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Abstract. Exploration strategies are an important ingredient for map
building with mobile robots. The traditional greedy exploration strategy
is not directly applicable in unbounded outdoor environments, because it
decides on the robot’s actions solely based on the expected information
gain and travel cost. As this value can be optimized by driving straight
into unexplored space, this behavior often leads to degenerated maps.
We propose two different techniques to regularize the value function of
the exploration strategy, in order to explore compact areas in outdoor
environments. We compare exploration speed and compactness of the
maps with and without our extensions.
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1 Introduction

The autonomous exploration of unknown indoor and outdoor environments is
an active research topic in mobile robotics. In the literature, solutions to special
instances of the problem have been proposed over the last years. The overall goal
of any exploration approach is to plan a robot’s motion in such a way that a map
of the robot’s environment can be build efficiently, solely based on the robot’s
sensor data. Most of the approaches developed so far, decide on the robot’s
motions based on a trade-off between the expected information gain, e. g. the
expected increase in newly observed area, and the cost of the exploration. In
bounded spaces, like buildings or predetermined areas of interest, greedy motion
strategies based on this idea exist that fully explore the environment with low
(travel) costs (cf. [8], [6]). If the robot operates in a virtually unbounded outdoor
environment, like it is the case e. g. in planetary exploration, it is generally not
feasible to explore the whole reachable area. A strategy that greedily maximizes
the information gain can lead to degenerated maps in this situation, as it is often
possible to obtain a maximum of new information by stubbornly driving on a
straight line away from the starting position. The resulting map cannot provide
useful information about the local shape or the topology of the environment.
For this reason, some additional means are required to constrain the robot’s
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motion, while it explores an open outdoor environment. One simple possibility to
achieve this is to artificially bound the area to explore, e. g. by manually defining
a bounding polygon. This approach can lead to problems as the topology of the
environment is a priori unknown, e. g. with concave inclusions. Although it is
possible to reach all free space parts contained in the bounding polygon, it may
require extensive exploration to discover a path in more complex scenarios.

In this article, we propose two different regularization techniques that – in
combination with a greedy exploration strategy – allow to acquire compact maps
of the environment. In the scope of this article, compact maps are maps with
a width-to-height ratio close to one. We achieve this goal by introducing addi-
tional terms into the value function of the underlying decision-theoretic motion
planner that decides on the robot’s actions. The first regularization, called spiral
exploration, biases the value function towards favoring motion commands that
lead to a spiral exploration path, if possible. The second one, called distance-
penalized exploration, directly penalizes motion commands that lead to maps
with an unbalanced width-to-height ratio.

The remainder of the article is organized as follows: after discussing related
work in the next section, we will briefly introduce the basics of greedy decision-
theoretic exploration approaches in Section 3. Section 4.1 then introduces the
spiral exploration extension, followed by Section 4.2 that explains the distance-
penalized exploration technique. We present simulations in Section 5, where we
evaluate the performance of both exploration approaches using experiments in
environments of varying structure.

2 Related Work

A major element of exploration systems is to find optimal sensing positions
where a robot can gather as much new information about the world as possi-
ble, also known as next best views. As the world is unknown a priori, strategies
to estimate the next best positions are needed. A widely used approach in 2D
exploration is to choose sensing positions at the frontier between known and
unknown space and to weight them according to the travel costs to reach these
positions [15]. Burgard, Moors, and Schneider described a strategy to coordi-
nate frontier-based exploration in multi-robot systems [1]. González-Baños and
Latombe use the maximal visible unexplored space at a scan position as an
approximation of the art gallery problem [4]. Surmann, Nüchter, and Hertzberg
applied this strategy in a 3D exploration system [12]. Pfaff et al. use virtual laser
scans, simulated by 3D ray-casting, to calculate the expected information of scan
positions to build a 2.5D world model [11]. Although our approach is similar to
these techniques, as it uses a greedy exploration strategy, none of these works
addresses the problem of building compact maps in unbounded environments.
Several geometrical approaches for following motion patterns to cover unknown
areas have been proposed for this purpose, e. g. Cao et al. [2] and Hert et al. [5].
They differ from our approach as their main objective is to cover a given bound-
ing polygon completely. In these approaches, the expected information gain of
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scan positions is not evaluated. Moorehead [9] proposed a decision-theoretic ex-
ploration approach for planetary surfaces that uses additional metrics to guide
the robot to areas of scientific interest, like dry waterbeds. In contrast to that,
we are interested in maximizing the known area in a way that enables the robot
to plan efficient paths afterward. Topological information is used by Morris et al.
[10] to explore abandoned mines. We use an implicit selection of the next view
positions, as this does not rely on any assumptions on the environment topology.

3 Greedy Exploration

The compact exploration strategies, we propose in this article, are an extension
to the greedy exploration approach for autonomous map building. We briefly
introduce this underlying approach first, following the notation used in [13].

The goal of greedy exploration is to control the robot’s next measurement
action in such a way that its uncertainty about the global state of the (static)
world is minimized. Formally, this knowledge is represented by a probability
distribution over possible world states that is called the robot’s belief b. In the
context of autonomous map building, the robot acquires information about the
shape of the environment using, for example, laser range sensors. Here, the next
action to be planned is a motion to a new location u, where a maximum of
additional information about the shape of the environment is expected. This
information gain can be expressed by the expected reduction of the entropy of
the robot’s belief after integrating a measurement at the new location u, i. e.

Ib(u) = Hb(x)− Ez [Hb(x
′|z, u)] , (1)

where Hb(x) denotes the entropy of the prior belief, and Ez [Hb(x
′|z, u)] is the

expected conditional entropy of the belief after carrying out the motion and
integrating a new sensor measurement z obtained at the new location. A greedy
exploration strategy is now a decision-theoretic approach to choose the action
π(b) with the best trade-off between information gain and expected travel cost
using the value function

π(b) = argmaxu αIb(u) +

∫
r(x, u)b(x)dx. (2)

Here, r(x, u) is the travel cost function and the factor α weighs the influence of
gain and costs. Note that in the context of mapping, a probabilistic map repre-
sentation, like occupancy probability grids [3] or multi-level surface maps [14],
is generally used to represent the belief.

In order to achieve compact exploration, we add an extra cost term C(b, u)
to the value function π(b) that penalizes motion commands which are likely to
lead to non-compact maps. The resulting value function used is

πC(b) = argmaxu α (βC(b, u) + Ib(u)) +

∫
r(x, u)b(x)dx. (3)
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The map representation of the belief allows to efficiently approximate the integral
for the expected travel costs in Eq. 3 using value iteration (see [13] chapter 17
for details). Ib(u) is generally determined by estimating the expected amount
of newly explored area at the location reached after carrying out the motion
command u. The new area can be estimated by determining the expected visi-
bility polygon at a candidate view position and subtracting the already explored
part of it. The expected visibility polygon can, for example, be computed using
a ray sweep algorithm that treats unexplored space as free [4]. If the belief is
represented by grid maps, virtual laser scans can alternatively be used. Beams
are sent out from a candidate view position and followed through the grid. The
estimation of yet unexplored space is reduced to counting the traversed explored
and unexplored grid cells. As the simulation can mimic the characteristics of a
real laser-range finder, the estimate is generally better than the one based on
the visibility polygon.

It remains to describe, how we achieve an exploration behavior that leads
to compact maps. For this purpose, we introduce two different utility or cost
functions C(b, u) for weighing candidate view positions u, each one leading to a
different compact exploration behavior.

4 Compact Exploration Strategies

4.1 Spiral Exploration

In environments without obstacles, a simple exploration technique that leads to
a compact map is to drive on a spiral path, with a radial distance between two
turns that maximizes the information gain. In outdoor environments with a low
to average obstacle density, a spiral trajectory approach can still be reasonable,
although obstacles may occasionally block the robot’s path. In such situations,
the robot obviously needs to deviate from the spiral in a way that still leads
to an efficient compact exploration. In order to achieve such a behavior, we
implement C(b, u) as a function that rewards motion commands leading to spiral
trajectories. For this purpose, we keep track of the center of the map built so
far, and we determine the angle θ between the radial vector r that connects
the center of the map with the robot’s current position and the motion vector
v that connects the robot’s current position with its intended scan position u.
To achieve a spiral trajectory, v should be kept orthogonal to r, because the
motion direction is tangential to the map’s border then. For this reason, we
choose to reward considered scan positions with a value proportional to | sin(θ)|.
This procedure is summarized as pseudo code in Algorithm 1. Integrated into
the value function πC(b), the robot tends to explore the environment on a spiral
path, but the robot starts to deviate from the spiral, if view points exist that,
depending on the weighting constants α and β, lead to a sufficiently higher
information gain with tolerable motion costs. This will for example happen, if
an obstacle blocks the robot’s path. To ensure a trajectory circling the convex
hull of the map equally close in all directions, a floating center of the map is
maintained during exploration by continuously computing its center of mass.
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Algorithm 1: Compute spiral exploration cost
Input: map, scanPos, robotPos
com ← CenterOfMass (map)1

robotToScan ← Normalize (scanPos - robotPos)2

robotToCom ← Normalize (com - robotPos)3

sinAngle ← sin (arccos (cosAngle))4

return Abs (sin (arccos (cosAngle)))5

4.2 Distance-Penalized Exploration

The spiral exploration strategy effectively leads to compact maps in environ-
ments known to have a low obstacle density like, e. g., in planetary exploration.
However, with an increasing number of obstacles present in the environment,
the spiral strategy tends to leave unexplored holes inside the convex hull of the
already explored area. The information gain received by closing such holes is
often small, compared to the costs of leaving the tangential exploration direc-
tion and the additional travel costs. In this section, we propose an exploration
strategy that effectively avoids leaving such holes at the cost of a potentially
lower exploration speed. As in the case of the spiral exploration strategy, this
is achieved by introducing a cost term into the greedy value function, without
explicitly considering to close exploration holes.

To mitigate the discrepancy between the lower information gain received at
holes and the high information gain at the frontier to the unexplored space,
we penalize view positions depending on their distance from the center of the
map. We define the radius of a map as the maximum distance of an explored
point from the center of the map. Every view point that potentially expands
this radius is penalized. The penalty is proportional to the maximum difference
between the current radius of the map and the potential new radius of the map
after a range scan taken at this position has been integrated.

In the case of a balanced width-to-height ratio, expansions in every direction
are equally penalized and the expected information gain dominates the calcula-
tion of the value function. Expansions in directions in which the map has not yet
reached its maximum radius are not penalized, even if there are holes left. For
this reason, holes inside the explored map have to provide a specific minimum
gain to be chosen as an area to explore. Otherwise, the quality of the explored
maps can decrease. Hence, the distance penalization criterion resembles our def-
inition of a compact map. The computation of costs for distance-penalized view
point selection is described in Algorithm 2.

5 Evaluation

We implemented both strategies for compact exploration in the context of a
system for autonomously acquiring three-dimensional environment models using
a 3D laser range scanner. All experiments used to get quantitative results are
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Algorithm 2: Compute distance penalized exp. cost
Input: map, maxRange, scanPos
com ← CenterOfMass (map)1

direction ← Normalize (scanPos - com)2

maxDistBefore ← 03

foreach exploredCell in map do4

maxDistBefore ← Max (maxDistBefore, Distance (exploredCell,com))5

end6

maxDistAfter ← Distance (com, scanPos + direction * maxRange)7

if maxDistAfter > maxDistBefore then8

return 1 - α∗(maxDistAfter - maxDistBefore)9

else10

return 111

end12

performed in Gazebo [7], the 3D simulation environment from the Player/Stage
project. The 3D scanner simulated is a SICK LMS200 scanner, mounted on a
turn-table in such a way that it continuously receives vertical 2D scans while
it rotates. The horizontal angular resolution of the 3D scan was set to approxi-
mately 1 degree by adjusting the turn-table speed.

Following ideas of Triebel et al. [14], our system represents 3D models of the
environment by multi-level surface maps, which are grid maps that can store
multiple height values, called surface patches, representing surfaces at different
heights, per cell. Each patch has a vertical extent and can therefore represent
man-made structures like walls and floors with a memory complexity comparable
to occupancy grid maps. As the traversable plane reachable by a robot in such
a map is a 2-manifold, 2D planning algorithms can still be used.

Candidate view positions are determined with inverse ray-casting from up
to 10.000 frontier points. To avoid candidate positions caused by very small
frontiers, only clusters of five or more frontier points are considered during the
ray-casting operation. From every considered frontier point, 100 beams are fol-
lowed through the environment. As nearby candidate points are considered to
gain a similar amount of information, only candidate points exceeding a distance
threshold to neighboring points are added. For the information gain calculation,
only patches not exceeding a distance threshold to the robot are considered. Due
to the fixed angular distance between consecutive laser beams, the Cartesian dis-
tance of the endpoints hitting the ground plane exceed the size of the surface
patches. Hence, they are not connected.

In the following, we compare the proposed compact exploration strategies
with the plain greedy exploration strategy. As 3D range measurements are costly
operations, in our setup the exploration speed is measured as the number of
surface patches compared to the number of scans taken. The compactness of a
map is the number of explored patches in comparison to the total number of
grid cells in the map; this includes unexplored cells, because the size of the grid
is chosen as the bounding rectangle of all laser scans.
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(a) Number of patches in the map for dif-
ferent exploration strategies.

(b) Patches per grid cell for different ex-
ploration strategies.

Fig. 1. In Experiment 1 the non-compact and compact strategies have nearly equal
exploration speed, but the ratio of patches per grid cell is significantly higher when
using the compact strategies.

5.1 Experiment 1: Low Obstacle Density

In the first experiment, we chose an environment with a low obstacle density,
in order to compare the maximum exploration speed of the strategies with and
without the proposed extensions. The exploration is stopped after 40 3D scans.
The trajectory of the non-compact exploration consists of nearly linear paths as
these maximize the ratio between newly seen environment and travel costs. As
the probability of a change of exploration direction caused by obstacles is low in
this experiment, most of these changes are caused by the randomized sampling
of candidate scan positions.

The spiral exploration strategy is able to gather compact maps comparable
to the maps generated by the distance-penalized strategy. This is explained by
the fact, that a spiral exploration extends the map uniformly in every direction
without causing high travel costs, as long as the robot is not deflected by an ob-
stacle. Therefore, the maximum distance of a patch to the center of the map is
increasing. Figure 1 shows that the non-compact exploration exhibits a slightly
higher exploration speed compared to the two compact strategies, which show
no significant difference in exploration speed in maps with low obstacle density.
During the first scans, there is no significant difference between the strategies,
until the robot changes its exploration direction for the first time. The patches
per grid cell-ratio decreases for the non-compact strategy then, because the num-
ber of occupied cells can only increase linearly with the distance traveled, while
the total number of grid cells increases quadratically. This effect is typical for a
non-compact strategy. For the compact strategies, the occupancy ratio contin-
ues to increase, because the robot’s motions between measurements only have a
small influence on the size of the bounding rectangle of the map during a com-
pact expansion. This is also visible in a lower variance in the data averaged over
several test runs.
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5.2 Experiment 2: High Obstacle Density

The purpose of the second and third experiment is to evaluate the exploration
behavior of the strategies in an unbounded outdoor environment with a high
obstacle density like, e. g., urban environments. We evaluated the strategies in
two types of outdoor environments. The first one is an environment containing
mainly smaller obstacles, i. e. obstacles that can be passed without long detours,
while the second type of environment contains many elongated obstacles, which
force the robot to drive longer detours. All the experiments are stopped after
integrating 100 scans into the map.

Typical trajectories of the three strategies for Experiment 2 with the convex
obstacles are shown in Figure 4a. The non-compact exploration strategy leaves
the area where the obstacles are and moves into wide open space, leading to a
degenerated map. This effect is typical for unconstrained greedy exploration. In
order to maximize information gain, it tends to move away from obstacles, which
occlude large portions of the scan. The proposed strategies, instead, direct the
robot through passages between obstacles, in order to reach the goal of compact
exploration.

In most cases, the distance-penalized strategy reached an exploration per-
formance comparable to the spiral exploration strategy. For this reason, we
combined the two compact strategies in Figure 2. Figure 2a shows that the
non-compact exploration strategy is able to gather more new information per
scan than the compact extensions. The effect is more pronounced than in Ex-
periment 1, where the exploration speeds were nearly equal. This is explained
by scan positions close to obstacles, which are avoided by the non-compact ex-
ploration strategy. The compact strategies tend to surround obstacles instead.

5.3 Experiment 3: Elongated Obstacles

The second type of outdoor environment, evaluated in Experiment 3, contains
many elongated obstacles. These obstacles constrain the possible driving direc-
tions to the corridors between obstacles frequently. For the spiral exploration
strategy, this can lead to problems, e. g. elongated obstacles orthogonal to the
spiral direction force the robot to increase the exploration radius without being
able to follow the spiral. After passing an obstacle, the robot follows the spiral
again, now with the increased radius. This can lead to significant holes in the
convex hull of the explored space and a less compact map.

Example trajectories for the two compact strategies are shown in Figure 4b,
maps gathered with these strategies in Figure 5. The spiral exploration proceeds
with a too large radius once it leaves the area where many obstacles are. As
shown in Figure 3, the distance-penalized strategy achieves more compact maps
in this type of environment, when compared to the spiral exploration strategy,
at the cost of a slightly lower exploration speed.
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(a) In Experiment 2, the exploration speed
of the non-compact exploration is much
higher than in the compact case.

(b) The non-compact strategy leads in Ex-
periment 2 to sparse maps, the compact
strategies strategies fills the map more ho-
mogeneously.

Fig. 2. In an environment with a high density of small objects, the exploration speed
of the compact strategies is lower than the speed without compact extensions, but the
compactness is significantly higher.

(a) In contrast to the experiments be-
fore, the exploration speed of the two com-
pact strategies is not similar. The speed of
the distance-penalized exploration is lower
than the speed of the spiral exploration.

(b) As the selection of motion commands
is constrained by obstacles over long parts
of the trajectory, spiral exploration leaves
holes resulting in less compact maps.

Fig. 3. In environments with elongated obstacles, our proposed compact strategies
perform differently. Compactness has to be traded-off against exploration speed.
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(a) Experiment 2. The edge length
of obstacles is chosen to be small
compared to the robot’s sensing
range here. Both compact strategies
perform equally well.

(b) Exploration with elongated ob-
stacles. The long obstacles force the
spiral strategy to increase its explo-
ration radius too fast.

Fig. 4. Example trajectories of the exploration strategies.

6 Conclusions

In this article, we have shown that greedy exploration strategies, which only
maximize the ratio between expected information gain and travel costs, are not
directly applicable in unbounded outdoor environments, because they can lead
to degenerated non-compact maps.

To produce compact maps that expand around a point of interest, additional
control of the exploration is needed. For this purpose, we proposed two differ-
ent extensions to greedy exploration strategies: spiral exploration and distance-
penalized exploration. These regularizations extend the value function of a greedy
strategy with an additional term rewarding sensing positions leading to more
compact maps.

In simulation experiments, we compared the exploration speed between a
greedy exploration strategy with and without these extensions resulting in the
conclusion that the compact strategies are able to reach an exploration speed
comparable to the plain greedy strategy in environments with a low to medium
obstacle density. In environments with a high obstacle density, compactness has
to be traded-off against exploration speed. Spiral exploration is suitable in en-
vironments where approximate spiral trajectories are possible. This is the case
when the obstacles in the environment are nearly convex and small, compared to
the sensing range. The distance-penalized exploration is able to produce maps
that are compact, without relying on environmental characteristics, but possi-
bly at a lower exploration speed. Hence, if the environment can be expected to
contain obstacles relatively small compared to the measurement range a spiral
shaped exploration should be performed. Otherwise, the distance-penalized ex-
ploration strategy leads to compact maps without prior knowledge about the
area to explore.
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(a) The robot following
the frontier-based explo-
ration strategy leaves the
area with obstacles quickly,
leading to a map not suit-
able for navigation.

(b) The area with obsta-
cles is surrounded with the
spiral exploration strategy,
but unexplored enclosures
are left in the case of elon-
gated obstacles.

(c) Distance-penalized
exploration resembles the
compactness criterion,
inducing compact maps in
arbitrary environments.

Fig. 5. Resulting maps of frontier-based exploration and our proposed strategies after
170 consecutive 3D scans. The green area is traversable, the gray area is unexplored.

References

1. Burgard, W., Moors, M., Schneider, F.: Collaborative Exploration of Unknown
Environments with Teams of Mobile Robots. In: Dagstuhl. pp. 52–70 (2002)

2. Cao, Z., Huang, Y., Hall, E.: Region Filling Operations with Random Obstacle
Avoidance for Mobile Robots. Journal of Robotic systems 5(2) (1988)

3. Elfes, A.: Using Occupancy Grids for Mobile Robot Perception and Navigation.
IEEE Computer 22, 46–57 (1989)
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11. Pfaff, P., Kümmerle, R., Joho, D., Stachniss, C., Triebel, R., Burgard, W.: Navi-
gation in Combined Outdoor and Indoor Environments using Multi-Level Surface
Maps. In: WS on Safe Navigation in Open and Dynamic Environments, IROS ’07
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