
Fast 6D Odometry
Based on Visual Features and Depth

Salvador Domı́nguez1, Eduardo Zalama2, Jaime Gómez Garćıa-Bermejo2,
Rainer Worst3, and Sven Behnke3,4

1 Cartif Foundation, Valladolid, Spain
2 ITAP, University of Valladolid, Spain

3 Fraunhofer IAIS, Sankt Augustin, Germany
4 University of Bonn, Germany

Abstract. The availability of affordable RGB-D cameras which provide
color and depth data at high data rates, such as Microsoft MS Kinect,
poses a challenge to the limited resources of the computers onboard au-
tonomous robots. Estimating the sensor trajectory, for example, is a key
ingredient for robot localization and SLAM (Simultaneous Localization
And Mapping), but current computers can hardly handle the stream of
measurements. In this paper, we propose an efficient and reliable method
to estimate the 6D movement of an RGB-D camera (3 linear translations
and 3 rotation angles) of a moving RGB-D camera. Our approach is based
on visual features that are mapped to the three Cartesian coordinates
(3D) using measured depth. The features of consecutive frames are as-
sociated in 3D and the sensor pose increments are obtained by solving
the resulting linear least square minimization system. The main contri-
bution of our approach is the definition of a filter setup that produces
the most reliable features that allows for keeping track of the sensor pose
with a limited number of feature points. We systematically evaluate our
approach using ground truth from an external measurement systems.

1 Introduction

Optimizing the use of the available resources in mobile robotics like energy or
processing capabilities is important, because some robots do not have any ex-
ternal physical connection and have to work autonomously. One of the most
important tasks a mobile robot must perform is self-localization with respect
to a map. This task is, however, also one of the most resource-consuming when
no global positioning system is used. When the robot pose is known, it can be
used for navigation as well as other purposes such as mapping the environment.
The measurements needed for localization are usually provided by expensive
and heavy laser range sensors. The availability of affordable lightweight RGB-D
cameras offers the possibility to acquire color images and depth maps at high
frame rates which must be processed in real time in order to be used for robot
control.

behnke
Text-Box
In Proceedings of The 12th International Conference on Intelligent Autonomous Systems (IAS-12), Jeju Island, Korea, June 2012.

behnke
Text-Box
Finalist for Best Paper Award

behnke
Text-Box



2 Domı́nguez, Zalama, Gómez Garćıa-Bermejo, Worst, and Behnke

In this paper, we propose a reliable method to obtain 6D odometry from
color and depth images. Our method can be applied to estimate the sensor pose
in real time, requiring limited computational resources.

We use a Kinect RGBD sensor as the only capturing device. The sensor driver
provides color and depth images in a standard format. At each frame, we extract
a set of visual features from the RGB image. They are filtered and mapped to 3D
space using the associated depth image. We associate the features of consecutive
frames in 3D and finally obtain the sensor pose increment. Key to our method
is a carefully designed filtering process, which takes the most reliable features to
estimate odometry. Finally, we calculate the transformation that minimizes the
mean square error between two sets of associated features. Because our method
processes only a limited number of features, it can be easily applied for pose
estimation on mobile robots with limited computational resources, like e.g. a
1.6 GHz CPU with 1 GB RAM that we used for our experiments. Even with such
a small computer, we achieve odometry rates near 20 Hz in low resolution, which
makes it possible to use our method on a robot that moves at full speed (1 m/sec
linear velocity and / or 45◦/sec angular velocity in our case). Our method does
not rely on any assumption about the kinematics of the movement. The odometry
obtained can be used later as an input data stream for 6D-SLAM.

Raw detected features are intrinsically noisy and would produce low-quality
odometry estimates if they were applied directly. The filtering reduces the num-
ber of features and consequently the time consumption of the overall process
significantly. Instead of trying to match the features extracted from consecutive
frames, we first stabilize the consistency of the current feature set with respect
to a reference feature set. As explained below, such stabilization is performed by
dynamically adapting the current set of features to a reference set.

The remainder of the paper is structured as follows. In Section II, we discuss
related work. In Section III, we present our approach to the estimation of 6D
odometry based on visual features. Finally, we demonstrate the advantages of
our method using systematic experiments in Section IV.

2 Related Work

Visual odometry is the process of calculating the increments of pose based on
the analysis of images captured by a camera. One of the first works in visual
odometry is attributed to Moravec [1]. In 1976 he managed to implement a visual
odometry system on the Stanford Cart to perform corrections on the control of
the vehicle autonomously. In that technical report, the basic concepts of tracking
visual features and depth estimation were introduced.

We can identify two main types of visual odometry using cameras as the
only capturing device: monocular and stereo. In monocular odometry depth in-
formation must be estimated from motion parallax as the camera moves through
the environment. Interesting examples of monocular odometry implementation
include Nister et al. [2] and Davison [3]. In stereo odometry, the camera does not
have to move to calculate depth information. Some implementations of stereo



Fast 6D Odometry Based on Visual Features and Depth 3

odometry are described by Moravec [1], Matties [4] and Nister et al. [2]. On the
other hand, it is also possible to use additional devices for the acquisition of
the depth like laser range scanners, time-of-flight cameras or infrared pattern
projectors. The resulting input data stream for visual odometry estimation is in
most cases a sequence of images with depth information

The tracking of the features plays an important role in visual odometry,
because it is a process that consumes less time than extracting the features in
every frame, and can be applied to several consecutive frames while as long as
enough features are within the image boundaries. Barron [5] compiled a survey of
optical flow algorithms for tracking, like the gradient-based technique proposed
by Lucas and Kanade [6] (LK). LK is implemented in OpenCV and used in our
approach. The selection of good features to track is also important in order to
reduce resource consumption and increase accuracy. An interesting attention-
driven feature selection is described by Einhorn [7].

3 Method

Figure 1 summarizes our approach for the estimatation of the odometry. No
prior knowledge about the environment is assumed. We can distinguish two
main loops, the extraction loop and the tracking loop. The extraction loop is
only executed when a new set of features is needed (generated features GF),
i.e. when there are not enough features to obtain a good odometry estimate.
The tracking loop is executed in every frame and performs, among other things,
tracking, filtering, and matching of the features to get the transformation. The
key steps that make this approach suitable for real time application and less
sensitive to noise are the filtering of the features and the consistency adaptation
(marked with stars in Figure 1) which will be explained in detail below.

3.1 Visual features extraction.

Visual features are interesting parts of the image with properties that make
them suitable for detection. Different steps to detect robust, distinctive invariant
features are explained in Lowe [8]. There are different kinds of such features, e.g.
corners and blobs. Because their extraction is computationally less demanding,
we focus in this paper on the so called corners. Although corner features are
not completely robust and stable, they can be stabilized by the 3D information,
which in our case is available.

Corners are points which have two dominant directions in the luminosity
gradient, in a local neighborhood. Some of the most important techniques for
extracting corners are presented by Harris and Stephens [9] as well as Shi and
Tomasi [10].

An evaluation of three features detectors (Harris, SIFT (Scale Invariant Fea-
ture Transform) and LKT (Lucas-Kanade-Tomasi)) is described by Klippenstein
and Zhang [11]. They found LKT to have a better performance in general. We
test our approach with two feature extractors: Harris corner detector and LKT



4 Domı́nguez, Zalama, Gómez Garćıa-Bermejo, Worst, and Behnke

Fig. 1. Flow diagram of the overall process of odometry estimation

corner detector which are both included in the OpenCV library getting lightly
better results with LKT.

3.2 Tracking of visual features.

The tracking of features is a crucial step of visual odometry. Shi and Tomasi [10]
propose a matching algorithm for tracking visual features based on a model of
affine image changes. This technique has been adopted in our approach. For the
tracking process, a pair of images is used: the most recently captured image and
the previous one (Figure 2). The visual features corresponding to the previous
image can be obtained either by feature extraction or as a result of the previous
tracking iteration. We apply Shi-Tomasi’s method to track the features in the
first image, so we know where to expect them in the second image. If we cannot



Fast 6D Odometry Based on Visual Features and Depth 5

establish correspondence for a feature in the second image, it is marked as “non-
paired” feature.

Fig. 2. Features in one frame (previous) are tracked during the tracking process to the
next frame (tracked features TF ). Some of the correspondences are shown in magenta.

3.3 Generation of new features.

Because we are looking for a disambiguous solution to the linear error mini-
mization system (see paragraph III-E), a minimum of 4 features are needed so
the number of equations is larger or equal to the number of unknowns. When
no such solution can be found we seek to generate a new set. There are several
reasons for this to happen:

– the scene has no interest points to be easily distinguished like flat colored
surfaces with few corners.

– when moving the sensor, the features will likely change their positions in the
image and some of them can disappear on the image borders.

– the distribution of the features can lead to clustering in some parts of the
image, for example when the camera moves backwards and distance between
tracked features reduces and some of the features fuse together.

Moreover, the grouping of features decreases the precision of the move-
ment estimate. For better performance, the visual features should be distributed
roughly uniformly in the image. In order to deal with this problem, we measure
the distance traveled and the rotated angles of the sensor from the last feature
extraction. When either the distance or the angle, exceeds a given threshold, we
trigger the generation of a new set of features.

3.4 Projection of visual features in 3D.

RGB-D sensors like MS Kinect provide the depth information at most pixels
in the color image. However, sometimes the physical properties of the surface
at some positions are not suitable for the measurement of depth. Many of the
visual features lie on object boundaries where depth information is often missing.
Moreover, visual features might jump from the front edge of an object to the
background side.



6 Domı́nguez, Zalama, Gómez Garćıa-Bermejo, Worst, and Behnke

If the entire neighborhood of the feature has similar depth values, then the
depth of the feature point can be obtained by averaging these values. It could
happen that the feature does not have depth information or that there is a large
difference among the neighbors depths, probably because the feature is lying at
the jump edge caused by a border. In this case, we utilize border ownership,
which means that we average the depth of the closest neighboring points.

Averaging has also the effect of reducing the noise of the depth measurements.
It can happen that no points in the neighborhood have depth information and
it will not be possible to calculate the 3D depth of the feature. Those features
will be discarded in the filtering process.

Preferring closer points is also advantageous for the measurement precision
of triangulation sensors like Kinect because the error increase quadratically with
the distance. The optimal radius of the neighborhood depends on the image
resolution. In our experiments with a 640x480 resolution, a radius of 3 pixels
has been proven to work suitably. Because our neighborhood is defined as a
square, this implies a neighborhood of 49 pixels.

3.5 Filtering and consistency adaptation

In order to retain only the most reliable features for pose estimation, we designed
a set of rules for discarding features. Firstly, we filter out the features with
missing depth, then the consistency of the distribution is checked. We analyze the
relative 3D positions of the last tracked features TF compared to the respective
positions of the generated features GF, as is shown in Figure 3.

Fig. 3. Filtering process. The last extracted features (GF ) and the last tracked features
(TF ) are used to filter the features.

This filter is based on the idea that every feature has to correspond to a fixed
point in the real world. This way, the position of the TF in global coordinates



Fast 6D Odometry Based on Visual Features and Depth 7

must not differ too much from the global position of GF during the tracking
process. In our approach, we model the set of features as a cloud of 3D points
where each point is connected to the rest by elastic links.

To move a point from its equilibrium point in such elastic net, it is necessary
to apply a force (see Figure 4). If we consider the GF as the balanced state
where the deformation energy is zero, then the TF has an energy accumulated
because the relative position of the features is not exactly the same due to non-
perfect tracking. The force required at every node to move it from its equilibrium
point to its current position, can be calculated through a vectorial sum of the
forces in every link connecting that node to the rest. Every link can only apply
a force in its longitudinal direction and can be calculated because we know the
3D coordinates of every feature in both sets of features. The condition to pass
the filter is that the displacement force must stay below a threshold value.

Fig. 4. The force in each feature is determined as a vectorial sum of the deformation
forces in each link. The force in every link (i,j) is proportional to the difference of
distance between that link in TF and GF.

The consistency filter discards features that moved more than a threshold
distance from their equilibrium position. However, probably most of the rest of
the features are still noisy in depth because the sensor accuracy decreases on the
square of the distance to the point in the real world. Noisy depth values lead to
decreased odometry accuracy, especially at distances above 2 meters using the
MS Kinect sensor. To solve this problem we apply a filter to adapt and stabilize
the consistency of the TF . This is what we call consistency adaptation in Figure
1. This filter works on so-called adaptive features TF ∗. This new set of features
is the result of the gradual consistency adaptation from set TF to GF . It can
be seen as a stable version of the TF that we use for calculating the odometry
transformation.



8 Domı́nguez, Zalama, Gómez Garćıa-Bermejo, Worst, and Behnke

Figure 5 represents the process of consistency adaptation of the features.
TF ∗ have the properties of having consistency similar to GF and a global pose
similar to TF . Little changes in the relative average positions of the tracked
features in 3D will be adapted progressively to the equilibrium position. TF ∗

and GF are finally used to calculate the transformation of the odometry leading
to stable odometry.

Fig. 5. Calculation and use of the adaptive features.

The adaptation of the consistency has positive effects over the noise in the
estimated position. Figure 6 shows the difference without and with adaptation,
respectively. The ground truth in this experiment was composed by perpendicu-
lar straight lines following X, Y and Z axes. When no adaptation is applied, the
noise increases with the distance to the features, on the contrary with adaptation
the noise is less dependent on that distance.

3.6 Estimation of pose increments

Let us consider that we have tracked a set of N visual features p from the previous
frame to the last one producing the set q whose features are paired one by one
with those in p. These features have passed the filtering process and consistency
adaptation so they are stable.

We are looking for a rigid transformation (<, t) that minimizes the value of
the following expression



Fast 6D Odometry Based on Visual Features and Depth 9

Without adaptation With adaptation

Fig. 6. Effect in the adaptation of the consistency. The distance from the sensor to
the features increases in the direction of the arrow. Notice that the dispersion of the
position increases with the distance to the sensor when no adaptative consistency is
used

J(<, t) =
∑
N

‖pi −<qi − t‖2 (1)

where pi and qi represent the 3D position of the paired feature i in the
previous frame and the current frame, respectively.

This is a typical problem of Linear Least Square Minimization. The linear
system is represented by 3×N equations (N features × 3 coordinates) with 12
unknowns (9 for the rotation matrix < and 3 for the translation vector t). There-
fore, to have a unique solution we need at least 4 features.

Equation (1) can be represented in a different way, being equivalent to min-
imize the following expression∑

N

‖pi −A(qi) ∗ ℘‖2 → pi ≈ A(qi) ∗ ℘

A(qi)
T ∗ pi = A(qi)

T ∗A(qi) ∗ ℘
℘ = (A(qi)

T ∗A(qi))
−1 ∗A(qi)

T ∗ pi = R(qi) ∗ pi

(2)

In this expression, ℘ is the 12×1 vector of unknowns which is composed by
elements of the rigid transformation (<, t) and R(qi) is a 12×3N matrix which
depends on the coordinates of the features in the last frame qi, and can be
determined by classical methods such as QR or Cholesky factorization [12].

The error of the transformation is checked by projecting every feature in the
last frame to the previous frame using the transformation (<, t). If the error for
the feature i εi is less or equal to a threshold δ the feature will be used for the
next iteration (3).

εi = ‖pi −<qi − t‖ ≤ δ (3)

The process of pose estimation stops when∑
N

‖pi −<qi − t‖ ≤ threshold (4)



10 Domı́nguez, Zalama, Gómez Garćıa-Bermejo, Worst, and Behnke

4 Experiments and Results

To evaluate the quality of our method, we have used datasets with a known
ground truth. The datasets were recorded at Gelsenkirchen University of Applied
Sciences using an industrial Kuka KR60HA robot (Figure 7). One example of
the scene seen by the sensor is shown in Figure 8.

Fig. 7. Robot used for ground truth ex-
periments

Fig. 8. Scene seen by the camera for ex-
periments 1 and 2

The sensor trajectories used were geometric paths such as lines and arcs (see
Figure 9) traced at about 15 cm/sec. The number of visual features always was
bigger than 10 and the distance to the features covered a range between 2 and
5 m. Every test starts and finishes in the same position so that the difference
between the initial position and the final one will measure the total error. We
also pay attention to the maximum distance of the estimated position to the
theoretical trajectory.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Fig. 9. Trajectories obtained on the experiments.

Experiment 1: Linear translation along X, Y, and Z directions. The traveled
distance along each direction was 1 m, and was repeated three times (see Figure
9a). This way, the total traveled length was 18 m. The final error found in the
position was 11 cm in translation and 1.5◦ in inclination, which correspond to a
0.6% accumulated position error. The maximum deviation from the theoretical
trajectory was only 6 cm.



Fast 6D Odometry Based on Visual Features and Depth 11

Experiment 2 : Circles traced on the XY, XZ, and YZ planes (see Figure 9b).
Each circle was 50 cm in diameter. Every circle was repeated three times. The
total length of the trajectory was 14.13 m and the final error was 4.5 cm and
1.2◦ in inclination, that is less than 0.3 % of the total length of the trajectory.
The maximum deviation from the theoretical curve was 7 cm.

Experiment 3 : Translation and rotation along an arc of 180◦ and 1 m radius,
with the camera pointing along the radial direction (see Figure 9c). Each move-
ment was repeated three times, so the total traveled distance was 18.85 m and
the total angle rotated was 1080◦. The final pose of the camera had an error
of 36 cm in position and 10◦ in orientation, which corresponds to a 1.9 % linear
error and 0.9 % rotation error.

5 Conclusion

We have presented a method for estimating the trajectory of a moving RGB-D
sensor using 6D odometry based on visual features obtained from the RGB im-
ages, which are mapped to 3D using their measured depth. Key to the success of
our method is a filtering process that removes the features that are not reliable,
thus making our solution robust. The consistency adaptation of the features im-
proves the stability and precision of the result. Our algorithm is computationally
very efficient, because only a limited number of points is processed every frame.

We evaluated our method by moving the camera with an industrial arm,
which provides ground truth for the trajectories. The obtained results are satis-
factory for visual odometry considering the limitations of the sensor with regards
to depth noise.

Our 6D visual odometry is in use as one of the key parts of the 3D SLAM
system for the ground robot used in NIFTi project which is equipped with a
small computer with a processor of 1.6 GHz. Working at 640×480 and 15-20 fps
the CPU usage stays near 35 % on that computer.

6 Acknowledgments

We would like to thank to both Cartif Foundation and Fraunhofer IAIS for
having made this work possible. This work has been funded by the European
Commission under contract number EU FP7 NIFTi / ICT-247870 and also sup-
ported by Junta de Castilla y León (CCTT/10/VA/0001) and by the Science and
Innovation Spanish ministry (Pr.Nb.DPI2008-06738-C02-01/DPI). Thanks also
to the NIFTi team of IAIS, especially to Thorsten Linder, Viatcheslav Tretyakov
and Nenad Biresev for their support in the experiments and helpful suggestions.

References

1. H Moravec. Obstacle avoidance and navigation in the real world by a seeing robot
rover. Tech. report and doctoral dissertation, Robotics Institute, Carnegie Mellon
University, Stanford University, 1980. CMU-RI-TR-80-03



12 Domı́nguez, Zalama, Gómez Garćıa-Bermejo, Worst, and Behnke

2. D. Nister, O. Naroditsky, and J. Bergen. Visual odometry for ground vehicle ap-
plications. Journal of Field Robotics, 23(1), 2006

3. A. J. Davison. Real-time simultaneous localization and mapping with a single
camera. In Proceedings of the International Conference on Computer Vision, Nice,
2003

4. L. Matties. Dynamic Stereo Vision. PhD thesis, Dept. of Computer Science,
Carnegie Mellon University, 1989. CMU-CS-89-195

5. J. L. Barron, D. J. Fleet and S.S. Beauchemin. Performance of Optical Flow Tech-
niques. The International Journal of Computer Vision 12(1):43-77. 1994.

6. B.D. Lucas, and T. Kanade. An Iterative Image Registration Technique with an
Application to Stereo Vision. In Proceedings of 7th International Joint Conference
on Artificial Intelligence, 674-679. 1981.

7. E. Einhorn, Ch. Schrter, H.-M. Gross-M. Can’t Take my Eye on You: Attention-
Driven Monocular Obstacle Detection and 3D Mapping. IROS 2010

8. D. G. Lowe. Distinctive image features from scale invariant keypoints. International
Journal of Computer Vision, 60(2):91110, 2004.

9. C. Harris and M. Stephens. A Combined Corner and Edge Detector. Proc. of The
Fourth Alvey Vision Conference, Manchester, pp. 147-151. 1988.

10. J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer
Vision and Pattern Recognition, Seattle, 1993

11. J. Klippenstein and H. Zhang. Quantitative Evaluation of Feature Extractors for
Visual SLAM. J Department of Computing Science University of Alberta Edmon-
ton, AB, Canada T6G 2E8. 2007

12. G. H. Golub and, Ch. F. Van Loan. Matrix Computations (3rd ed.), Johns Hopkins,
ISBN 978-0-8018-5414-9, 1996


