policy
behavior towards more intelligent planning. The model was
trained with backpropagation on a small 45 min real-robot
dataset. The approach was evaluated on the Baxter robot. Abla-
tion study showed that one-step future prediction improved the
performance. Our approach improved the trajectory tracking
accuracy over the baseline controller: by 47% and 35% for the
joint position and velocity tracking respectively, which resulted
in 66% improvement of the end-effector position tracking. This
contributed to fast and smooth trajectory executions which
required 92% less extra time to reach the endpoint, allowing
to perform tasks faster.

Future work includes exploring the possibility of employing
a recurrent hierarchical model which is capable of looking
several steps into the future, representing a model-predictive
control approach. In addition, applying such a model in a
closed-loop fashion in combination with online learning would
allow obtaining a very flexible universal approach which
would have the potential to further improve the trajectory
tracking performance.

REFERENCES

[1] S. Arimoto. “Learning control theory for robotic mo-
tion”. In: Int. Journal of Adaptive Control and Signal
Processing 4.6 (1990), pp. 543–564.

[2] M. Forgione and D. Piga. “dynoNet: A neural network
architecture for learning dynamical systems”. In: Int.
Journal of Adaptive Control and Signal Processing 35.4
(2021), pp. 612–626.

[3] K. Greff et al. “LSTM: A Search Space Odyssey”. In:
IEEE Transactions on Neural Networks and Learning
Systems 28.10 (2017), pp. 2222–2232.

[4] Z. Wang, W. Yan, and T. Oates. “Time series classifica-
tion from scratch with deep neural networks: A strong
baseline”. In: IEEE Int. Joint Conf. on Neural Networks
(IJCNN). 2017, pp. 1578–1585.

[5] D. Mayne. “A Second-order Gradient Method for De-
termining Optimal Trajectories of Non-linear Discrete-
time Systems”. In: Int. Journal of Control 3 (1966),
pp. 85–95.

[6] J. Yiming et al. “A Brief Review of Neural Networks
Based Learning and Control and Their Applications for
Robots”. In: Complexity 2017 (2017), pp. 1–14.

[7] L. Jin et al. “Robot manipulator control using neural
networks: A survey”. In: Neurocomputing 285 (2018),
pp. 23–34.

[8] C. Yang et al. “Neural-Learning-Based Telerobot Con-
trol With Guaranteed Performance”. In: IEEE Transac-
tions on Cybernetics 47.10 (2016), pp. 3148–3159.

[9] Q. Chen et al. “Adaptive neural dynamic surface sliding
mode control for uncertain nonlinear systems with un-
known input saturation”. In: Int. Journal of Advanced
Robotic Systems (IJARS) 13.5 (2016).

[10] H. Han et al. “Nonlinear Model Predictive Control
Based on a Self-Organizing Recurrent Neural Net-
work”. In: IEEE Transactions on Neural Networks and
Learning Systems 27 (2016), pp. 402–415.

[11] D. Xia, L. Wang, and T. Chai. “Neural-Network-
Friction Compensation-Based Energy Swing-Up Con-
trol of Pendubot”. In: IEEE Transactions on Industrial
Electronics 61 (2014), pp. 1411–1423.

[12] C.-H. Lu. “Wavelet Fuzzy Neural Networks for Identifi-
cation and Predictive Control of Dynamic Systems”. In:
IEEE Transactions on Industrial Electronics 58 (2011),
pp. 3046–3058.

[13] E. Rueckert et al. “Learning inverse dynamics models
in O(n) time with LSTM networks”. In: IEEE-RAS
Int. Conf. on Humanoid Robotics (Humanoids). 2017,
pp. 811–816.

[14] M. Saveriano et al. “Data-efficient control policy search
using residual dynamics learning”. In: IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS). 2017,
pp. 4709–4715.

[15] J. Mahler et al. “Learning accurate kinematic control
of cable-driven surgical robots using data cleaning and
Gaussian Process Regression”. In: IEEE Int. Conf. on

Automation Science and Engineering (CASE). 2014,
pp. 532–539.

[16] K. Morse et al. “Learning State-Dependent Losses for
Inverse Dynamics Learning”. In: IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS). 2020, pp. 5261–
5268.

[17] K. Patan, M. Patan, and D. Kowalw. “Neural networks
in design of iterative learning control for nonlinear sys-
tems”. In: IFAC-PapersOnLine 50 (2017), pp. 13402–
13407.

[18] W. Zuo and L. Cai. “A New Iterative Learning Con-
troller Using Variable Structure Fourier Neural Net-
work”. In: IEEE Transactions on Systems, Man, and
Cybernetics 40 (2010), pp. 458–468.

[19] M. Schwarz and S. Behnke. “Compliant Robot Behavior
Using Servo Actuator Models Identified by Iterative
Learning Control”. In: RoboCup 2013: Robot World
Cup XVII. 2014, pp. 207–218.

[20] K. Pereida et al. “Transfer learning for high-precision
trajectory tracking through L1 adaptive feedback and
iterative learning”. In: Int. Journal of Adaptive Control
and Signal Processing 33.2 (2018), pp. 388–409.

[21] S. Chen and J. T. Wen. “Industrial Robot Trajectory
Tracking Control Using Multi-Layer Neural Networks
Trained by Iterative Learning Control”. In: Robotics
10.50 (2021).

[22] S. Chen and J. T. Wen. “Neural-Learning Trajectory
Tracking Control of Flexible-Joint Robot Manipulators
with Unknown Dynamics”. In: IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS). Vol. 2019. 2019,
pp. 128–135.

[23] M. Schuster and K. K. Paliwal. “Bidirectional recurrent
neural networks”. In: IEEE Transactions on Signal
Processing 45 (1997), pp. 2673–2681.

[24] H. A. Talebi, R. V. Patel, and K. Khorasani. “Inverse
dynamics control of flexible-link manipulators using
neural networks”. In: IEEE Int. Conf. on Robotics and
Automation (ICRA). 1998, pp. 806–811.

[25] Q. Li et al. “Deep neural networks for improved,
impromptu trajectory tracking of quadrotors”. In: IEEE
Int. Conf. on Robotics and Automation (ICRA). 2017,
pp. 5183–5189.

[26] W. Zeng et al. “DSDNet: Deep Structured Self-driving
Network”. In: European Conference on Computer Vi-
sion (ECCV). 2020, pp. 156–172.

[27] F. Giri and E.-W. Bai. “Block Oriented Nonlinear
System Identification”. In: Lecture Notes in Control and
Information Sciences. Vol. 2010. 2010, pp. 746–758.

[28] M. Andrychowicz et al. “Hindsight Experience Replay”.
In: Advances in Neural Information Processing Systems
30 (NIPS). 2017, pp. 5048–5058.

	Introduction
	Related Work
	Method
	Data Collection
	Two-stage Model
	Training

	Evaluation and Experiments
	Quantitative Evaluation
	Practical Example
	Discussion

	Conclusion

