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Abstract—Reliable object discovery in realistic indoor scenes is
a necessity for many computer vision and service robot applica-
tions. In these scenes, semantic segmentation methods have made
huge advances in recent years. Such methods can provide useful
prior information for object discovery by removing false positives
and by delineating object boundaries. We propose a novel method
that combines bottom-up object discovery and semantic priors for
producing generic object candidates in RGB-D images. We use a
deep learning method for semantic segmentation to classify colour
and depth superpixels into meaningful categories. Separately for
each category, we use saliency to estimate the location and scale of
objects, and superpixels to find their precise boundaries. Finally,
object candidates of all categories are combined and ranked.
We evaluate our approach on the NYU Depth V2 dataset and
show that we outperform other state-of-the-art object discovery
methods in terms of recall.

I. INTRODUCTION

Object discovery is the task of finding the objects that are
present in a scene before knowing about their specific category.
One possible application for fast object discovery methods is
robotic manipulation [1]. For complex indoor scenarios, object
discovery still presents a challenge to current methods [2, 3].

In recent years, semantic segmentation methods have been
dramatically improved, and at this point provide reliable
results in realistic indoor scenarios. In this work, we propose a
method which exploits prior information provided by semantic
segmentation methods in order to improve an existing object
discovery method. This is, to our knowledge, the first at-
tempt to integrate semantic segmentation into a general object
discovery method. Pixel-wise semantic segmentation can be
helpful in two ways: First, it provides information on where
to expect objects, resulting in fewer false positives. Secondly,
the pixel-wise segmentation partitions the image into semantic
regions where the candidate generation process can be applied
independently, resulting in more precise object candidates.

Our proposed method builds on the saliency-based generic
object candidates of Martı́n Garcı́a et al. [3] by incorporating
semantic segmentation into the pipeline. An overview of our
approach is depicted in Fig. 1. We use saliency as a cue to
locate the presence of objects, and colour and depth bottom-up
segmentations are used to precisely delimit their boundaries.
We improve this method by incorporating prior information on
the category of the image regions using a semantic segmenta-
tion algorithm [4]. Husain et al. [4] train a convolutional neural
network to produce a pixel-wise classification of the image
into four coarse categories: Floor, structures such as walls,
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Fig. 1. Overview of our approach: 1. Semantic segmentation and 2. superpixel
segmentation of the scene are computed. 3. Superpixels are assigned to
semantic classes by majority vote. 4. and 5. Generic candidates are extracted
separately in each set of superpixels. 6. Candidates are combined and ranked.

furniture, and movable objects. The pixel-precise semantic
maps are used to label the bottom-up segments for each
category. Then, the process of object proposal generation is
performed independently for each of these categories. Finally,
object candidates of all categories are combined and ranked.

To summarize, this paper shows that semantic priors can
successfully guide the generation of generic object candidates.
Our main contribution is a simple yet effective algorithm that
incorporates semantic prior information into the process of
generic object candidate generation. We evaluate our approach
on the NYU Depth V2 dataset [5]. Our experiments demon-
strate that introducing semantic priors improves both recall
and precision with respect to our baseline, and outperforms
other state-of-the-art methods in object discovery in terms of
recall.

II. RELATED WORK

Object candidate generation methods have slowly changed
the standard pipeline in computer vision for object detection:
Instead of performing an exhaustive search at every possible
location and scale for objects of a given category, a set of
object candidates is generated where the object recognition
algorithms are subsequently applied. For a survey on current
methods see Hosang et al. [6]. The reduction in the number of
queries that need to be made is significant: From potentially
millions of queries in the sliding-window paradigm, we now
have a set of only hundreds or thousands of potential objects.
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Several successful object detection algorithms already use
such a proposal generation stage in their pipeline [7–10].
In robotics, where the execution time is crucial, the use of
object candidate generation methods becomes highly relevant,
especially when facing complex realistic scenarios where the
objects are not easy to segment.

A common approach for generating object candidates in the
robotics community has been to find fixation points laying at
the centre of objects, where a segmentation process then can
extract the actual object boundaries. Examples are the method
of Kootstra and Kragic [11], who use 2D symmetry points
as fixation points and several Gestalt principles to rank the
generated object candidates. Also Mishra and Aloimonos [12]
use fixation points to locate the centre of objects and make
use of the boundary-ownership concept in order to segment
the objects. Potapova et al. [13] rely on symmetry points in
the depth map to find the centre of objects. However, as we
showed in [3], methods such as the one of Potapova et al. [13]
have problems recalling objects in realistic cluttered scenes.
Recently, Martı́n Garcı́a et al. [3] proposed a method that
uses saliency as a cue to locate the presence of objects and
segmentation of the scene in the colour and depth modalities
independently to find object precise boundaries. In this work,
we build on this approach by adding semantic prior infor-
mation in order to improve the candidate generation process.
Horbert et al. [2], introduced the idea of sequence-level object
proposals: by tracking frame-level object candidates over time,
the authors could identify good candidates based on several
frame and sequence-level features.

In the computer vision literature, we find several methods
for generating object candidates/proposals. In a recent evalu-
ation, Hosang et al. [6] show that one of the most successful
methods in terms of recall is the Selective Search approach
of Uijlings et al. [14]. The method is based on a colour
segmentation of the image at different scales, and merges
segments based on their similarity. The saliency-inspired con-
volutional neural network by Erhan et al. [10] generates class-
independent bounding box proposals. The network is modeled
such that it outputs a fixed number of bounding boxes and
gives a confidence value for the object contained inside by
directly regressing a fixed number of proposals, whereas we
use the network output as a simple prior to improve the
bottom-up object discovery. Other popular methods are the
Objectness measure of Alexe et al. [15] and the Randomized
Prim proposals of Manén et al. [16]. The problem with many
of these methods is that often they require a high number of
object candidates to achieve high recall values. In a robotics
context, thousand potential objects are not practical if a robot
has to interact with them.

Our approach for object discovery uses semantic segmenta-
tion as prior information to improve the candidate generation
process. We use the semantic segmentation method of Husain
et al. [4], which is a feature learning approach similar to Eigen
and Fergus [17] and Long et al. [18]. Other approaches for
semantic segmentation introduce hand-crafted features in their
model such as gradient, colour, local binary pattern, depth

gradient, spin, surface normals by Wu et al. [19] and pixel
value comparison and oriented gradients by Hermans et al.
[20]. Our method combines the final segmentation result and
does not rely on any particular feature, hence it is compatible
with any approach that clearly separates the object classes.

III. OBJECT CANDIDATE GENERATION

Our method for generating object candidates has two main
components: A bottom up object discovery method and a
semantic segmentation method. For bottom-up processing, we
use the approach of Martı́n Garcı́a et al. [3]. Here, saliency is
used to locate the objects, while colour and depth segmenta-
tions are used to define their precise boundaries. For semantic
segmentation, we chose the deep convolutional neural network
approach of Husain et al. [4], which produces state-of-the-
art segmentation results. The semantic segmentation induces a
partitioning of the superpixel set into semantic categories, to
which the object discovery method can be applied separately.

A. BOTTOM-UP SALIENCY OBJECT CANDIDATES

As a baseline, we rely on the method of Martı́n Garcı́a et al.
[3] for generating purely bottom-up generic object proposals.
The approach uses saliency as a cue to estimate the location
and extent of the objects, and performs segmentation in order
to find their precise boundaries.

a) Saliency computation: We use the VOCUS2 [21]1

method for computing the saliency map sal(u, v). In VOCUS2,
saliency is computed as centre-surround contrast on different
feature channels and at different scales of observation. There
is one feature channel for intensity and two for colour. The
method uses an opponent colour space which is based on
the opponent theory of human perception [22]. Contrast is
computed as difference of Gaussians, which is implemented
with the help of a twin-pyramid structure (one Gaussian pyra-
mid for the centre and one for the surround). This allows for
arbitrary centre-surround ratios and makes the whole system
very fast (about 60 ms for a 640×480 image on a standard
desktop computer).

b) Extracting salient regions: After computing the
saliency map, the next step is to find the set of local maxima
{l1, . . . , ln}. Then, we perform region growing seeded on the
maxima to extract a set of salient regions, R = {r1, . . . , r2n},
from the saliency map. The region growing algorithm re-
cursively explores the neighbourhood of the local maxima:
For every explored pixel p = (up, vp), if sal(ul, vl) ≥
sal(up, vp) ≥ t sal(ul, vl) holds, with 0 < t < 1, the pixel is
added to the region. This process is repeated for three values
of t (we use 0.3, 0.4 and 0.5) and results in a set of salient
regions R.

c) Defining boundaries with bottom-up segmentation:
The actual boundaries of the objects are defined by bottom-up
segments S = {s1, . . . , sm} that partition the image. Given a
segmentation S, and a set of salient regions R, the algorithm
now iterates for every salient region ri ∈ R and finds the

1The VOCUS2 code is available online at http://www.iai.uni-bonn.de/
∼frintrop/vocus2.html



Fig. 2. Illustrating the top-down semantic segmentation as proposed by Husain
et al. [4]. Inputs are the colour image and the depth map. The depth image
is transformed with the HHA encoding [26]. Afterwards, feature maps are
extracted using a deep network. The network parameters are learned using a
pixelwise cross entropy loss.

segments si ∈ S that overlap at least a fraction γ of the area
of si (we set it to γ = 0.3 in our experiments).

As shown in [3], the most successful approach was to
generate object candidates independently with a colour and
a depth segmentation of the scene. For the colour segmenta-
tion, we used the graph-based approach of Felzenszwalb and
Huttenlocher [23]. The method constructs a graph based on the
pixel neighbourhoods and iteratively merges groups of pixels
into regions, keeping a trade-off between the internal variabil-
ity of the regions and the difference between neighbouring
components. To obtain surface patches based on the depth
map, we use an approach similar to the first stage of Richtsfeld
et al. [24]: We compute surface normals and greedily cluster
them into surface patches.

d) Ranking of the proposals: The colour and depth candi-
dates are put together and ranked according to their objectness.
Several features were evaluated on the object candidates and
fed into an SVM that was trained to distinguish good from
bad candidates:
1-7: Hu’s image moments [25]. These are well-known de-
scriptors of shape which are rotation and scale invariant.

8: A 3D convexity measure used in [3, 13], computed as
the average distance from the 3D points of the candidate to
their closest face of the convex hull.

9: The normalized area of the object candidate mask.
10: The average saliency of the proposal.
11: The normalized perimeter of the object candidate.
12: The normalized average depth of the proposal.

B. SEMANTIC SEGMENTATION

Recently, convolutional neural networks (CNN) have
emerged as state-of-the-art for semantic segmentation [17].
Their strong performance stems from using generic, multi-
layered image features, which have been trained on large-
scale annotated datasets [27]. We use a semantic segmentation

Algorithm 1 Generate Object Proposals
Input: Image I , Depth map D
Input: Y I A set of semantic labels,

e.g. {furniture, prop}
Output: A sequence of object proposals (C ′

1, . . . , C
′
2n)

1: MTD := SEMANTICSEGMENTATION(I ,D)
2: R := EXTRACTSALIENTREGIONS(I)
3: S1 = {s11, . . . , s1m1

} := OVERSEGMENT(I)
4: S2 = {s21, . . . , s2m2

} := OVERSEGMENT(D)
5: for s1j ∈ S1, s2k ∈ S2 do
6: y1j := MAXLABEL(s1j ,MTD)
7: y2k := MAXLABEL(s2k,MTD)
8: for y ∈ {Y } do
9: for ri ∈ R do

10: for s1j ∈ S1 do
11: if y1j = y and |ri ∩ s1j | > γ · |s1j | then
12: Ci := Ci ∪ {s1j}
13: for s2k ∈ S2 do
14: if y2k = y and |ri ∩ s2k| > γ · |s2k| then
15: Cn+i := Cn+i ∪ {s2k}
16: (C ′

1, . . . , C
′
2n) := RANKING({C1, . . . , C2n})

method from Husain et al. [4], which produces state-of-the-art
results on RGB-D indoor scenes.

The method uses a deep network and borrows the weights
for the first two layers from another network trained on the
ImageNet dataset. The architecture is shown in Fig. 2. The
network takes colour and depth images and a distance-from-
wall feature as input. The depth image is encoded using
the geocentric HHA2 encoding [26], which has been shown
to yield superior results for object detection as compared
to using the raw depth values [26]. The distance-from-wall
feature is the minimum point-plane distance from the planes
detected at the outermost region of a scene, saturated beyond
a distance threshold. The first two layers for the colour
channel and the first layer for the depth channel are borrowed
from the OverFeat network [28], which is pre-trained on the
ImageNet dataset. The output from the pre-trained layers and
the distance-from-wall feature is concatenated and fed to a
randomly initialized three-layer convolutional network. The
pre-trained layers are kept fixed while the newly added layers
are updated during training. During learning, we minimize the
weighted, multiclass cross entropy loss [17]

L =
∑

i∈pixels

∑
b∈classes

αbyi,b ln(ŷi,b), (1)

where αy = median-freq / freq(y), ŷ is the predicted class
distribution, and y is the ground truth class distribution. The
factor α weighs each class y according to the frequency
(freq(y)) with which it appears, and median-freq is the
median of all the frequencies.

2height above the ground, horizontal disparity, and angle with respect to
gravity



Fig. 3. Example of our ground truth. The different colours correspond to
different object instances.

C. INTEGRATING SEMANTIC PRIORS INTO THE OBJECT
CANDIDATE GENERATION

The output from the semantic segmentation network is a
pixel-precise map containing probabilities for the semantic cat-
egories. Algorithm 1 shows how this information is combined
with the bottom-up segmentations S from Section III-A.c.
For each segment si in the bottom-up segmentation S =
{s1, . . . , sn}, we find the label with the highest occurrence
and use it to label all the pixels in the segment.

The semantic segmentation method lets us split each
bottom-up segmentation into sets of segments according to
their class. The process of object proposal generation of
Section III-A can now be applied to each set of segments
independently. The effect is that, ideally, only segments that
belong to one class are used in the candidate generation
process at each time. E.g., when we generate candidates for
furniture, segments that belong to other categories, e.g. floor,
are not considered. Note that we do not require a one-to-one
correspondence between actual object classes and the classes
of the semantic segmentation algorithm; any partitioning that
separates objects is likely to produce an improvement.

IV. EVALUATION

We evaluate our approach for generic object candidate
generation on the NYU Depth Dataset V23 [5]. The dataset
contains 1449 frames with dense ground truth as well as labels
for the different object instances.

A. SEMANTIC SEGMENTATION

First, we evaluate our method for semantic segmentation
(Section III-B). We use the NYU V2 dataset, using four classes
as defined by Silberman et al. [5]: floor, structure, which
denotes a permanency such as walls and ceilings, furniture,
and prop, denoting movable objects. The dataset contains 795
training and 654 testing samples. The training set is used to
learn the network parameters as explained in Section III-B and

3Available at http://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html

TABLE I
SEMANTIC SEGMENTATION ON NYU DEPTH V2

Four-class accuracy (%)

Method Class average Pixel average

Couprie et al. [29] 64.5 63.5
Khan et al. [30] 69.2 65.6
Stückler et al. [31] 70.9 67.0
Müller and Behnke [32] 72.3 71.9
Wolf et al. [33] 72.6 74.1
Eigen and Fergus [17] 79.1 80.6
Husain et al. [4] (Ours) 79.2 78.0

the testing examples are used to compute the average-per-class
and pixelwise labeling accuracy. A more detailed evaluation
of this method can be found in [4]. Table I shows our
semantic segmentation results for the NYU V2 dataset, which
are competitive with other recently proposed approaches. The
results of our method for some frames of the dataset are shown
in the bottom row of Fig. 5.

B. OBJECT CANDIDATES

We evaluate two variants of our proposed method (Sec-
tion III-C): One using the furniture and prop classes, denoted
as Ours (2 classes) in the plots, and the other one using
the structure, furniture and prop labels, denoted as Ours
(3 classes) in the plots. The reason is that the semantic
segmentation method sometimes labels pieces of furniture or
objects as walls, but one might want to recall those objects at
the cost of some precision. We compare the two variants to
our baseline (called Saliency Proposals in the plots, explained
in Section III-A) and to several other state-of-the-art methods
in object discovery: The depth-CPMC proposals of [34]4 , the
Objectness measure of Alexe et al. [15], the Selective Search
method of Uijlings et al. [14] and the EdgeBoxes method of
Zitnick and Dollár [35]. The results of the last three methods
were generated using the code that the respective authors
provide online.

Ground truth: We generated ground truth for the furniture
and prop labels, which correspond to the actual objects in the
images. The dense labelling of the frames also contains an
instance identifier to distinguish the different instances of the
objects. We omitted classes unlikely to contain objects, i.e.
structure and floor. An example of the ground truth that we
used is shown in Fig. 3.

Metrics: Our evaluation protocol follows the procedure
used by [2, 3]. We consider a candidate to be correct if the
intersection-over-union (IoU ) ratio with respect to the ground
truth is greater than 0.5 [36]. This ratio can be computed in
terms of pixel-precise object masks, but since some of the
methods provide bounding boxes (EdgeBoxes and Objectness),
we compute it for bounding boxes for all the methods. For a

4We used the full set of proposals provided online: http://www.cs.toronto.
edu/∼fidler/projects/scenes3D.html
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Fig. 4. Evaluation results on the NYU V2 Dataset. Left: recall over number of proposals. Middle: precision over number of proposals. Right: recall over
intersection over union (IoU ). The area under curve is given in parenthesis.

ground truth bounding box Bgt and a candidate bounding box
Bp the IoU ratio is computed as

IoU (Bp, Bgt) =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
.

A candidate Bp is considered correct if there is a ground truth
object Bgt for which IoU (Bp, Bgt) ≥ 0.5. Similarly, a ground
truth object is matched if there is a sufficiently overlapping
object candidate. Based on this, we can compute precision
and recall values for every frame.

Results: We show the results of the evaluation in Fig. 4.
In terms of recall (left), our proposed method (both with
two and three classes) makes a significant improvement with
respect to our internal baseline (the Saliency Proposals). By
generating candidates for three classes (structure, furniture and
prop) we obtain a small boost with respect to the two classes
(furniture and prop): the semantic segmentation occasionally
mislabels segments as structure when they actually belong to
the furniture or prop categories; an example of this is the
refrigerator in the rightmost image of Fig. 5, which is mostly
labelled as structure. Regarding the competing methods, the
Selective Search approach achieves similar recall values to-
wards the end of the curve while Alexe et al. [15] obtains
the worst results. The depth-CPMC [34] and EdgeBoxes [35]
proposals obtain a recall similar to our baseline.

In terms of precision (centre of Fig. 4), depth-CPMC
[34] obtains the best results (note, however, that no non-
maxima-supression has been performed for them), followed by
EdgeBoxes [35] and our two-classes method. Its curve is above
our three-classes approach, which was predictable since in the
three classes method we are additionally generating candidates
for structure.

The quality of the object candidates is shown on the right
of Fig. 4. In this plot, we show the recall as a function of
the IoU ratio. We see that our three-classes method obtains a
significant improvement with respect to our internal baseline
and is above the other methods for the lower IoU values.

From these results, we can conclude that the use of semantic
prior information to classify the bottom-up segments is ben-
eficial in three ways: I) it leads to achieving a higher recall

with fewer object candidates, II) more candidates correspond
to actual objects, and III) the quality of the candidates
themselves is higher. The reason is that segments from differ-
ent categories are separated, and so the candidate generation
process improves: e.g., if the algorithm starts generating an
object candidate for a chair, it will not consider segments
labelled as structure, which would make the candidate less
precise or wrong. We show in Fig. 5 the successful candidates
generated in five frames of the dataset.

V. CONCLUSION

We have proposed a method for object discovery that inte-
grates a bottom-up mechanism for generating generic object
candidates, and prior information in the form of semantic
labels for improving their quality. The bottom-up component is
based on saliency and segmentation, and is able to successfully
locate objects. Based on a semantic segmentation method we
improve the candidate generation process: Segments are now
labelled according to different categories, and the bottom-up
proposal generation process is performed for each category
independently. Our evaluation on the NYU Depth V2 dataset
shows that the proposed approach improves both recall as well
as the quality of the object candidates.
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