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Abstract
A holistic semantic scene understanding exploiting all available sensor modalities is a core capability to master self-
driving in complex everyday traffic. To this end, we present the SemanticKITTI dataset that provides point-wise semantic
annotations of Velodyne HDL-64E point clouds of the KITTI Odometry Benchmark. Together with the data, we also
published three benchmark tasks for semantic scene understanding covering different aspects of semantic scene
understanding: (1) semantic segmentation for point-wise classification using single or multiple point clouds as input,
(2) semantic scene completion for predictive reasoning on the semantics and occluded regions, and (3) panoptic
segmentation combining point-wise classification and assigning individual instance identities to separate objects of
the same class. In this article, we provide details on our dataset showing an unprecedented number of fully annotated
point cloud sequences, more information on our labeling process to efficiently annotate such a vast amount of point
clouds, and lessons learned in this process. The dataset and resources are available at http://www.semantic-kitti.org.
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1 Introduction

Since autonomous vehicles successfully completed the
driving tasks at the DARPA Urban Challenge (Urmson
et al. 2008; Montemerlo et al. 2008), the prospect of
fully autonomous cars led to founding of many startups
pursuing the endeavor of creating always attentive robotic
cars that prevent and avoid traffic fatalities occurring today
due to human error. After the Urban Challenge, many
expected and predicted that cars capable of driving fully
autonomously in dense urban traffic would be already reality
by today. However, solving the driving task in real-world
environments with many non-compliant traffic participants
that might violate rules and with the complexity of
sometimes contradictory signage is a stupendous endeavor.

Perception is a centerpiece of every intelligent robotic
system to handle the complexities of operating in semi-
structured and natural environments. In particular, self-
driving cars rely on robust and accurate perception systems
that allow them to perform safe and efficient driving
maneuvers. For a holistic semantic scene understanding, they
need to perceive obstacles, identify other traffic participants,
but also reason about functional street surface types, e.g.,
parking areas, lanes, and sidewalks.

Recent progress in perception using images, but also
LiDAR sensors, is driven by advances in deep learning
enabling end-to-end trainable perception systems without the
need to hand-craft features (LeCun et al. 2015). Training
deep neural networks with millions of parameters was
mainly enabled by two essential developments: (1) the
possibility to repurpose graphic processing units (GPUs)
from producing pixels on a computer screen to compute
matrix products in a highly parallel fashion, and (2)

the availability of large-scale labeled datasets, such as
ImageNet (Deng et al. 2009), that enabled training networks
without over-fitting to the training data.

Real-world datasets play an important role in the
aforementioned endeavor to attain fully autonomous cars,
since they provide realistic data on the one hand, but
also allow us to measure progress towards our goal on
the other hand. Datasets, like Cityscapes (Cordts et al.
2016) and Mapillary Vistas (Neuhold et al. 2017), enable
investigating fine-grained perception tasks, such as semantic
segmentation (Everingham et al. 2010) providing classes for
each pixel, but also panoptic segmentation (Kirillov et al.
2019), which additionally distinguishes between individual
instances of the same class. More specifically, semantic
segmentation distinguishes between classes but assigns
different objects the same label, e.g., different cars cannot
be distinguished. Panoptic segmentation differentiates
additionally between objects leading to clear object
boundaries or instances. However, panoptic segmentation
requires instance ids only for so-called thing classes,
which have clear boundaries, such as cars, pedestrians, and
bicyclists. The remaining classes are called stuff classes and
do not get an instance id assigned, such as vegetation, road,
or sidewalks.
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Table 1. Overview of other point cloud datasets with bounding box (top) and semantic annotations (bottom).

Name #Scans1 #Boxes #Classes2 Data3 FoV4 Sequential Reference

KITTI (Detection) 7k/7k 1k 3(3) B F 7 Geiger et al. (2012)
Argoverse 22k 993k 17 B C 3 Chang et al. (2019)
Lyft 46k 1.3M 9 B C 3 Kesten et al. (2019)
CADC 7k 305k 10 B C 3 Pitropov et al. (2020)
nuScenes 44k 1.4M 10 (23) B C 3 Caesar et al. (2020)
Waymo 200k 12M 4 B C 3 Sun et al. (2020)
A2D2 12k 12k 14 B F 7 Geyer et al. (2020)
H3D 27k 1.1M 8 B F 7 Patil et al. (2019)
PandaSet 16k 1.4M 12 B C 3 PandaSet (2020)
SemanticKITTI 23k/20k 682k 8 P C 3 -

Name #Scans1 #Points #Classes2 Data3 FoV4 Sequential Reference

Oakland3d 17 1.6M 5 (44) P C 7 Munoz et al. (2009)
Freiburg 77 1.1M 4 (11) P C 7 Behley et al. (2012)
Wachtberg 5 400k 5 (5) P C 7 Behley et al. (2012)
Semantic3d 15/15 4009M 8 (8) P C 7 Hackel et al. (2017)
Paris-Lille-3D 3 143M 9 (50) P C 7 Roynard et al. (2018)
Zhang et al. 140/112 32M 10 (10) P F 7 Zhang et al. (2015)
SemanticPOSS 2k 216M 14 P C 7 Pan et al. (2020)
A2D2 31k 930k 38 P† F 7 Geyer et al. (2020)
PandaSet 16k 1388M 42 P C 3 PandaSet (2020)
nuScenes-lidarseg 34k/6k 1.4B 16 (32) P C 3+ Caesar et al. (2020)
SemanticKITTI 23k/20k 4549M 25 (28) P C 3 -

1 Number of scans for train and test set, 2 Number of classes used for evaluation and number of classes annotated in brackets, 3 type of annotations, where
B and P correspond to bounding boxes (B) and point-wise (P), 4 field-of-view (FoV) of LiDAR sensor with annotations, where F denotes frontal and C
denotes complete 360◦. † point-wise annotations via projection to annotated image and using corresponding image label. + frames labeled at 2 Hz

We present a dataset based on the KITTI Vision Bench-
mark (Geiger et al. 2012, 2013) that enables to investigate
semantic segmentation and panoptic segmentation using
point clouds from an automotive LiDAR sensor. To this end,
we annotated all 22 sequences of odometry evaluation of the
KITTI Vision Benchmark (Geiger et al. 2012, 2013) consist-
ing of over 43,000 scans using 28 classes. We labeled each
point of the point cloud such that corresponding instances of
object classes get temporally consistent instance annotations.
Additionally, we use the annotated sequential data and accu-
rate poses to generate a real-world dataset for semantic scene
completion, where an algorithm needs to provide class labels
for voxels, but also predict the completed scene which is
not visible in the given input voxelized scene. As commonly
done with other datasets (Neuhold et al. 2017; Cordts et al.
2016; Lin et al. 2014), the test set labels are not published
to ensure an unbiased and fair evaluation. We use CodaLab
Competitions (see https://competitions.codalab.org/ for more
information) that provides a platform to upload results for
a hidden test set, which are then evaluated using a custom
evaluation script on cloud-based evaluation servers without
revealing the testset annotations.

This article complements our other papers (Behley et al.
2019, 2020), since it focuses on the dataset itself. We provide
more details on the annotation process and statistics about
the automatic instance extraction process. We, furthermore,
discuss lessons learned in the process of annotating a large-
scale dataset and maintaining an online evaluation with
a hidden test set. Thus, the article provides additional
information, compared to the more task-oriented papers,
and we refer to these for more details on the tasks,
baselines, and evaluation metrics for semantic segmentation
and scene completion (Behley et al. 2019) and panoptic
segmentation (Behley et al. 2020).

2 Related Work

In the following, we focus on datasets providing LiDAR
point clouds and in particular on datasets that provide
annotations for perception tasks, such as object detection,
semantic segmentation, or panoptic segmentation.

The seminal KITTI Vision Benchmark (Geiger et al. 2012)
aimed at providing a collection of different benchmark tasks
to evaluate perception algorithms for autonomous driving.
It made a vast collection of data (Geiger et al. 2013)
available that was recorded with a sensor suite commonly
used by self-driving cars including a stereo camera, a
Velodyne HDL-64E LiDAR, and an inertial navigation
system to generate ground truth data for pose information.
The provided benchmarks propelled research in the areas of
motion estimation and traffic scene perception and enabled
reproducible experiments with standardized metrics.

Since then, only a few LiDAR datasets were recently
published that are recorded either with a terrestrial laser
scanner (TLS), like the Semantic3d dataset (Hackel et al.
2017), or using automotive LiDARs, like the Paris-Lille-3D
dataset (Roynard et al. 2018).

Recently, several major self-driving car ventures released
datasets providing besides camera images also LiDAR point
clouds, including Waymo (Sun et al. 2020), Lyft (Kesten
et al. 2019), Audi (Geyer et al. 2020), Argo (Chang et al.
2019), Honda (Patil et al. 2019) and Motional (Caesar et al.
2020). While all these datasets provide instance annotations
using bounding boxes, only a few datasets provide point-
wise semantic annotation (Geyer et al. 2020; PandaSet 2020).

The A2D2 dataset (Geyer et al. 2020) provides annotations
for semantic segmentation of images that can be used to
obtain point-wise labels by projecting LiDAR points into
the images and using the associated semantic class from
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(a) (b) (c)

Figure 1. Qualitative examples of provided annotations from sequence 08. In (a), we show the semantic annotation and the middle
(b) shows the corresponding instance annotation of 50 aggregated scans. We also provide input (not shown) and target voxel grids
aggregated from multiple scans for the semantic scene completion task as shown in the right image (c).

the pixel-level annotation. However, this projection will
never cover all LiDAR points due to the sensor placement
and the resulting different view point. Very recently, the
PandaSet (PandaSet 2020) provides point-wise annotations
of LiDAR point clouds with 42 classes focusing on objects
on the road, such as traffic participants, barriers, and cones,
and more fine-grained distinction between different vehicle
types compared to our annotation. SemanticPOSS (Pan et al.
2020) provides also semantic annotation of point clouds
with focus on scenes with pedestrians captured in a campus
environment. The classes are compatible with our classes and
the authors ensured to provide labels in the same format as
our annotation data. Pan et al. (2020) used our annotation
tool presented in Sec. 3.1, but used tracking information to
extract instances. NuScenes (Caesar et al. 2020) also added
recently annotations for LiDAR point clouds with more
diverse categories for different traffic participants. Together
with the bounding box annotations, this dataset can also be
used for panoptic segmentation. Due to the large number of
different scenes, it provides a highly diverse set of situations.

Table 1 provides an overview of the aforementioned
datasets and their characteristics. Other automotive datasets
might provide more diversity in terms of cities or number of
different scenes. However, our dataset is the only dataset that
combines point-wise semantic annotations directly made in
sequences of three-dimensional point clouds with temporally
consistent instance annotations for both non-moving and
moving traffic participants.

3 Dataset

Our dataset provides point-wise semantic annotations for
the odometry sequences of the KITTI Vision Benchmark
Suite (Geiger et al. 2013), which was the first large-scale
dataset providing data recorded with a platform equipped
with sensors commonly used on self-driving cars since
the DARPA Urban Challenge (Montemerlo et al. 2008).
The recording vehicle was equipped with a stereo camera
covering the frontal field-of-view and a rotating 3D LiDAR
sensor, the Velodyne HDL-64E S2, covering the full 360◦

field-of-view. Both modalities are synchronized such that
the cameras are triggered when the spinning LiDAR sensor
faces in forward direction (Geiger et al. 2013). The vehicle
is additionally equipped with an inertial navigation system

Figure 2. Our point cloud labeling application for sequential
point clouds that we provide together with the dataset.

(INS) integrating an automotive-grade inertial measurement
unit (IMU) with GPS providing position measurements.

In case of the odometry benchmark∗, we use the data
provided that uses point clouds of a single turn of the
LiDAR sensor which are compensated for sensor motion,
i.e., individual points in the point cloud are transformed to
account for the movement of the sensor during a single turn
of the rotating LiDAR sensor.

The odometry dataset comprises 22 sequences: 11 training
sequences (sequences 00-10) with ground truth poses
and 11 testing sequences (sequences 11-21) without pose
information for which an odometry approach should estimate
the poses. The pose error is only locally evaluated and
therefore the provided poses are not loop closed or optimized
to give globally consistent poses, such that already visited
areas would be consistently mapped and old and new point
cloud observations of the same place would be aligned
properly.

3.1 Point Cloud Annotation
Our primary objective is to generate a consistent, accurate
labeling of the sequential point clouds. It is essential to
have consistent and loop-closed poses to facilitate the

∗See http://www.cvlibs.net/datasets/kitti/eval odometry.php for more infor-
mation and download of the data.
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Table 2. Relabeling and instance correction statistics for training (top) and test data (bottom)

00 01 02 03 04 05 06 07 08 09 10

al
l num. scans 4,541 1,101 4,661 801 271 2761 1,101 1,101 4,071 1,591 1,201

relabeled [%] 0.2 13.1 7.0 15.1 4.5 4.2 8.8 2.5 5.4 0.5 2.6

no
n-

m
ov

in
g num. instances 670 0 296 41 15 210 144 205 523 178 86

num. bboxes 83,138 0 21,056 3,344 450 21,270 20,012 23,071 55,079 11,933 5,409
over-segmented [%] 20.3 0.0 37.2 46.3 46.7 27.6 25.7 31.2 24.5 25.8 34.9
under-segmented [%] 16.3 0.0 31.1 7.3 6.7 9.5 17.4 13.7 14.3 13.5 10.5

m
ov

in
g num. instances 32 317 70 3 23 24 14 20 114 28 15

num. bboxes 2222 2509 1273 384 1075 1860 491 1986 6726 1570 796
id switches [%] 50.0 19.2 11.4 66.7 60.9 50.0 50.0 60.0 31.6 42.9 20.0

11 12 13 14 15 16 17 18 19 20 21

al
l num. scans 921 1,061 3,281 631 1,901 1,731 491 1,801 4,981 831 2,721

relabeled [%] 8.3 14.2 0.1 1.7 5.7 5.5 2.0 5.1 5.4 4.7 7.1

no
n-

m
ov

in
g num. instances 80 7 1589 0 189 276 5 371 919 6 3

num. bboxes 4,636 540 175,147 0 17,911 24,810 130 35,697 86,101 441 96
over-segmented [%] 31.2 42.9 15.9 0.0 23.8 22.5 0.0 10.8 28.0 0.0 0.0
under-segmented [%] 17.5 14.3 37.5 0.0 10.6 12.7 40.0 32.6 15.9 0.0 0.0

m
ov

in
g num. instances 7 84 102 0 13 31 26 174 142 456 1,853

num. bboxes 197 1,909 5,208 0 571 416 537 8,133 5,630 15,945 32,332
id switches [%] 14.3 45.2 41.2 0.0 30.8 6.5 46.2 23.6 22.5 30.5 32.9

consistent annotation by accumulating point clouds from
multiple scans. Fig. 1 shows some qualitative examples of the
provided annotations and the achieved fidelity of the point
cloud annotations.

Pre-processing. To estimate globally consistent poses,
we employed our surfel-based SLAM approach (Behley and
Stachniss 2018). Our mapping approach finds heuristically
loop closures using a map-based criterion and performs then
pose graph optimization using loop closure constraints to
obtain globally consistent poses. For sequences 02 and 07,
where the automatic loop closure detection missed loop
closures, we manually inserted loop closure constraints to
ensure consistent mapping results.

Point cloud annotation. Using the estimated poses, we
split the complete trajectory of a sequence into tiles of a
given size (we used 100×100 m), where we always show an
overlap of 15m with neighboring tiles to ensure consistent
labeling at tile boundaries. We collect all points overlapping
with a tile and it’s boundary, which allows us to consistently
label points. The tiling is needed to enable consistent labeling
of the overlapping point clouds and still allow to visualize all
points inside a tile.

Our point cloud labeling graphical user interface provides
different filtering methods to facilitate labeling, such as
hiding points from a specific class or above/below an
adjustable plane. The filtering allows us to accurately
label points even in complex situations with overhanging
vegetation that cover the view onto parts of the point cloud.
Fig. 2 shows our labeling application with a challenging
situation, where we have a bridge over a street and foliage
from trees overhanging.

We provide two tools for annotating the point cloud:
(1) a brush, which labels all points in a circular region
around the current mouse position and (2) a polygon,
which labels all points inside the polygon area specified
by setting the polygon corners. Both operations happen on

the projected points, where we check the projected three-
dimensional point in the image plane for inclusion in the
brushed or selected area. Thus, labeling of the point cloud
is viewpoint dependent and requires to find a viewpoint that
does not affect points that lie in the line of sight. Here, the
aforementioned filtering tools allow to filter such points or
simply all already annotated points.

Class annotation. Following best practices for dataset
labeling, we compiled a labeling instruction based on
Mapillary’s instructions (Neuhold et al. 2017) and provided
instruction videos on how to label certain objects such as cars
and bicycles standing near a wall to our annotators.

Compared to image-based annotation, the annotation
process with point clouds is more involved due to the
aforementioned view dependency. The annotator often needs
to change the viewpoint to find a perspective where an
annotation is possible without annotating unwanted or
already labeled points. An annotator needs on average 4.5 h
per 100×100m tile, when labeling residential areas—the
most complex encountered scenes. Highway scenes are
easier to label and an annotator needs on average 1.5 h to
label a complete highway tile.

We provided feedback to the annotators to improve
the quality and accuracy of labels. Furthermore, we also
checked the labels in a second pass and inspected already
labeled point clouds. During this check, inconsistencies were
corrected and missing labels were added.

To ensure consistent annotations, a single annotator
performed the verification of all sequences. Tab. 2 shows
the fraction of points for each sequence, which we relabeled
in the verification process. Thus, relabeling percentages
are low for sequences mainly handled by this person, i.e.,
sequence 00, 09, 13. The number of relabeled points with the
remaining sequences show the range of agreement between
our annotators ranging from 2% up to 15%. The rather large
spread compared to other image datasets (Gupta et al. 2019;
Cordts et al. 2016; Lin et al. 2014) can be attributed to
having annotators from different backgrounds, which never
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(a) (b) (c)

Figure 3. Examples of correction during the verification process (top shows before validation and bottom after the validation).
Here, we show (a) refined road boundaries, (b) added details (guard rail in the vegetation), (c) refined boundaries between classes.

annotated point clouds before. Thus, we and the annotators
had to learn and refine the process while creating the
annotations.

Fig. 3 shows examples of corrected labels during the
verification process. Usually, we refined the boundaries
of the road/sidewalk (e.g., curbs are always labeled as
sidewalk), added details that where missed (e.g., tree trunks,
guard rails, etc.), or refined the boundaries between different
classes (e.g., building and sidewalk, car and road, etc.).

Instance annotation. For non-moving objects, we first
cluster all points for each class using a fast grid-based
segmentation approach (Behley et al. 2013). We use the
aforementioned tiles to build a two-dimensional grid with
cell size 0.1×0.1 m, where we insert all points using their x
and y-coordinates into the corresponding grid cells. Finally,
only grid cells with points exceeding a height threshold of
0.5m are considered and grouped into segments using a
simple flood fill algorithm.

For moving objects, we cluster each scan individually
using a distance-based clustering as this provided more
reliable results and it can be used to associate instances
between consecutive scans using the same principle. First,
we search for each point it’s radius neighbors within 0.5m
and group points that share neighbors. To find associations
with the previous four scans, we use a slightly larger radius
of 1.0m to find neighbors in the previous scans. If we find
enough neighbors (i.e., we used at least 10 points) with the
previous segments at different timestamps, we assign the
same instance ID.

The described clustering leads inevitably to over-
and under-segmentation, but also to wrong or missing
associations between consecutive timestamps. We correct

these issues manually using our point labeling tool, which
allows us to create, join, and split instances.

Tab. 2 shows the fraction of over- and under-segmented
non-moving objects that where manually corrected. For
determining over- and under-segmented segments, we
inspect all segments after the correction and compared
the instance ids before and after the correction of the
corresponding segments. If we find multiple instance ids
in the segment before the correction, we record an over-
segmentation. If we find that the segment before the
correction is larger then the segment after the correction, we
record this segment as an under-segmentation.

Note that we can exploit the pose information of the
LiDAR sensor for non-moving objects, since we can cluster
points based on their global coordinates. Only this allows
us to inspect all 682k bounding boxes, since a large part of
instances originate from non-moving objects.

However, Tab. 2 also reveals that 30%-50% of all segments
were affected by over- and under-segmentation, which had
to be manually corrected. Our axis-aligned grid often under-
segmented nearby parked cars in non-axis aligned directions
and over-segmented cars that were farther away due to the
point distance.

For moving objects, we report in Tab. 2 the fraction
of object trajectories that have at least once a different
instance id in the automatically extracted instances. These
data association errors were mainly caused by occlusions or
by cars moving in the same direction with a small gap. Using
here a tracking-based data association, which accounts for
the object motion, would have resolved many of these issues.
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Figure 4. Class-wise distribution over the complete dataset. For the potentially moving classes car, truck, other-vehicle, person,
bicyclist, motorcyclist, we furthermore distinguish between non-moving (solid) and moving instances (dashed bars).
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Figure 5. Instance-wise statistics over individual (a) object
occurrences and (b) total count of bounding boxes or instances.
Dashed bars show the proportion of objects in the training and
validation data (sequence 00 – 10).

3.2 Class and Instance Distribution
Overall, we annotated over 500 tiles resulting in the class
distribution shown in Fig. 4. We included besides traffic
participants, such as car, truck, bicyclist, motorcyclist, also
more functional ground classes relevant for autonomous
driving, like sidewalk and parking areas. Note that we also
differentiate for potentially moving classes between non-
moving, i.e., the object did not move while observing it, and
moving objects, i.e., the object moved at least for a single
frame while the sensor observed it. In total, we distinguish
between 28 classes including the moving and non-moving
classes.

Note that we label points belonging to a bicycle or a
motorcycle also as bicyclist or motorcyclist, when the vehicle
has a rider. This simplification was needed, since persons

on a bicycle or motorcycle cannot be separated reliably and
accurately from the vehicle. Due to the sparser resolution of
the point clouds compared to images, we preferred to label
only the complete objects.

Naturally, road, vegetation and building points are by far
the most often occurring classes. Motorcyclist is a class with
only few examples present in the data.

The class car is by far the most often occurring traffic
participant, which can be also seen in the object count
depicted in Fig. 5. We show in the upper part of Fig. 5 the
sequence-wise counts of instance annotations, i.e., we count
each object only once even if it is seen multiple times by the
sensor. The lower part of the figure shows the accumulated
scan-wise counts of instances, where we count the instances
without considering the temporally consistent instance ID.

3.3 Dataset Organization and Format
We tried to keep the data organization as close as possible
to the original KITTI Vision Benchmark. Thus, we use the
same format for our pose files and a similar binary format
corresponding to the point cloud format of KITTI. Pose
information is given in the coordinate frame of the camera,
therefore the calibration data of each sequence provided
by the KITTI odometry benchmark is needed to correctly
transform the point clouds.

We added the folder labels containing for each point
cloud a binary label file. Corresponding to each point, this
file contains a 32-bit unsigned integer, where the upper 16 bit
contain the instance id and the lower 16 bit contain the class
id. Here, a value of zero corresponds to no instance assigned
to the corresponding point and a zero label corresponds to an
unlabeled point.

The folder voxels contains the voxelized point clouds,
the voxel-wise labels, the invalid voxels, and the occluded
voxels. Here, we opted for reducing the size of the data by
using only bit flags to encode 8 voxels inside a single byte.
Labels are represented by a 16 bit integer and we do not
distinguish between different instances.

3.4 Benchmark Competitions and
Development Kit

Together with the data, we also provide competitions on
CodaLab Competitions that allow evaluating approaches on
a hidden test set, i.e., part of the data for which we do not
provide annotations. We use the original test sequences 11-
21 of the odometry benchmark, since we do not want to
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interfere with the original benchmark which could exploit the
provided labels to get better results on the original odometry
benchmark. The large test set might furthermore incentivize
the development of fast approaches to process the large
number of scans.

We currently provide competitions for semantic segmenta-
tion, semantic scene completion, and panoptic segmentation.
More information regarding the baselines and metrics are
provided the corresponding papers (Behley et al. 2019,
2020).

Together with the dataset, we also published a develop-
ment kit† implemented in Python that provides methods to
read the data and contains all evaluation scripts used in the
aforementioned competitions. We furthermore provide tools
to visualize the point clouds and the voxel grids.

4 Lessons Learned
In the process of labeling around 43,000 point clouds
with a team of nine annotators, we learned quite a bit
about managing the annotation process, but also encountered
pitfalls. From these experiences, we want to share some
insights that might help others to organize annotating data
at such scale and avoid some failures.

We relied on university students from computing related,
but also unrelated fields. Accurate and still efficient
annotators are hard to find and we had a selection process or
casting, where we let the prospective annotators use our point
cloud annotation application and could directly see how they
performed in the session. During this process, we recognized
that point cloud annotation is quite challenging and that even
annotators that are comfortable with labeling images had
big problems to navigate and transfer this knowledge to the
annotation of point clouds. Thus, annotator screening turned
out to be a mandatory first step to achieve good results.

However, we learned most about the problems and
challenges by labeling ourselves. This also helps to rectify
the expectations and helps in the selection of the targeted
classes. We found early on that labeling lane markings would
have increased the time per tile to much, such that we decided
not to include these in our labeling effort.

Next, we had to invest additional time in training and
correcting the annotators continuously to ensure sufficient
quality of the provided annotations. Only this ensured a high
quality of the resulting annotations and a speed up in the
process. Interestingly, all annotators improved during this
process substantially and could adopt our suggestions to
label more efficiently. Since we also used our own tools,
we could develop and refine our annotation application over
time and introduce new ways of filtering points, which also
decreased the time needed to label a point cloud. Initially, we
relied mostly on a height-based ground removal, which was
not sufficient to consistently remove ground points. Adding
a plane-based removal, where the annotator could set the
angles and the threshold along the z-axis of the associated
plane, proved to be much more robust.

Nevertheless, some of our early attempts to speed up
the process by using pre-trained and fine-tuned image
segmentation methods did not succeed. First, we aimed at
having consistent labels for the aggregated point cloud and
therefore the projection of single image labels to the point

cloud needed to be aggregated using a point-wise majority
vote. Second, the view point differences between the LiDAR
sensor and the camera led to occlusions that could not
always be resolved by aggregating multiple projected image
labels, since one had only a frontal view available. Third,
the misalignment between camera and LiDAR caused by
pixel shifts or simply the rotation of the LiDAR resulted
in “bleeding” of semantic labels into background regions
or inconsistent labels on objects where parts of nearby
classes got projected onto. Surprisingly, correction of these
boundary issues took nearly as much time as labeling the
whole tile from scratch. Additionally, our impression was
also that the transferred labels biased the annotations in being
“good enough”, but being actually inferior to a labeling from
scratch, since error or small problems with the projection of
annotations are hardly visible.

5 Conclusion
SemanticKITTI provides point-wise semantic and instance
annotations for all sequences of the KITTI odometry
benchmark. At the time of writing, it is still the
largest dataset that provides such annotations for point
cloud sequences. Based on these annotation, we provide
benchmarks for semantic segmentation and semantic scene
completion (Behley et al. 2019). We added recently panoptic
segmentation joining semantic and instance segmentation to
the set of benchmarks (Behley et al. 2020). Furthermore, we
plan to extend the set of benchmarks with additional tasks.

Besides these benchmarks, we also see already adoption
of the data for other domains benefiting from semantics,
like semantic SLAM (Chen et al. 2019; Gan et al. 2020),
LiDAR-based localization (Yan et al. 2019), and loop
closure detection (Chen et al. 2020). Moreover, domain
adaptation (Jaritz et al. 2020; Langer et al. 2020) was
also quite recently investigated to exploit our annotations
for other sensors with different sensor geometries. We are
curious in which ways the annotations and our tools will be
used in future.
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