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Abstract— Due to the high complexity of the humanoid body,
and its inherently unstable inverted pendulum-like dynamics,
the development of a robust and versatile walking controller
proves to be a difficult task. Using machine learning algorithms
with hardware in the loop is a promising way of achieving
balanced and dynamic gaits. In this work, we propose an online
learning technique that learns how to step onto a reference
footstep location while maintaining the balance of a bipedal
walker in the presence of disturbances. The ability to step
with the help of a parametrized motion generator simplifies
the learning problem to the low-dimensional space of footstep
coordinates. To quickly adapt the produced step sizes from
learned experience, we update an online-capable function ap-
proximator with a pendulum-cart motivated gradient function
that incorporates the trade-off between maintaining balance
and stepping onto a desired location. While our method is
able to robustly learn suitable footstep locations without prior
knowledge, we gain advantage from initializing the learning
with an analytic controller and show experimentally that the
learning process can further improve the capabilities of the
robot.

I. INTRODUCTION

Bipedal walking for humanoid robots is one of the most
interesting challenges in robotics to date. The widespread
state of the art covers basic walking skills on a flat surface
without disturbances. Push recovery, walking on rough ter-
rain, and agile step control are active research topics.

The main reason why the conception of a bipedal walk is
difficult, is that walking is a balance-critical full-body motion
with inherently unstable inverted pendulum-like dynamics.
Even small disturbances can destabilize a robot and lead
to a fall if no corrective action is taken. The complexity
of the humanoid body requires the computation of a high-
dimensional full-body motion under time-critical balance
constraints, which is not a trivial task. So far, analytically
engineered controllers have produced the best results. The
dominant strategy is to abstract from the complex body and
represent it as a point mass model with inverted pendulum
dynamics. Then, the mathematically tractable linear inverted
pendulum model is used to deduct controllers that steer
and balance the underlying point mass model. The full-
body walking motion arises by mimicking the pendulum
motion with the pelvis and connecting the pendulum base
locations with smooth swing foot trajectories. This approach
works to some extent, but has not yet achieved human-like
performance in terms of versatility and robustness.

Using machine learning as a universal tool to generate a
walking controller is thought to be a promising approach
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to improve upon the current state of the art. However,
the naı̈ve approach of learning a mapping from the high-
dimensional robot configuration to another high-dimensional
action space of joint torques does not even produce a stable
walk in simulation. The exploitation of low-dimensional
manifolds in the actuation space, that result from coordinated
joint motion, and the point mass abstraction of balance can
simplify the learning problem to a tractable level of difficulty.
Furthermore, the biological example of flight animals, who
learn how to balance their gait shortly after birth based on
a genetic disposition to step roughly in the right direction,
suggests that some form of initialization is beneficial to
successfully learn how to walk. We follow these paradigms
in this contribution and present an online learning method
that makes use of a central pattern generator to hide the
complexity of creating a walking motion on the level of
single joints. The pattern generator exhibits an interface to
control the step size of rhythmic stepping motions, and thus
allows the learning task to be reduced to the learning of
Cartesian coordinates of footstep locations. Additionally, we
initialize with an analytically engineered footstep controller
to a point where a simulated biped is already able to track
a reference step size and to maintain its stability after a
disturbance. We augment its step size output with a corrective
offset that is learned online during walking with a gradient-
based update capable of learning both reference tracking and
preservation of a stable upright pose. We provide experimen-
tal evidence to highlight isolated features of our approach,
such as the increase of the overall stability and reference
tracking precision of the analytic controller, the robustness
to learn a stable controller even without initialization, and the
competitive performance of learning to absorb strong pushes
after the experience of only a few impacts.

II. RELATED WORK

Zero moment point (ZMP) tracking with preview con-
trol [1] is the most popular approach to bipedal walking to
date. A number of pre-planned footsteps are used to define a
future ZMP reference. A continuous center of mass (CoM)
trajectory that minimizes the ZMP tracking error is then
generated in a Model Predictive Control [2] setting. Using
ZMP preview control, high performance hardware [3], [4],
[5] can walk reliably on flat ground as long as disturbances
are small. Next generation walking controllers from the ZMP
preview family [6], [7], [8] also consider foot placement
in addition to ZMP control either by including the footstep
locations in the optimization process, or by using a simplified
model to compute a footstep plan online. These approaches
have not yet matured to real hardware capability, however.
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Urata et al. [9] presented an impressive foot placement-
based controller on a real robot that is capable of recovering
from strong pushes. Instead of optimizing the CoM trajectory
for a single ZMP reference, a fast iterative method is used
to sample a whole set of ZMP/CoM trajectory pairs for
three steps into the future. Triggered by a disturbance, the
algorithm selects the best available footstep plan according
to given optimization criteria. Resampling during execution
of the footstep plan is not possible. The robot has to be
able to track a fixed motion trajectory for the duration of
the recovery. Specialized hardware was used to meet these
stringent precision requirements.

Englsberger et al. [10] proposed to use a capture point
trajectory as a reference input for gait generation instead of
the ZMP. The capture point approach is much simpler and
faster to compute than ZMP preview. It was demonstrated on
Toro [11] to produce a walk of the same quality. However,
adaptive foot placement has not been considered so far.

The Capture Step Framework [12], [13] has recently been
developed by the authors, and has been demonstrated to gen-
erate a stable, omnidirectional walk with strong disturbance
rejection capabilities on a real robot [14]. It computes foot-
placement, step-timing, and ZMP control strategies in closed
form, and thus significantly reduces the computational costs
compared to the aforementioned approaches. We chose this
method to initialize our machine learning approach.

As an alternative to engineered controllers, online learning
strategies deployed on real systems can potentially learn to
control their own dynamics. Rebula et al. [15], for example,
improved the reactive step of a simulated biped from a
standing position by learning to step onto an offset from the
capture point. Focusing on the walking speed, bipedal and
quadrupedal gaits were successfully optimized using policy
gradient reinforcement learning methods in high-dimensional
state spaces [16], [17], [18]. With the same learning method,
adjusted to a neuronal gait controller, the sagittal-only robot
Runbot learned to walk fast, and to cope with irregular terrain
[19]. All of these experiments started from an already stable,
hand-designed gait.

The most autonomously learning bipedal system was pre-
sented by Tedrake et al. [20]. Using an online stochastic
policy gradient estimation, the robot Toddler learns to walk
on different surfaces in less than 20 minutes. The robot was
designed in such way that it can passively walk down a slope
without actuation. The success of this experiment can mostly
be attributed to a strong simplification of the learning task
that actuates only the ankles in order to imitate a passive
dynamic gait without the need for a slope.

Yi et. al. [21] have investigated online learning on real
hardware using a reinforcement learning method. The ap-
proach is built on top of an open-loop gait trajectory gener-
ator and learns to optimize the input parameters of three bi-
ologically inspired disturbance rejection strategies. To make
online learning on real hardware feasible, the reinforcement
learning was simplified by a discretization of the input space
and the assumption that the control parameters are restricted
to lie on parametric functions. The achieved balance is
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Fig. 1. The balance controller of the Capture Step Framework. The
influence of the zero moment point Z steers the center of mass c towards
the desired target location s. The actual footstep F is computed with respect
to a predicted location c′.

convincing on a stationary robot.
Morimoto et. al used Gaussian processes [22], [23] and

receptive field weighted regression [24] to learn a Poincaré
map that approximates the periodic dynamics of a biped. Us-
ing this map, a policy gradient-based reinforcement learning
method was used to train bipedal gaits in simulation and
on real robots. Upright walking with an unspecified walking
velocity in the absence of disturbances was successfully
achieved.

III. CAPTURE STEP CONTROL

Before elaborating on our machine learning concept, we
briefly introduce the analytic controller that is used for
initialization. The Capture Step bipedal gait controller [13]
separates the walking task into an open-loop pattern gen-
erator for step motions [25] and a balance control module
that commands the motion generator when and where to
step in order to obey a commanded walking velocity while
maintaining balance. In contrast to the ZMP preview family
of approaches, the Capture Step control framework plans the
center of mass trajectory first. The footstep locations arise as
the output of the algorithm in such a way that they instantly
adapt to disturbances. The details of the balance controller
are illustrated in Figure 1. The state of the biped is reduced
to a point mass c. Its position and velocity are estimated by
tracking the ground projection of the center of mass with a
full-body kinematic model during walking. A target end-of-
step state s encodes the desired walking velocity. A ZMP
location Z is first computed in order to steer the center
of mass towards the desired state s, but since the ZMP is
constrained to remain inside the support foot polygon, it
can only have limited effect. When a disturbance is large,
the desired state cannot be reached and the footstep location
needs to be adjusted accordingly in order to prevent a fall.
The footstep location F is computed with respect to the
achievable end-of-step state c′, which is predicted using a
linear inverted pendulum model that takes the effect of the
ZMP into account. The time T of the step is determined
as the time when the center of mass is expected to reach
the lateral coordinate of the desired state s. The computed
parameters (F,Z, T ) are then used by the step motion
generator to realize a physical step to the desired coordinates
at the right time.
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Fig. 2. The architecture of our machine learning concept.

IV. MACHINE LEARNING FRAMEWORK

We interface a machine learning component with the
Capture Step controller by changing the footstep output of
the balance control module before it is passed on to the
motion generator. The components and data paths of our
control architecture are illustrated in Figure 2. The machine
learning component learns an offset ∆F that is added to the
step size output F in order to maintain an upright posture
and to follow the reference input more precisely— even in
the presence of disturbances. The step size output of the
balance control module can be turned off, in which case
the learned controller is responsible for producing the right
step sizes on its own. The learning layer consists of two
modules. A trainer module measures the reference tracking
error and the balance of the robot in the instant of the touch-
down of the swing foot, computes a gradient that is expected
to improve the physical step size under the conditions that
were encountered during the step, and updates a function
approximator using this gradient. The function approximator
is constantly queried during walking with a high frequency
and provides the offset ∆F . We restrict our considerations
to the sagittal direction and leave the zero moment point Z
and step timing T outputs unchanged. Since the function
approximator has a strong influence on balance, a low-
latency response is crucial. We achieved good results with
the online capable LWPR [26] algorithm which was found
to have convincing update and response times.

A. Reference Tracking

We express the reference input as a desired step size FR

that we want the biped to produce. This choice is motivated
by the fact that footstep planning [27], [28] is a gradually
improving, versatile method to command a robot where
to walk. A footstep plan can be used to encode simple,
constant velocity walking on a flat surface and scales up to
careful stepping onto constrained locations in cluttered en-
vironments, stepping over obstacles, and elevated footholds
in rough terrain. By learning to step more accurately onto a
commanded footstep location while maintaining balance, we
improve the ability of a gait controller to follow a footstep
plan. We assume the desired step size FR and a matching
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Fig. 3. The pendulum-cart model (left) resembles the angular dynamics
of a biped (right). When the cart accelerates in the positive direction,
the pendulum angle is accelerated in the negative direction. The biped
accelerates its center of mass by increasing or decreasing its step size and
can counteract undesired angular momentum at the cost of a possible error
FE with respect to a reference footstep location.

end-of-step CoM location s is the input into our system,
given by a higher level reference trajectory generator. The
state estimation component of the Capture Step Framework
is based on a kinematic model that we can use to obtain step
size measurements F̂ by computing the distance between the
feet in the moment of the support exchange. The step size
error FE is then trivially given by

FE = F̂ − FR. (1)

B. Balance

To quantify balance, we introduce the concept of the Trunk
Deviation Angle, denoted with the shorthand TDA. Typically,
a motion controller has a notion of a desired trunk inclination
θR with respect to the world frame. Usually the trunk is
upright with a desired tilt of zero degrees, if it is not being
used for balance or manipulation purposes. We assume that
the reference trajectory generator provides the desired tilt
input θR as well. The trunk attitude θ̂ can be estimated from
an IMU. The TDA θE is then given by

θE = θ̂ − θR. (2)

Ideally θE should be zero, meaning that the robot has exactly
the desired pose. Pushes, collisions, and other disturbances
can rotate the entire body around an edge of the support
foot and result in a non-zero TDA that can only be tolerated
within a certain margin. When a large disturbance induces
critical angular momentum, the robot has to step adequately
to counteract the rotation.

To model a step controller that attempts to maintain a zero
TDA, we derive a simple control law from the pendulum-
cart model illustrated in Figure 3. The equations of motion
of the pendulum-cart model are given by

φ̈ =
g sinφ− ẍ cosφ

l
, (3)

where φ is the pendulum angle with respect to the world
vertical, x is the position of the cart, g is the gravitational



constant and l is the length of the pendulum. When φ ≈ 0, a
proportional controller ẍ = kφ with gain k can be used as a
simple controller that manages to balance the pendulum on
the cart. A biped walker is not a cart, but it can accelerate
its center of mass by increasing or decreasing its step size.
This translates to a rough approximation of a balancing step
controller

∆F ≈ kθE . (4)

An example is shown in Figure 3. If at the end of a step the
TDA is positive, i.e. the robot is rotated ’forward’, the robot
needs to take a larger step next time in the same situation in
order to accelerate the TDA towards a more upright position.
The direct application of this model to control the step size
provides only a small amount of balance, and it cannot
possibly track a reference input on its own. As our goal is
to learn the right step size, we only borrow this concept to
construct a learning gradient.

C. Learning

As the reference footstep location and the right place to
step to counteract a disturbance do not necessarily coincide,
following a footstep plan under balance constraints is an ill-
posed problem. A trade-off must be found between stepping
into a desired location and avoiding a fall. We combine the
control law (4) we derived from the pendulum-cart model
and the footstep error FE into the parameterized gradient
function

G(θE , FE) = θE − pθ tanh(pFFE). (5)

The characteristic saturation of the hyperbolic tangent
function bounds the influence of the step size error FE to
a configurable limit pθ for two specific purposes. Making
no assumption about the commanding layer, the reference
step size —and thus the step size error FE— can change
abruptly to arbitrarily large values. The parameterized satu-
ration makes sure that the robot learns to track the reference
step size carefully and avoids instability during the learning
process due to abrupt changes in the step size. Furthermore,
critical tilts of θ � pθ dominate the gradient and balance
takes priority over reference tracking when a fall is imminent.
pF is a weight to fine-tune the influence of the step size error
within the permitted bounds. Throughout our experiments we
used pθ = 0.15 and pF = 30. Please note that the gain k
has been absorbed by the learning rate that we multiply the
gradient with when we apply the update rule to the function
approximator in the following equation.

Updates are made at the end of each step, where we
measure the trunk angle θ̂ and the step size F̂ and compute
the step size error FE and the TDA θE using (1) and (2),
respectively. We also estimate the TDA rate θ̇E =

˙̂
θ. We train

a function approximator over the input space θE × θ̇E ×FR

with the update rule

F(θEi , θ̇Ei , FR) = F(θEi , θ̇Ei , FR) + η G(θE , FE), ∀i ∈ I,
(6)

where I is an index set and {θEi
}, i ∈ I is the set of TDAs

that were measured during the step. In words, we query

the function approximator at the locations that were seen
during the step, add the gradient to the resulting values, and
present the result as the new desired output to the function
approximator.

V. EXPERIMENTAL RESULTS

To evaluate and demonstrate isolated features of our
learning framework, we performed a series of experiments in
a Bullet Physics simulation with a humanoid model of 2 m
height and a human-like distributed body-weight of 13.5 kg
in total. In all of the following experiments, the algorithm
learned online during the experiment. It was not pre-trained
and it was operational during the entire evaluation time with
a constant learning rate η = 1. Although the following
experiments are focused on the sagittal direction, the motion
of the robot was not restricted in any way and the lateral
Capture Step components were fully operational.

A. Evaluation of Reference Tracking

In the first experiment, we evaluate the ability to track a
reference step size. We compare the Capture Step controller
on its own, which we refer to as the model, with the
addition of a learned controller that was trained during the
experiment. We sample the reference step size from a range
of [−10, 20] cm and keep it constant for 4 to 8 seconds.
We observe how quickly both controller versions can adapt
the step size to the correct value. To preserve comparability,
the same random step size sequence was presented to both
controllers. Figure 4 shows statistical data averaged over
1000 steps. The moments of the reference step size changes
are synchronized at zero seconds. We observe the mean and
standard deviation of the step size error. Since the reference
step size was uniformly sampled, the mean is near zero.
With learning, the standard deviation of the step size error
decreased at all points in time. This means that the learned
controller not only follows the reference faster than the
capture step controller alone, but it also learned to step onto
the right location altogether more precisely. In the right hand
plot in Figure 4 we show a time series extract of the reference
and the measured step sizes.

B. Evaluation of Disturbance Rejection

In the second experiment, we demonstrate the ability to
return to a reference walking velocity after a disturbance. We
command a fixed step size of 20 cm. While the robot is walk-
ing, we push it forward with constant impulse magnitudes of
8 Ns. The pushes are triggered at random times in order to
avoid hitting the robot repeatedly in the same motion phase.
Synchronized at the moment of the push, Figure 5 shows
how the step size (left) and the TDA (right) return to their
reference values. Again, the learning component reduces the
time it takes for the robot to return to the commanded step
size. The fact that the TDA appears to have increased after
learning might be a surprise at first, but seeing as we set
the tolerated TDA parameter pθ to 0.15 rad, the learned
controller utilized this margin to sacrifice the allowed amount
of balance in order to better obey the step reference.
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Fig. 4. In an experiment with random changes of the reference step size, the standard deviation of the step size error decreases faster with learning, than
without (left). A time series of the abruptly changing reference step size and the step sizes produced by the evaluated controllers is shown on the right.
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Fig. 5. After the robot is pushed, the step size error is reduced and the robot is able to return faster to the reference step size with the learning component
enabled (left). The learned controller allows a larger Torso Deviation Angle (right) within the allowed margin of 0.15 radians in order to better obey the
step reference.
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C. Evaluation of Stability

In the third experiment, we aim to evaluate whether the
learning component is able to improve the overall walking
stability. We apply 400 randomly timed push impacts with
magnitudes sampled from a range of [0, 20]Ns to a robot
walking in place. The pushes are directed in the forward
direction and force the robot to make forward steps in order
to avoid falling. By counting falls and pushes, we estimate
the probability of a fall depending on the magnitude of the
disturbance. In addition to the Capture Step model and the
learned augmentation, in this experiment we also included
an open-loop controller that walks in place with a fixed
frequency and does not react to the pushes. The results are
shown in Figure 6. The capture step controller significantly
increases the push resistance compared to what the robot can
absorb passively. Our online learning technique, however,
increases the stability even further.

D. Evaluation of Robustness

Finally, we demonstrate the potential of our learning
approach with an experiment that is focused on speed
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Fig. 7. Even if not initialized with the analytic controller, the machine
learning layer manages to learn a step controller that stabilizes the robot
after only three pushes. The pushes are indicated by the vertical lines of the
push impulses.

and robustness of learning. This time we do not use the
capture step controller for initialization. The robot starts
with stepping in place with no prior knowledge of step size
control. We disturb the robot from the back with 8 Ns push
impulses and observe how quickly the robot learns to absorb
the push without falling. The result of the experiment is
shown in Figure 7. The first two pushes made the robot
fall, but the controller learned from this experience and
managed to stabilize the robot already on the third push.
To observe a learning curve, we created a metric of the
function approximator by computing the Euclidean norm
over the output values of evenly distributed samples in the
input space. Initially the metric is zero. Plotting the metric
over time shows that in the beginning of the experiment
large learning steps are taken. After the third push, the
learning process has mostly settled and the controller appears
to have learned how to balance in this specific case. The
accompanying video shows a recording of this experiment.
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Fig. 8. Maps of the learned step size offsets after each of six pushes. The order of the plots is from left to right and from top to bottom. In this experiment,
the step size controller was not initialized with the analytic controller and thus the entire step sizes have to be learned. The learning settles after three
pushes and the simulated model is able to absorb an 8 Ns push without falling.

The evolution of the LWPR function approximator is
shown in Figure 8. Each plot was generated in the moment of
a push, i.e. the effect of a push is shown in the next plot. Data
points are marked with black crosses. The first plot on the top
left shows the state of the function approximator before the
first disturbance. The relatively large size of the linear kernel
we use within the LWPR can be clearly seen. Data points are
located only in the center of phase space. It is remarkable

that the LWPR algorithm managed to align the first kernel
in a way that it extrapolates sensible values only from a
small cloud of data points that were collected during stable
walking in place. The first push (top right) forces the robot to
fall and the collected data leaves a broad trace. The second
push results again in a fall, and the function approximator
is updated in the relevant part of the phase space. The
third push is successfully absorbed, and subsequent pushes



change the function approximator only slightly. The last plot
(bottom right) includes a trunk angle trajectory that returned
to a stable position after reaching an inclination of nearly
0.5 radians.

Note that this experiment does not render the initialization
with the analytic controller obsolete. The initialization not
only speeds up the learning process, because the learner
can start from an already good result, but it also covers the
entire input space. Without any initialization, an exploration
of a large number of reference step size and disturbance
magnitude combinations would be necessary in order to train
a reliable controller. Furthermore, the initialization reduces
the probability to fall during learning and thus reduces the
risk of sustaining hardware damage when training with a real
robot.

VI. CONCLUSIONS

We presented a simple and robust online learning concept
that learns both, balancing a humanoid robot after strong
disturbances and following a commanded step size. We used
the Capture Step framework to initialize the controller with
a reasonable output and used the learning layer to improve
its capabilities.

A clear distinction between our method and other ap-
proaches investigated so far is the use of a gradient-based
update— rather than reinforcement learning. To compute the
gradient, we made the assumption that the angular dynamics
of a biped behaves like the pendulum-cart model, and derived
a monotonic coupling between the step size variation and the
change of the angular momentum. While less generic than
model-free reinforcement learning, the assumption appears to
be beneficial for learning from a low number of experiences.

In future work, we intend to extend the learning controller
to the lateral direction and to investigate whether two uncou-
pled learners are able to learn a stable omnidirectional walk.
Furthermore, we plan to experiment with self disturbance-
driven exploration strategies to develop an autonomously
learning algorithm.
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