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Abstract— A main difficulty that arises in the context of prob-
abilistic localization is the design of an appropriate observation
model, i.e., determining the likelihood of a sensor measurement
given the pose of the robot and a map of the environment. Many
successful approaches to localization rely on data provided by
range sensors, e.g., laser range scanners. When using such
data one normally has to deal with erroneous maximum-range
readings that occur due to poor-reflecting surfaces. In general,
these readings cannot be distinguished from readings obtained
when no obstacle is within the measurement range of the sensor.
Therefore, existing localization techniques treat these readings
alike in the observation model. In this paper, we present a novel
approach that explicitly considers the reflection properties of
surfaces and thus the expectation of valid range measurements.
In addition to the expected range measurement, we compute
the probability of reflectance for a beam given the relative pose
of the robot to the obstacle taking into account the angle of
incidence of the beam. We estimate the reflection properties
of surfaces using data collected with a mobile robot equipped
with a laser range scanner. As we demonstrate in experiments
carried out with a real robot, our technique leads to significantly
improved localization results compared to a state-of-the-art
observation model.

I. INTRODUCTION

Robust localization is a prerequisite for mobile service

robots operating in the real world. Several tasks, such as

deliveries [1], giving tours [2] as well as assisting people [3],

can only be carried out if the robot knows its pose.

Since sensor data is noisy, probabilistic approaches that

explicitly take the uncertainty into account are typically

applied to estimate the pose of the robot. One of the key

problems in probabilistic localization is the design of the

observation model. For a given pose of the robot and the

map of the environment, the observation model specifies the

likelihood of a sensor measurement.

Laser range sensors have been widely used for successful

localization [4], [5], [6], [7], [8]. They provide distance

and bearing information to objects in the environment. In

practice, one has to deal with erroneous readings also called

“maximum-range” readings that result from poor-reflecting

surfaces or readings obtained in situations in which no obsta-

cle is within the measurement range of the sensor. Especially,

low-cost laser range sensors suffer from maximum-range

readings caused by objects with low reflection properties.

One popular approach that explicitly models failures corre-

sponding to low or non reflectance is the ray-cast model
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proposed by Fox et al. [5]. This model, however, does not

take into account that the likelihood of erroneous readings

depends on the reflection properties of the corresponding

surfaces.

In this paper, we propose to estimate the reflection proper-

ties of surfaces and to use this information in the observation

model. We collect data with a mobile robot equipped with

a low-cost, miniature laser range scanner to estimate the

distances and angles from which the objects are detected

by the scanner. We compute histograms for the number of

detections and non-detections for regions in the environment

given the viewing angle and the viewing distance. We then

use this information to calculate the probability of reflectance

for a beam given the pose of the robot in the map.

We apply the well-known Monte-Carlo localization (MCL)

technique [9] to estimate the robot’s pose and use a variant

of the ray-cast model [5] in which expected measurements

are compared to measured distances. The novelty of our ap-

proach is that we additionally take into account the viewing

angle and distance to the objects contained in the map to

calculate the probability of reflectance for a beam.

As we demonstrate in the experiments carried out with

a real robot, we can significantly improve the localization

compared to the standard ray-cast model. Our approach is

especially valuable when large parts of a range scan are

erroneous maximum-range readings due to low reflectance

of objects or due to a comparably short sensor range. Such

effects may occur rarely when using a highly accurate SICK

laser range finder but can be observed frequently when using

low-cost, light-weight scanners such as the Hokuyo URG-

04LX. This sensor is often used for humanoid robots [10] or

flying vehicles [11] since these types of robots have only a

very limited payload of a few hundred gram.

This paper is organized as follows. After reviewing related

work, we explain in Section III how to learn reflection

properties of surfaces. In Section IV, we present our novel

observation model for MCL. Finally, our experimental results

illustrate that the accuracy of our localization approach

and demonstrates the significantly improved performance

compared to the standard ray-cast model.

II. RELATED WORK

Various observation models for probabilistic localization

based on laser range data have been proposed [12], [13].

These approaches either approximate the characteristics of

the sensor or aim to increase the robustness of the localiza-

tion process by smooth likelihood models. Thrun et al. [9] as

well as Lenser and Veloso [14] observed that the likelihood
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function can have a serious influence on the performance of

the localization technique.

In the standard ray-cast model proposed by Fox et al. [5],

it is assumed that beams are reflected by the first obstacle

in the map along the ray with the robot’s pose as origin.

Expected distances, which can be computed easily for a pose

of the robot given the map, are then compared to the actually

measured distances. In this approach, failures due to low or

non reflectance are considered in the observation model and

it has been successfully applied in practice. However, it is not

taken into account that different surfaces can have distinct

reflection properties. As we show in our experiments, this

variance in reflection properties may substantially influence

the localization performance especially when they lead to

larger numbers of erroneous maximum-range readings.

In correlation-based methods presented by Konolige and

Chou [6] and by Schiele and Crowley [15] as well as in

the endpoint model proposed by Thrun [7], the likelihood

of a single range measurement depends on the distance of

the corresponding beam endpoint to the closest obstacle

represented in the map. Whereas these models haven been

shown to be robust in highly cluttered environments, they

suffer from two drawbacks. First, they do not take into

account visibility constraints, second, they provide no direct

mechanism to deal with maximum-range readings, which is

why these readings are typically ignored.

Gutmann et al. [4] and Arras et al. [8] presented feature-

based localization approaches. Here, a set of features is ex-

tracted out the range scan and matched to features contained

in the representation of the environment. One drawback

of these methods are the assumptions the feature extractor

makes about the structure of the environment.

Moravec and Elfes [16] presented an approach to map-

ping with sonar sensors. When using sonar sensors, one

encounters the inherent problem of specular reflection which

means that sonar beams are reflected between different

objects resulting in false range measurements. Moravec and

Elfes simply do not consider range readings above a certain

distance since they assume that specular reflection results

in readings near the maximum range. Lim and Cho [17]

proposed to use specular reflection probabilities to compute

a measure of reliability for range readings. This quantity

is computed given the measured distance and the angle

of incidence. The difference to our approach is that we

explicitly model that objects yield either valid measurements

or erroneous maximum-range readings depending on the

viewing angle and distance. Our goal is not to discount

measurements with a low reliability or to ignore readings.

Instead, we seek to utilize all measurements in an appropriate

fashion during localization.

III. ESTIMATING REFLECTION PROPERTIES

A. Standard Reflection Probability Maps

In our approach, the environment is represented using a

grid map that consists of equally spaced cells. Reflection

probability grids are typically computed using so-called hits

and misses which are counted for each cell [13]. The number
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Fig. 1. (Left) The cell containing the beam endpoint gets assigned a hit,
the cells the beam passes through get assigned a miss. (Middle) In the first
stage of our mapping approach, we do not know which object along the
ray of the beam caused the erroneous maximum-range reading. Thus, all
cells along the ray get assigned the error. (Right) In the second stage, we
assign the error reading to the first occupied cell along the ray (which has
been observed from a different pose). We update the histogram given the
distance d and the angle a.

of hits represents the number of cases a beam ended in the

corresponding cell. The endpoint of a beam can easily be

computed given the robot’s pose and the measured range. The

number of misses corresponds to the number of cases a beam

passed through the cell. The cells a beam passes through can

be determined via ray-casting. Consider the example depicted

in Fig. 1 (left) for an illustration. The reflection probability

of a cell (x, y) is then computed as

pref (x, y) =
hitsx,y

hitsx,y + missesx,y

. (1)

A classical reflection probability map does not model the

case that erroneous maximum-range readings can occur when

the beam hits an object with a poor-reflecting surface and

such beams are ignored during mapping. In our approach,

we explicitly take into account the case that the beam is

reflected by the object or that a too small fraction of the light

has been reflected by the surface and thus an error reading

is obtained.

When using highly accurate laser range sensors such as

the SICK laser scanner, these considerations can in general

be neglected since the mentioned effects occur rarely. In

contrast to that, range measurements obtained by low-cost

and light-weight range scanners, such as the Hokuyo URG-

04LX, are highly sensitive to the surface material of the

measured object. In our experience, the probability of a valid

measurement depends on the viewing angle, i.e., the angle

of incidence of the beam as well as on the distance to the

object. In the following, we describe how to estimate such

reflection properties of surfaces.

B. Estimating Reflection Properties from Laser Data

Learning reflection probabilities requires an accurate es-

timate about the robot’s trajectory. To acquire such an

estimate, we use a robot that is equipped with two laser

range finders: an accurate SICK LMS and a comparably

noisy Hokuyo URG-04LX. To compute the trajectory of

the robot given accurate laser range data, we apply an

approach to grid-based SLAM (Simultaneous Localization

and Mapping) with Rao-Blackwellized particle filters. A

detailed description of this approach can be found in [18].

We then use the obtained pose estimates to learn a reflection

probability map of the environment given data of the noisy

laser range scanner.



We count the number of hits and misses for each cell.

Additionally, the number of error readings potentially caused

by each cell is determined (see Fig. 1, center image). We

use histograms that store those values for a discrete set of

viewing distances and angles of incidence. To compute the

angle of incidence of a beam, we estimate the normal of the

surface in a neighborhood in the scan around the beam under

consideration by fitting a line through neighboring endpoints.

Here, we assume that the normal can be uniquely determined

for each grid cell (which typically have a size of 5× 5 cm).

When learning these histograms, two problems arise.

First, it is not clear which cell along the beam caused

the error reading given an invalid measurement. Second,

the histograms are typically not completely filled since the

cells are not observed from all distances and angles. In the

following, we describe how to deal with these two problems.

1) Two-stage Mapping: To deal with the first problem, we

apply a two-stage mapping approach. In the first stage, we

process the sensor data to count the number of hits, misses,

and errors for each cell. Here, misses are counted for all

cells along the ray within a distance below the maximum

measurement range of the sensor. To obtain a decision at

which cell a ray-casting operation is aborted, we calculate

for each cell:

bin(x, y) =

{

1 if
hitsx,y

hitsx,y+missesx,y
> 0.5

0 otherwise
(2)

Afterwards, we initialize the histograms for all occupied cells

that have error readings assigned and process the sensor

data again. This time, we can assume that error readings

are caused by the first occupied cell along the beam if one

exists within the maximum measurement range of the sensor.

Fig. 1 (middle) and (right) visualize the error assignment in

the two stages of mapping. In case an error reading occurs,

we update the histogram of the occupied cell (x, y), which

is assumed to have caused the error reading. This is done

given the distance d and the angle a computed based on

the map. This means that err(d, a) is increased for (x, y).
Accordingly, hits(d, a) is updated for (x, y) when a beam

with length d and angle a ends in the cell (x, y) .

Since we only need the histograms at occupied cells, our

representation is only slightly more complex than that of

standard reflection probability maps.

2) Dealing with Incomplete Data: We assume a mono-

tonic increase of the probability of error readings with

distance. In practice, one typically observes a cell from many

different angles but only from very few distances. Therefore,

if an error reading occurs at distance de, we also count an

error for all greater distances di > de in the histogram given

the angle of incidence a:

∀di > de : err(di, a)← err(di, a) + err(de, a) (3)

For reasons of readability, we omit the cell (x, y) in the

formulas. The motivation behind this approach is the mode

of operation of a laser scanner. The sensor emits light and

measures the time needed until a certain amount of the

reflected light is observed by the detector in the scanner. If

not enough light is reflected, we obtain an error reading. In

this case, either no object was within the range of the sensor

or too little light was reflected in direction of the sensor. The

amount of the reflected light given a surface depends non-

trivially on the angle of incidence and the distance between

the sensor and the object. The closer the object to the sensor

and the closer the angle of incidence to the normal angle of

the measured object, the higher the amount of reflected light.

Similarly to Eq. (3), for a hit at distance dh, we count this

hit also for all shorter distances di < dh in the histogram

given the angle of incidence:

∀di < dh : hits(di, a)← hits(di, a) + hits(dh, a) (4)

To estimate the maximum angle of incidence for which we

expect to obtain valid range measurements, we proceed as

follows. Given the histogram for a certain distance, we search

for a separator line that best explains the corresponding hit

and error readings. The optimal separator given the data

can be determined by means of a score function we have

to maximize. The score function is defined as

score(d, a) =

a∑

i=0

[hits(d, i)− err(d, i)] +

B∑

i=a+1

[err(d, i)− hits(d, i)] , (5)

where B refers to the number of bins in the angular his-

togram. According to this function, we compute for each

distance d the angle a∗ that gets the highest score and thus

best separates the hit observations from the error observations

a∗ = argmax
a

score(d, a). (6)

Fig. 2 illustrates the separator line (dashed line) for an

example histogram and Fig. 3 depicts the corresponding

score function.

For probabilistic localization, we need to compute the

probability that an occupied cell reflects a beam or leads

to an error reading. From physics, we know that the closer

the angle of incidence of a beam is to the normal angle of

the observed object, the higher the amount of reflected light.

It is therefore reasonable to assume that there exists one

angular difference where there will be a valid measurement

for smaller values and an error reading for bigger ones. As

a result, we use a step function to model this probability.

Given the separator a∗, we can do this in a straight-forward

manner. We then can compute the probability of reflectance

given d averaged over the all angles a smaller than a∗ as

pref (d, a < a∗) =

∑a∗

a′=0
hits(d, a′)

∑a∗

a′=0
hits(d, a′) +

∑a∗

a′=0
err(d, a′)

,

(7)

and for d, a < a∗ accordingly. Since a∗ cannot always be

determined perfectly due to missing data (see also Fig. 2),

we do not use Eq. (7) directly but apply linear interpolation

between pref (d, a < a∗) and pref (d, a > a∗) for all angles

around a∗ where no data is available. See Fig. 4 for an

illustration.
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-20
 0

 20
 40
 60
 80

 100
 120

 0  10  20  30  40  50  60  70  80  90

s
c
o

re

angle of incidence [deg]

Fig. 3. Score function corresponding to the histogram show in Fig. 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90

re
fl
e

c
ti
o

n
 p

ro
b

a
b

ili
ty

angle of incidence [deg]

Fig. 4. Resulting reflection probability function.

Note that if enough statistical data was collected with

the robot, these approximations would not be necessary. In

this case, one could compute the reflectance probability and

analogously the probability of obtaining an error reading for

each discrete angle a separately. In practice, however, it is

typically impossible to observe each cell with each angle of

incidence and from each distance. In the following section,

we describe how to use the information about the reflectance

properties of objects during probabilistic localization with a

particle filter.

IV. CONSIDERING REFLECTION PROPERTIES

DURING LOCALIZATION

A. Monte-Carlo localization

We apply Monte-Carlo localization (MCL) [9] to estimate

the pose xt of the robot at time t. MCL recursively estimates

the posterior about the robot’s pose based on the following

equation

p(xt | z1:t, u0:t−1) = η · p(zt | xt)
︸ ︷︷ ︸

observation model

·

∫

xt−1

p(xt | xt−1, ut−1)
︸ ︷︷ ︸

motion model

· p(xt−1 | z1:t−1, u0:t−2)
︸ ︷︷ ︸

recursive term

dxt−1.(8)

Here, η is a normalization constant, u0:t−1 denotes the

sequence of motion commands up to time t − 1, and z1:t

is the sequence of observations. For reasons of readability,

the map m is neglected in Eq. (8).

MCL uses a set of particles to represent the above pos-

terior. This set is updated using the sampling-importance-

resampling particle filter.

B. Improved Observation Model

We propose an improved observation model p(zt | xt)
that takes into account the estimated reflection properties

explained in the previous section to realize a more robust

and efficient localization for robots equipped with low-cost

laser range finders such as the Hokuyo URG-04LX.

Typical observation models for MCL, that use ray-casting

operations in the map to compute the expected distance of

a sensor measurement, are defined as a weighted sum of

functions. In Section 6.3 of [13], Thrun et al. propose to ap-

ply a uniform distribution to model a random measurement,

an exponential function to better cope with people in the

vicinity of the robot, a Gaussian to model the measurement

uncertainty of the sensor, and a constant for maximum range

readings.

In general, such ray-cast models can be described by

p(zt | xt,m) = α · pmax range(zt | xt,m) +

β · pexp dist(zt | xt,m) +

γ · p1(zt | xt,m) + . . . , (9)

where pmax range describes the function that determines

the likelihood to obtain maximum-range readings, pexp dist

handles the measurement noise in the sensor and is typically

modeled by a Gaussian. Other properties can be described by

the functions labeled p1, . . .. The terms α, β, γ, . . . represent

weights that can be set manually or learned by techniques

such as expectation maximization.

Our novel technique, that considers the angle of incidence

of the beam as well as the distance of the robot for each cell

individually to estimate the reflection probability, can be seen

as orthogonal to such models and can easily be combined

with them. We can directly integrate our knowledge about

the reflection properties of cells into Eq. (9) without the need

to change the individual functions:

p(zt | xt,m) = α · perr(d, a) · pmax range(zt | xt,m) +

β · pref (d, a) · pexp dist(zt | xt,m) +

γ · p1(zt | xt,m) + . . . , (10)

where pref (d, a) denotes the probability of reflection of the

first occupied cell along the beam given distance d and angle

of incidence a, and perr(d, a) = 1 − pref (d, a) stands for

the corresponding probability for an error reading. These

probabilities are computed for a cell given the histogram

as described in the previous section.

As a result, the reflection properties of surfaces of the

individual cells are directly incorporated into the existing

observation model. Perfectly reflecting surfaces will lead to

the original observation model. However, if the surface in the

corresponding cell has different properties, our model explic-

itly takes these properties into account which results in more

appropriate distributions as our experiments demonstrate.

V. EXPERIMENTAL RESULTS

To evaluate our approach, we carried out experiments with

a wheeled robot equipped with a noisy and short-range (theo-
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Fig. 5. Enhanced reflection probability map. Different colors of cells
indicate the maximum angle of incidence until which valid measurements
are expected (the brighter the color red, the bigger the angle). The shown
angles correspond to a measurement distance of 0.5 − 1 m.

retical maximum measurement range: 5.6m) Hokuyo URG-

04LX laser range scanner. The scanner provides a 240◦ field

of view. To estimate the trajectory of the robot and to obtain

ground truth data, we used the data of the SICK LMS laser

scanner (maximum measurement range: 80m, 180◦ field of

view) which was also mounted on the robot. In contrast to the

Hokuyo, the SICK sensor provides highly accurate distance

data.

A. Learning an Enhanced Reflection Probability Map

In the dataset used to learn the enhanced reflection prob-

ability map of the environment, the robot traveled approx-

imately 300m. We manually steered the robot through the

environment which has a size of approximately 20 × 20m.

Afterwards, we estimated the trajectory of the robot from the

data of the SICK scanner using a SLAM approach with Rao-

Blackwellized particle filters [18]. We then used the resulting

trajectory to learn a representative map of the environment

for the data of the Hokuyo scanner.

The enhanced reflection probability map learned by our

approach is visualized in Fig. 5. The map has a resolution of

5 cm. The different colors of the cells indicate the maximum

angle of incidence until which valid measurements are ex-

pected (the darker the color the smaller the angle). The shown

angles correspond to the measurement distance of 0.5m to

1m. For this dataset, we used an angular discretization of

5◦ and a distance discretization of 50 cm.

As can be seen, dark doors which frequently occur in the

environment, have only a small range of angles for which

valid measurements are expected. Similarly, the window

front leads only to valid measurements when the angle of

incidence is almost orthogonal to the surface.

B. Improving Global Localization

We recorded a second dataset which we used for the

evaluation of our localization approach. A close to ground
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Fig. 6. Statistical evaluation of the global localization performance of
our method vs. the standard ray-cast model for three different dataset (15
runs with different seeds). The left plots shows the error, computed as
weighted mean error, vs. time and the right plots show the corresponding
convergence probability vs. time given the 15 runs. As can be seen, our
method significantly outperform the ray-cast model (the error bars illustrate
the 95% confidence intervals).

truth estimate of the robot poses is obtained by using the

SICK laser scanner (and by registering the second dataset

in the map build from the first dataset). The following

localization experiments were carried out using only the data

of the Hokuyo scanner.

We partitioned the dataset into three parts and evaluated

the performance of our method in comparison to the standard

ray-cast model. We performed 15 runs with different seeds

for each dataset and evaluated the distance of the weighted

mean of the particles to the true pose over time for each

technique. One time step corresponds to the integration

of an observation which is done after the robot traveled

for at least 10 cm or rotated by at least 10◦ according to

odometry. The results are shown in the left column of Fig. 6.

Furthermore, we computed the convergence probability of

the filter over time by counting when more that 95% of

the probability mass is inside a 1.5 m radius. The results

are depicted in the right column of Fig. 6 and the error

bars indicate the 95% confidence intervals. As these results

demonstrate, our method that explicitly considers reflection

properties of surfaces significantly outperforms the standard

ray-cast model since our filter converges significantly faster

(the task in global localization is to determine the robot’s

pose as fast as possible).

We performed a further experiment in which the robot

was moving in an environment in which the walls are highly

reflecting. As expected, no significant difference between the

standard ray-cast model and our approach can be determined

in this case (see Fig. 7).
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Fig. 7. Comparison of the pose error during global localization in
an environment that contains only few surfaces with different reflection
properties (multiple bright white posters have been added to the walls to
ensure high reflectance). As expected, in this setting no significant difference
between the ray-cast model and our new approach can be observed.

our method

standard raycast model

Fig. 8. Typical results obtained in a global localization experiment for
our method (top row) and the standard ray-cast model (bottom row). The
images depict the particle distribution at different time steps and the cross
indicates the ground truth. The images correspond to one experiment of
the statistical evaluation shown in the first row of Fig. 6. As can be seen,
our method converges faster towards the true location of the robot. For
illustration reasons, the maps depicted in the background of the images
show the same reflection probability map of the environment.

The images in Fig. 8 visualize a typical evolution of

the particles for one experiment. The first row depicts the

resulting particle sets when applying our method, whereas

the second row shows the particle distribution obtained with

the standard ray-cast model. Again, it can be seen that our

method converges faster towards the true pose of the robot.

Since the standard ray-cast model does not consider different

reflection properties of surfaces, particles at poses far away

from the true location of the robot are more likely to survive.

VI. CONCLUSIONS

In this paper, we presented a novel technique to learn

reflection properties of surfaces and to utilize this knowledge

in probabilistic localization. Especially for low-cost and

light-weight laser range scanners, which are frequently used

with humanoids or small flying vehicles, the probability of

the reflectance of a beam depends highly on the angle of

incidence and on the distance of the scanner to the object. We

therefore proposed to explicitly consider the reflection prop-

erties of surfaces during localization. Our approach extends

the standard ray-cast observation model by incorporating the

learned knowledge about reflection properties of objects.

As we demonstrate in experiments carried out with a

wheeled robot, we can significantly speed-up global local-

ization in comparison to the standard ray-cast model. Our

method converges faster to the true pose of the robot and

substantially reduces the error in the estimated pose.

Given these encouraging results, it can be presumed that

utilizing reflection properties of surfaces can also improve

solutions to the simultaneous localization and mapping prob-

lem using data of such low-cost sensors. One possibility, for

example, is to incorporate the reflection properties in the

scan-matching routine underlying existing SLAM methods

such as [18] to obtain better proposal distributions which in

turn leads to more efficient algorithms.
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