
DeepWalk: Omnidirectional Bipedal Gait by

Deep Reinforcement Learning

Diego Rodriguez and Sven Behnke

Abstract— Bipedal walking is one of the most difficult but
exciting challenges in robotics. The difficulties arise from the
complexity of high-dimensional dynamics, sensing and actuation
limitations combined with real-time and computational con-
straints. Deep Reinforcement Learning (DRL) holds the promise
to address these issues by fully exploiting the robot dynamics
with minimal craftsmanship. In this paper, we propose a novel
DRL approach that enables an agent to learn omnidirectional
locomotion for humanoid (bipedal) robots. Notably, the loco-
motion behaviors are accomplished by a single control policy
(a single neural network). We achieve this by introducing a
new curriculum learning method that gradually increases the
task difficulty by scheduling target velocities. In addition, our
method does not require reference motions which facilities its
application to robots with different kinematics, and reduces the
overall complexity. Finally, different strategies for sim-to-real
transfer are presented which allow us to transfer the learned
policy to a real humanoid robot.

I. INTRODUCTION

Humanoid robots are one of the most versatile and flex-

ible platforms for acting in made-for-human environments.

This versatility comes, however, at the cost of complexity.

Bipedal locomotion poses still several challenges in terms of

planning and control mainly due to the high dimensionality,

complex dynamics, sensing and actuation limitations, and

real-time constraints. Inspired by the human example, Deep

Reinforcement Learning (DRL) approaches offer a promising

model-free alternative to address these issues by making use

of prior experiences.

Several state-of-the-art DRL-based locomotion controllers

employ tracking-based policies of reference motions to learn

separate controllers to walk at fixed velocities [1]–[4]. In

contrast, we propose a single policy in order to avoid training

and combining separate control policies. The parameter shar-

ing facilitates information transfer when learning different

velocities. We further reduce complexity by removing the

need for motion capture data and engineered modules such

as kinematic mappings and motion interpolations. This is

made possible by the introduction of a nominal pose that

can be defined as the standing pose of the robot.

The core contribution of this paper is a novel approach

to learn a single control policy for omnidirectional walking

using DRL on a realistic humanoid robot model without

using reference motions. To achieve this, we propose a

velocity scheduler that gradually increases the task difficulty

of the agent, and we introduce a nominal pose to guide the

learning process. We additionally introduce a new way of
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Fig. 1. Omnidirectional walk executed by our learned control policy. The
robot is able to turn left during forward walking.

controlling the use of motor power (torque) by bounding the

action space through beta policies [5].

Our experiments demonstrate that the learned policy can

successfully produce omnidirectional motions allowing the

robot to walk forwards, backwards, laterally, diagonally, to

turn around the vertical axis and to combine these directions.

Moreover, our learned controller is successfully transferred

to real hardware.

II. RELATED WORK

Learning approaches applied to walking controllers have

been predominantly investigated for gait optimization [6]–

[8]. These methods, however, depend on engineered compo-

nents such as trajectory planners, central pattern generators

and robot dynamics models. Recently, model-free locomo-

tion controllers have been developed by the character ani-

mation community based on DRL algorithms [1], [9]–[13].

Heess et al. [9] generated robust locomotion maneuvers for

different characters by applying curriculum strategies on the

environment. In [10], 3D walking motions were achieved by

employing curriculum strategies on the commanded veloci-

ties. Still, the policies were trained on animation characters

and their applicability in real robots is questionable.

Peng et al. [1] provide human motion capture data with de-

sired foot-placement goals to guide the reinforcement learn-

ing process. Peng et al. [11] later proposed DeepMimic, an

approach that is able to mimic highly dynamic motions such

as backflips, cartwheels, and rolls. Inspired by DeepMimic,

Bergamin et al. [12] and Park et al. [13] learned kinematic

trajectories which are tracked by dynamic-consistent RL-

based tracking controllers. However, in all these approaches,

the controllers were demonstrated on simplified models with
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high torque capabilities and ground truth data from the

simulator which do not resemble real-world conditions.

Deep reinforcement learning has also been applied in the

robotics community [2], [3], [14]–[17]. Hwangbo et al. [14]

presented a control policy which is later transferred to a

real quadruped robot. The transfer was possible thanks to

a network trained to model the dynamics of the actuators.

In contrast to [14], our approach employs a much simpler

reward function and it is demonstrated in a humanoid robot

which imposes a harder balance problem.

One of the first attempts to apply DRL on humanoid

robots was proposed by Yang et al. [15], who integrated the

capture-step equations into the reward function for learning

push-recovery capabilities. However, walk capabilities were

not developed. Xie et al. [2] learned a forward walk with a

biped robot using DRL based on separate reference motions

at different velocities. Interpolation between policies needs to

be explicitly handled to allow the robot to change between

commanded velocities. Later, Xie et al. [3] extended this

approach and transferred the policies to a real platform.

Similarly, [17] transferred a walking controller into a real

bipedal robot. In both approaches, the achieved locomotion

capabilities rely on multiple control policies that need to be

trained separately. Our approach, on the other hand, is able to

generate an omnidirectional gait using a single policy without

any reference motion.

III. BACKGROUND

A. Deep Reinforcement Learning

Reinforcement learning algorithms aim to find a policy

π based on experiences that will guide an agent to solve a

specific task. This task is modeled as a Markov Decision

Process (MDP) defined by the tuple {S,A, P, γ, r}, where

S ∈ R
n represents the state space, A ∈ R

m is the set of

actions the agent can take, P : S × A 7→ S models the

dynamics of the system, γ ∈ [0, 1] is a discount factor,

and r : S × A 7→ R is a reward function that rewards or

punishes an action at taken in state st after interacting with

the environment at time step t.

In this paper, we focus on model-free reinforcement

learning, and we directly construct a parametrized policy

πθ by maximizing a cost function J(θ) with respect to

the parameters θ, without explicitly modeling the dynamics

P . As common in continuous control problems, we define

πθ as a stochastic policy πθ(a|s) defined as a probability

distribution of taking an action at given a state st. Policy

gradient algorithms try to solve this optimization problem

by sampling trajectories around the current policy πθ and by

updating the parameters θ according to the gradient ∇θJ(θ)
in an ascent fashion. This gradient is expressed as:

∇θJ(θ) = ∇θE [Ψ] = E [Ψt∇θ log πθ(at|st)] . (1)

Eq. (1) tells us how the parameters θ should be updated

judged by the score function Ψt which can take several

forms including: the state-action value function, Qπ(st, at),
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Fig. 2. Control system overview. According to the state s of the robot, the
control policy πθ calculates increments δ of the current joint state positions
q that define targets qd for PD controllers of the robot.

the advantage function, Aπ(st, at), and the Generalized

Advantage Estimator (GAE):

AGAE(γ,λ) =

∞
∑

l=0

(γλ)lδVt+l, (2)

that reduces the variance of the gradient estimates at the

cost of introducing bias [18]. This is done by combining a

series of Temporal Difference (TD) residuals δVt = rt +
γV (st+1) − V (st) through a parameter λ ∈ [0, 1] that

trades off variance and bias. The value function is defined

as V π(st) = Est+1,at
[
∑∞

l=0 rt+l].

Estimators of the gradient policy can additionally be

obtained by automatic differentiation of an objective function

constructed such that its gradient is the policy gradient

estimator, e.g.:

L(θ) = Et [At log πθ(at|st)] . (3)

Alternatively, a surrogate objective function can be used,

as introduced in the Proximal Policy Optimization (PPO)

algorithm [19]. This surrogate has the form:

LPPO(θ) = Et [min (rt(θ)At, clip (rt(θ), 1− ǫ, 1 + ǫ)At)] ,
(4)

where, rt =
πθ(at|st)

πθold
(at|st)

denotes the probability ratio, and ǫ

is a hyperparameter that defines a range in which the new

policy is allowed to differ from the previous one.

IV. METHOD

We propose a novel approach to learn an omnidirectional

walking controller for humanoid robots. This controller is

parametrized by a neural network called the policy (actor)

network (Sec. IV-D). An overview of the walking controller

is presented in Fig. 2. Our approach consists of two phases:

training and inference. In the training phase, two networks

(actor and critic) are learned through experiences that the

agent collects acting in the environment using the current

parameters of the networks. Once enough experiences have

been collected, the networks’ weights are updated and the

experience rollout buffers are cleared out. In the inference

phase, the network weights are kept fixed. For brevity, the

dependency on t will be dropped. Given the observed state

s of the robot, the network outputs offsets δ that are added

to the current joint positions q that ultimately define targets

qd for PD controllers of the robot joints.



A. State Space

We define the state s of the robot as: joint positions q, joint

velocities q̇, orientation of the base of the robot R, angular

velocity of the base ωb, velocity of the base w.r.t. a inertial

reference frame I expressed in I IvIb
1 and in the base link

frame bvIb , long-term desired velocity vdes, and short-term

commanded velocity vcmd.

The joint positions q ∈ R
nq and velocities q̇ ∈ R

nq are

read directly from the joint encoders, for a robot with nq fully

actuated joints. R is a vector containing the orientation of the

base link (roll Rα, pitch, Rβ and yaw Rγ). Robots without

yaw estimation will define a two-dimensional R vector.

The angular velocity ωb = [ωx, ωy, ωz] ∈ R
3 is taken from

the gyro measurements. The linear velocity of the base link

vb is estimated using the robot kinematics and orientation

assuming a flat ground. The reference frame I initially equals

the base link frame and is updated periodically to a frame

placed in the base link aligned with the z world axis. The

linear velocity is expressed in the reference frame IvIb ∈ R
2

and in the local frame bvIb ∈ R
2, and both are included

into the state s. Without IvIb in s, the agent would not be

penalized for deviating from the original direction of the

desired velocity; and without bvIb , the agent is susceptible

to develop locomotion patterns that follow the walking

direction, but infringe the desired relative velocity.

Finally, the state also incorporates the desired velocity

vdes = [vdesx , vdesy , ωdes
z ] ∈ R

3 and an immediately com-

manded velocity vcmd = [vcmd
x , vcmd

y , ωcmd
z ] ∈ R

3. The

former can be seen as the task’s goal. It represents the user

input for controlling the robot. The latter is an interpolated

velocity between the previous desired velocity volddes and the

new desired velocity vdes to have smoother transitions when

changing velocities.

B. Action Space

The actions are represented as a delta δ that needs to be

added to the current joint position q, such that PD targets

are formulated as qd = q + δ. This formulation is based

on the observation that abrupt changes in the PD target

saturate the PD controllers producing jerky, unnatural high-

torque motions. This issue is addressed by putting limits on

the values of δ, i.e., we respect actuator speed limits. In

stochastic continuous control, the commonly used Gaussian

policies are not able to handle bounded action spaces like the

one proposed here. Chou et al. [5] introduced Beta policies,

which can deal with bounded action spaces and have shown

faster convergence and higher scores than the Gaussian ones.

In our method, we follow Beta policies and bound the action

space such that δ ∈ [δmin, δmax]. The actions are sampled

from the beta distribution at 40 Hz.

C. Reward Function

The reward function is defined as:

r = wvrvel + wrrreg + waralive + wfrfoot. (5)

1 Notation: for a vector AvB
C

, the left superscript denotes that the
coordinates of the vector are expressed in frame A, for the position of
a point C relative to other point B.

All the reward terms are bounded such that r∗ ∈ [0, 1]·∆t,
where ∆t is the time step of the policy controller. To bound

the reward terms, we use the smooth logistic kernel function

K : R → [0, 1] expressed as K(x|l) = 2/(elx+e−lx), where

l defines the sensitivity of the kernel. The reward consists of

the following terms:

1) Velocity Tracking: This term states how good the

velocity is tracked by the control policy. rvel is defined as:

rvel = CvK(ev)∆t, ev =
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The tracking error ev ∈ R
5 includes the difference between

the commanded velocity vcmd and the velocity of the base

of the robot, expressed in the reference IvIb and the local

frame bvIb , and the angular velocity error ωcmd
z − ωz . Note

that the L2-norm encourages improvement of all components

together. The value of Cv ∈ (0, 1] changes dynamically the

priority of this reward term. At the beginning of training, the

priority is low to let the agent learn to stand. The priority

is increased rapidly once the robot has a notion of standing.

The value of Cv is defined per epoch: Ct+1 = Ckd

t , where

kd specifies the speed change of Cv . Without Cv , the agent

would learn a greedy policy in which it tilts to the front,

provoking a fall.

2) Pose Regularization: The regularization of the learning

process in our approach is done through a single joint

position configuration. This nominal pose can be defined, for

example, as the standing pose of the robot. The regularization

error is defined as the difference between the nominal pose

qreq and the corresponding joint positions to regularize qr:

rreg = K(‖qreg − qr‖)∆t. (7)

Note that not all joints in q need to be regularized.

3) Alive: The agent is referred to be alive if it is not in

the process of falling. In each step, a fixed reward is given if

the height of the base with respect to the floor, pz , remains

above a defined value, pmin
z , or if the roll Rα and pitch

Rβ angles of the base stay below thresholds, Rmax
α , and

Rmax
β , respectively. In case these thresholds are violated, a

fall is expected and the rollout is terminated. In contrast to

a large negative reward given at the terminal state, ralive is

proportional with the length of the rollout such that longer

sequences are more rewarded, i.e., the agent is encouraged

to learn keeping balance. ralive is formulated as:

ralive =

{

∆t if pz > pmin
z , Rα < Rmax

α , Rβ < Rmax
β

0 else.

(8)

4) Foot Clearance: Without a foot clearance term, poli-

cies might be learned which lift the feet as little as possible.

Although such policies show stable walking patterns in

simulation, transferred policies to the real robot exhibit, in

general, motions with dragging feet partly caused by model



differences and joint backlash. The foot clearance term acts

on the swing leg only. Apart from considering the clearance
lf,rfpz , this term includes the roll angle rf,lfφx of the right

(rf ) and left (lf ) foot to discourage the agent to walk on

its lateral feet edges which emerges as an artifact from

maximizing lf,rfpz . For a right swing leg, for instance, the

foot clearance reward term is formulated as:

rfoot = CfK(ef )∆t,

ef =
∥

∥

∥

[

wφ(
rfpdesz − rfpz),

rfφx,
lfφx, wφ

lfpz
]T

∥

∥

∥
. (9)

The minimization of the clearance of the foot in stance

disfavors the development of flight phases, which produce

unstable behaviors when the policy is executed on the real

robot. For a left swing leg, the superscripts of Eq. (9) are

interchanged correspondingly. The swing leg is defined as

the leg whose foot has the smallest distance to the trunk link

in the z axis. Hysteresis is added when changing the swing

leg to discourage flight phases.

D. Actor and Critic Networks

In our approach, two networks are trained: a critic and an

actor network. The critic network is employed to estimate a

state value function Vφ used for calculating the generalized

advantage estimator AGAE (Eq. (2)). The parameters of the

critic network are updated by minimizing the loss function:

LV = (Vφ(st)− V̂ )2, (10)

where V̂ refers to the sampled state value from the trajec-

tories. The parameters of the actor network are updated by

maximizing the PPO loss function (Eq. 4).

The critic and actor network architectures are very similar.

They contain two fully-connected hidden layers of 512 units

with tanh activation functions and a fully-connected input

layer for the state vector st. The last layer of the critic

network contains a unit that represents the estimated state

value Vφ. The actor network has in its last layer two units for

each dimension of the action space. These units parametrize

the beta distributions of the actions. In training, the actions

are sampled from these distributions whereas in inference

the actions are described by the distribution mode. We train

our control policy using PPO combined with GAE.

E. Curriculum Learning for Target Velocities

We formulate the problem of learning a control policy

for omnidirectional walking as a curriculum learning prob-

lem [20]. This curriculum strategy is implemented as a veloc-

ity scheduler that increases the task difficulty gradually. The

velocity scheduler defines the bounds from where a target

velocity vdes ∈ R
3 is sampled each episode from a three-

dimensional uniform distribution. In the first episode, the

robot is commanded to walk only in the sagittal direction at

a fixed velocity vcore. The bounds of the regions, from where

the target velocities are sampled, are gradually increased as

training progresses. We define an episode number ζ, in which

the target velocities stop increasing, The bound values for

each episode are linearly interpolated according to ζ and the

maximum target velocities. The training process continues

until the maximum number of episodes is reached. In this

manner, the agent can refine the learned policy.

The core velocity vcore ≫ [0, 0, 0] is introduced for several

reasons: first, to encourage more walking than standing

behaviors, second, to avoid forcing the agent to learn at

the beginning to walk forward and backward simultaneously,

which is a harder task compared to walking forward, and

finally, to prevent the agent learning to slide instead of

walking.

F. Sim-to-real Transfer

In this section, we introduce several strategies that facili-

tate the sim-to-real transfer.

1) System Identification: This contributes to finding a

good initial set of simulation parameters. We found that the

reflected inertia is a decisive parameter for learning a stable

gait. Specifically, we notice that low values of this parameter

lead to jerky motions that are very challenging to control.

Tuning the PD controllers of the real robot and the

simulation to get similar responses is critical. Because the

responses of the PD controllers influence the joint state con-

figuration and therefore the network input, a single untuned

PD controller suffices to produce a previously non-observed

input that might lead to continually increasing instabilities.

2) Noise Injection: Additional noise is purposely injected

to the output network. At the beginning of each episode,

noise is independently sampled for each joint. The noise is

sampled from a uniform distribution ηpd ∼ U(1 − ǫpd, 1 +
ǫpd). ηpd acts as a scale factor of the inferred target deltas δ.

The noised PD targets are then defined as qd = q+ηpd· δ. To

model real sensory data, noise is also added to the sensors

(gyro ηg , accelerometer ηa, position encoders ηq and velocity

sensors ηv). The added sensory noises are independently

randomly sampled from zero-mean Gaussian distributions.

3) Dynamics Randomization: Parameters such as masses,

inertia and joint positions are obtained directly from the CAD

model. For the sim-to-real transfer, the friction model plays

a key role, and it needs to consider tangential and torsional

forces. The friction between two surfaces is modeled by

elliptic cones. The friction coefficients (tangential µt and tor-

sional µz) are randomly sampled from uniform distributions

µt,z ∼ U(µmin
t,z , µmax

t,z ) at the beginning of each episode.

4) Modeling of Actuation Latency: We define latency as

the time an actuator takes to read its actual position after a

commanded target has been sent. In simulation, this happens

immediately. However, with the real robot, this delay implies

that the learned policy is taking actions on states that do

not fully represent the actual state of the robot, which

leads to unstable gaits and jerky motions. Following the

approach proposed by Tan et al. [4], we model actuation

latency by keeping a history of observations and by feeding

previous observations to the network according to a delay

time tlat. Observations are recorded at the frequency of

the control policy. The network input is then defined as a

linear interpolation between adjacent observations according

to the latency ti ≤ tlat ≤ ti+1. To make the policy robust
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Fig. 3. Velocity tracking. The learned control policy is able to follow the commanded velocities (solid wider lines) in different directions with varying
velocities. Initially, motions in single directions (sagittal, lateral and turning) are demonstrated. After 600 time steps, motions with combined directions
(sagittal with lateral, sagittal with turning and lateral with turning) are evaluated.

against actuation latency, a latency value tlat is uniformly

sampled tlat ∼ U(tmin
lat , tmax

lat ) at the beginning of each

training episode.

5) Network Output Filtering: We filter the actions inferred

by the policy before sending the corresponding commands

to the actuators using a Butterworth low-pass filter.

V. EVALUATION

Our approach is evaluated on the NimbRo-OP2X

robot [21]. The robot is 135 cm high and weights 19 kg.

The platform possesses 18 Degrees of Freedom (DoF): five

on each leg, three on each arm and two for the head. The

joints at the head (pitch and yaw) are neglected because

their contribution for walking is considered insignificant

and they are needed for active visual perception. Each leg

exhibits a parallel kinematic structure containing: a hip yaw,

a hip roll, a hip pitch, a knee pitch and an ankle roll. For

state estimation, the robot uses only a gyroscope and an

accelerometer enabling a 2 DoF state estimation, namely the

roll and the pitch angles. The action space was bounded to

δ ∈ [−0.1, 0.1]. In total, our robot creates a 47-dimensional

state space and a 16-dimensional action space.

The training is carried out in the physics-based simulator

MuJoCo. The simulation runs at 1 kHz. The PD controllers

have the same frequency as the simulator. The task was

implemented as an OpenAI Gym environment [22]. To

speed up the training, 12 parallel environments were running

simultaneously on an Intel i9-9900K CPU. The weights of

the reward function terms (wv = 42, wr = 4, wa = 4 and

wf = 18) were set manually from experience. The kernel

sensitivities were set to lv = 9, lr = 3 and lf = 10.

The networks are trained iteratively by epochs. Each epoch

comprises 800 time steps. Both networks use a learning rate

equal to 1 × 10−4 with a batch size of 480. Per epoch, 10

updates are performed using the Adam optimizer. Finally, the

decaying factor γ is set to 0.99 and τ = 0.97. The training

finished after 7400 epochs for a total of 7.1×107 time steps,

resulting in 20.5 days of simulated time which corresponds

to 32.5 hours of computation in real time.

The robot is asked to learn to walk at vcore =
[0.4m/s, 0.0m/s, 0.0 rad/s]. The minimum and maximum

velocities in each direction are bounded to vx ∈ [−0.6, 0.6],
vy ∈ [−0.6, 0.6], and ωz ∈ [−0.6, 0.6]. Finally, the curricu-

lum variables of the reward terms are initialized at Cv = 0.01
with kd = 0.95, and Cfoot = 0.05 with kd = 0.995.

The factor noise to the PD controllers ǫpd is set to 0.1.

The standard deviations of the noise applied to the sensory

data are: ηg = 1× 10−4, ηa = 1× 10−4, ηq = 1× 10−3,

and ηv = 1 × 10−3. The friction values are sampled from

µt ∼ U(0.4, 0.8) and µz ∼ U(0.1, 0.3), for the tangential,

and torsional friction coefficients. The injected noise and

sampled friction values are considered only in simulation.

The latency tlat is sampled uniformly from [0, 50]ms in

training (tlat = 8ms for the real robot). Finally, the cutoff

frequency of the low-pass filter is set to 10 Hz for the real

robot.

Initially, we evaluate the learned gait in simulation. Fig-

ure 3 shows the velocity of the base given commanded
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Fig. 4. Training return curves. The vertical dashed line represents the point
where the limits of the velocity scheduler have been reached. Note how the
agent continues refining the policy after these limits have been reached.



TABLE I

RESULTS OF FALLING TEST

Commanded Velocity # Falls Commanded Velocity # Falls

v = [0.0, 0.0, 0.0] 0/10 v = [0.0, 0.0, 0.6] 1/10
v = [0.6, 0.0, 0.0] 0/10 v = [0.0, 0.0,−0.6] 3/10

v = [−0, 6, 0.0, 0.0] 2/10 v = [0.4, 0.4, 0.0] 0/10
v = [0.0, 0.6, 0.0] 0/10 v = [0.4, 0.3, 0.0] 0/10
v = [0.0,−0.6, 0.0] 0/10 v = [0.0, 0.4, 0.3] 0/10

velocities. Figure 4 shows the return training curves. At

the end of training, the robot falls rarely having an alive

reward value oscillating around its maximum (80). Falls

happen mostly when robot is commanded to the velocity

limits. Moreover, the robot learned to walk at different speeds

in different directions. Interestingly, the robot also learns

to walk in place, i.e., to lift the feet rhythmically without

moving in any direction. The accompanying video shows

the acquired locomotion skills.

In order to evaluate the robustness of the learned con-

troller, we performed ten walking sequences of 60 s for

different commanded velocities and counted the number of

falls. The results are presented in Table I. The robot was more

susceptible to falling when going backwards and turning

along the vertical axis. The agent had less experiences

walking backwards compared to the forward counterpart.

Regarding turning, the robot was requested to move at the

target velocity limits which suggests an increment in these

limits. Additionally, the capacity of the controller to switch

between velocities was evaluated by sampling uniformly 3-

dimensional commanded velocities from the limits defined

above. From 160 changes, the robot successfully performed

150 establishing a 93.75% success rate.

In addition, our learned controller was evaluated against

perturbations. The robot was pushed at the base link frame

for 0.2 s from the front, the back and the side at different

commanded velocities. For each commanded velocity, we

started perturbing the robot with 10 N pushes and increased

this magnitude by 10 N after ten pushes. Table II presents

the maximum push the robot was able to reject successfully

10 times in a row (100% Succ.), and the maximum push the

robot was able to reject at least once (Max. push).

In order to evaluate the contribution of the velocity sched-

uler, we trained a policy without curriculum. After the same

number of epochs, the robot learned to stand but it was not

able to walk in any direction. Additionally, a controller was

learned replacing the Beta policy by a Gaussian one. With

this controller, the robot was able to stand but it was not able

to go more than four steps without falling due to constant

saturation of the PD controllers. This demonstrates that the

introduction of Beta policies plays a key role on the use of

energy and furthermore it avoids the incorporation of torque

terms in the reward function and the corresponding weight

assignment and torque measurements or estimates.

Finally, we transfer the learned gait to real hardware. The

NimbRo-OP2X robot is able to walk on the spot, forwards,

backwards, laterally and diagonally. Turning in place is also

possible. We observed dissimilarities between the simulated

and the real gait which demands for more sophisticated sim-

TABLE II

RESULTS OF PERTURBATION [N] TEST

Commanded
Test

Front Back Lateral p.

velocity push push right left

In-place
100% Succ. 40 20 50
Max. push 60 30 90

v = [0.3, 0, 0]
100% Succ. 30 20 50
Max. push 50 30 80

v = [0.6, 0, 0]
100% Succ. 30 10 40
Max. push 50 20 70

v = [0, 0.25, 0]
100% Succ. 40 20 40 40
Max. push 60 30 60 100

v = [0, 0.5, 0]
100% Succ. 40 20 20 50
Max. push 60 30 60 100

to-real transfer methods. Snapshots of the robot walking

forward and lateral are shown in Fig. 5 and Fig. 6.

VI. CONCLUSION

We presented a novel approach to learn a single control

policy capable of omnidirectional walking for humanoid

robots using a realistic robot model. We have demonstrated

the capacity of the learned policy to walk in the sagittal

and lateral directions and to turn around the vertical axis at

different speeds. Without altering the policy, our approach

also produces motions in combined directions, i.e., the agent

is able to walk diagonally and to turn during walking.

Achieving these locomotion behaviors was possible mainly

due to: the velocity scheduler, the introduction of a core

velocity; the use of beta policies to bound the action space;

the incorporation into the state st of the velocity of the

base expressed in the relative and in the reference frame.

Our approach does not require reference motions to achieve

anthropomorphic locomotion thanks to the introduction of a

nominal pose.

In the future, we will explore different alternatives for

motion regularizers to find one that is more flexible than

motion capture data and generates more anthropomorphic

motions compared to nominal poses. In addition, we would

like to extend this approach for 3D walking, such that the

robot is able to walk on sloped terrains and to climb stairs.

Fig. 5. Snapshots of forward walk performed by the real robot commanded
by the learned locomotion controller.

Fig. 6. Snapshots of lateral (left) walk performed by the real robot
commanded by the learned locomotion controller.

behnke
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