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Abstract—Bipedal walkers are difficult to control, inherently
unstable systems. Besides the complexity of the walking motion
itself, the balance of the robot constantly has to be maintained
with good foot placements and other disturbance-rejection strate-
gies. In this work, we are presenting a new, closed-loop control
approach that addresses both, the problem of complexity and the
challenge of maintaining balance during walking. We decouple
walking motion from balance and combine them in a hierarchical
framework allowing a foot placement-based balance regulator to
control the timing and footstep coordinates of central pattern-
generated stepping motions. Furthermore, we decompose the
balance controller into three simple, independent modules that
compute suitable estimates of timing and sagittal and lateral
coordinates for the next footstep to maintain a nominal center
of mass trajectory.

We implemented the timing and the lateral step size com-
ponents using the equations of a parameterized version of the
linear inverted pendulum model that we fit to data collected from
a walking robot. The parameter optimization has a significant
impact on the accuracy of our predictions. We demonstrate the
efficiency of our approach by performing experiments on a real
biped. Results show that the robot is able to reliably recover
from any lateral push in only a few steps as long as it does not
tip over the current support leg.

I. INTRODUCTION

For decades, it has been a dream of scientists and engineers
to replicate the efficiency, stability, and grace of the natural
human gait. But the analytic calculation of dynamic and
balanced full-body motions is a difficult task. The applicability
on real hardware imposes additional challenges on the design
of control algorithms, such as low computational power of em-
bedded systems, noisy sensors, friction, backlash, and latency
in the entire sensorimotor control loop.

We propose a lightweight bipedal walking framework and
use it to implement a closed-loop control algorithm that
maintains the lateral balance of a humanoid robot (Fig. 1).
By adjusting the timing and the location of the next step, our
approach is able to recover from strong lateral disturbances and
to continue walking with a nominal open-loop frequency after
only a few capture steps. A precise dynamic model of the robot
is not required, nor the calculation of the Zero Moment Point.
Furthermore, our algorithm requires very little computational
power and specifically addresses the issues of sensor noise and
latency.

Our strategy to tackle complexity is to separate motion
from balance and to decompose the balance controller itself
to calculate the timing of the steps and the lateral and
sagittal step coordinates in independent modules. Each of these
components is much simpler to solve when isolated from

All authors are with the Autonomous Intelligent Systems Group, University
of Bonn, Germany. Email: missura@ais.uni-bonn.de. This work has been
supported partially by grant BE 2556/2-3 of German Research Foundation
(DFG).

the others. For the generation of stepping motions, we use
an open-loop central pattern-generated omnidirectional gait.
The motion patterns are parameterized in step frequency and
leg-swing amplitudes such that they can easily be modified
by a higher layer, which is in this case our footstep control
algorithm.

To derive the components of the footstep controller, we
reduce our multi body system to a single point mass whose
physical dynamics is described by a parameterized version
of the well-known linear inverted pendulum model (LIPM).
We fit the model parameters to maximize the similarity with
center-of-mass trajectory data collected from a real robot and
achieve a significant increase in accuracy, compared to the
standard LIPM. Using the fitted model, we can analytically
predict suitable capture steps, which are able to maintain
lateral balance out of the box, without further parameter
tuning. To deal with sensor noise, we follow an open-loop gait
trajectory as much as possible, unless a significant deviation is
detected. In this case, the control loop adapts the next footstep
only within a relatively noise-free time window during mid-
swing, and continues with open-loop execution until the next
mid-swing phase, where we can decide if further corrections
are necessary.

The only requirements for our algorithm are joint angle
sensors, an inertial measurement unit and a kinematic model
of the robot. Even low-cost robots are typically equipped with
these kind of sensory systems. A kinematic model is also often
available or can be easily obtained. Foot pressure sensors can
be useful to detect footsteps, but one can also implement a
footstep detector based on the kinematic model. The robot we
used is not equipped with foot sensors.

The remainder of this paper is organized as follows. After

Fig. 1. Our robot Dynaped rejects lateral disturbances with capture steps.
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reviewing related work, we begin with an analysis of the
pendulum-like biped walking mechanics in Section III to
motivate our decomposition approach. Then we introduce our
concept of hierarchical decomposition of bipedal gait control
in Section IV. In Section V, we briefly review the linear
inverted pendulum model, which is the core element of our
balance control layer. After deriving general lateral control
laws from observing the model behavior in Section VI, we
focus on fitting the pendulum model to our robot in Sec-
tion VII. In Section VIII, we discuss our approach to dealing
with sensor noise and Section IX summarizes experimental
results.

II. RELATED WORK

Zero Moment Point-based trajectory tracking walkers with
position-controlled joints are arguably the most successful so
far. ASIMO [7], HRP-2 [8], and HUBO [14] are among the
most prominent examples. These systems can walk reliably
on flat ground and have the ability to cope with weak
disturbances. However, their nature of following a sequence
of predefined future steps with a fixed frequency prevents a
flexible response to strong perturbations that require a change
of footstep locations and timing in order to maintain balance.

Also very impressive are the methods used by the leading
teams of the annual RoboCup soccer competitions (e. g. [5],
[6], [2]), where hand-tuned rhythmical patterns produce a self-
stable, open-loop gait relying on no more than a narrow basin
of attraction around a fix point for stability. This is enough
to play dynamic and exciting soccer games on a flat and hard
surface, but collisions and other disturbances lead to falls in
almost all cases. The central pattern-generated omnidirectional
gait engine that we used to implement parameterized stepping
motions is a well-proven RoboCup method [2].

To recover from strong pushes and collisions, reactive
stepping is necessary, as demonstrated by the amazing perfor-
mance of the quadruped BigDog [15]. Among bipedal walkers,
reactive stepping is a new discipline. Toyota’s new running
robot [19] and HUBO [3] demonstrated the ability to cope
with a frontal push against the chest during hopping on the
spot. MABEL can also be disturbed during walking and the
steps will be adjusted to regain stability [17]. However, this
robot is mounted to a beam and only planar walking has been
investigated. A popular approach is to combine momentum
suppression and reactive stepping [3] [13] [18] such that a
reactive step only needs to be taken if the disturbance cannot
be compensated otherwise. From these proposals only the
approach of Morisawa et al. [13] is able to react to a push
from any direction at the cost of complex calculations – despite
the simplified dynamic model. Their method also requires an
estimation of external forces, it does not attempt to adjust step
timing and the efficiency is not yet reliable enough to operate
the robot in an unconstrained environment.

Lateral walking itself received very little attention, even
though it appears to be more challenging, compared to walking
in the sagittal plane. Kuo investigated passive lateral stability

in [10] and came to the conclusion that active lateral stabi-
lization is necessary. Bauby and Kuo [1] found that the lateral
step size variability of humans drastically increases when the
eyes are closed, which is strong evidence that lateral stability
is more sensitive to sensor feedback, or the lack thereof.

The closest related work was presented by Graf and
Röfer [6], who proposed a LIPM-based closed-loop gait sim-
ilar to our concept. As one of very few examples aside from
our approach, the timing of the steps is also taken into account.
However, while in our approach the timing is exclusively
determined by lateral oscillation, in [6] the timing of the
steps is synchronized with sagittal stepping instead. Lateral
step sizes are not considered. While [6] makes heavy use of
sensor feedback, our strategy is to remain open-loop as much
as possible. Also, our predictions are calculated analytically
and thus are potentially faster than the numerical method used
in [6].

Our capture steps are similar to the capture point [16]
introduced by Pratt et al. as the point where a robot has to
step in order to stop. We extend the definition of the capture
point to a more flexible capture step coordinate that allows
to continue walking with the desired velocity even after a
disturbance. The linear inverted pendulum model was first
proposed in [9]. Our balance control layer is based entirely on
this model. However, we extend the model to a parameterized
version to better approximate the dynamics of our robot.

Aside from the concentration on lateral stability, a clear
distinction between our method and the cited publications is
that our algorithm makes do without a precise physical model
of the robot, i. e. masses, joint torques and external forces
do not need to be known. We use only a small set of linear
inverted pendulum equations to predict the trajectory of the
center of mass. The location of the Zero Moment Point is not
needed. This makes our approach simple, robust and easy to
work with while still providing an effective balancing strategy.

III. MOTIVATON

The pendulum-like mechanics of human walking has been
long known to be an energy-efficient physical principle [11].
Figure 2 shows stick diagrams of the idealized sagittal and
lateral pendulum motions projected on the sagittal plane (left)
and the frontal plane (right), respectively. Interestingly, the
nature of the sagittal and the less frequently analyzed lateral
motion exhibit an opposing conceptual difference. In the
sagittal plane, the center of mass “vaults” over the support

Fig. 2. Stick diagrams of the idealized pendulum-like sagittal motion (left)
and lateral motion (right) of a compass gait. In sagittal direction, the center
of mass passes over the pendulum pivot point in every gait cycle, while in
lateral direction it is crucial that the pendulum never crosses the pivot point.



leg in every gait cycle, while in the frontal plane the center
of mass oscillates between the support feet and never crosses
the pendulum pivot point. It is crucial not to tip sideways
over the support leg, as the recovery from such an unstable
state requires a combination of crossing the legs, a sharp turn
around the stance foot, and in extreme cases even a jump
to free the support leg and place it at a more convenient
location. Humanoid robots have difficulties with performing
such maneuvers. Considering that the lateral distance between
the center of mass and the pivot point at the apex of the step
provides only a narrow margin for errors, it is not surprising
that substantially more effort needs to be invested in lateral
control [1].

Other than a shared time of support exchange, the sagittal
motion and the lateral motion do not appear to have an evident
influence on each other. In Figure 3, we show center of mass
states in the phase space of the lateral motion recorded from
our Dynaped. Three data sets are plotted: one for undisturbed
walking on the spot, one for walking forward at maximum
velocity, and a set of unstable lateral swaying. One can observe
that forward walking has only a small influence on the lateral
trajectories, especially in comparison with lateral disturbances.
This observation supports our assumption that sagittal and
lateral controllers can be modeled independently.

Furthermore, we assume the lateral center of mass oscilla-
tion to be the primary determinant of the step timing. While in
sagittal direction, the biped can flexibly respond to variations
in timing with a change of the stride length, in the more
sensitive lateral direction support exchange should always
occur when the center of mass is in the middle of the stride
to sustain a stable lateral oscillation at a steady frequency.
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Fig. 3. Center of mass trajectories in the phase space of the lateral pendulum
model. The red data set shows CoM states collected during forward walking.
The blue data set was recorded during undisturbed walking on the spot. The
green data set shows trajectories of unstable lateral swaying. The lateral state
trajectories during walking on the spot and during forward walking are very
similar. The data is noisy at the end points of the “boomerangs”, where the
support exchange occurs.

IV. HIERARCHICAL DECOMPOSITION

A. Control Interface

Our bipedal locomotion framework is composed of three
hierarchical layers, as illustrated in Figure 4. The top layer
is an abstract omnidirectional control interface that can be
used by high-level behaviors to navigate the robot to desired
goals. At this level of abstraction, the robot is assumed to be
a holonomic point mass, controlled with a three-dimensional
gait velocity vector V ∈ R3 in sagittal, lateral, and rotational
directions. The velocity vector is an intuitive control input
in SI units that eliminates the need to be concerned with
single steps or even joint angles. The control interface converts
the velocity vector V to an appropriate combination of step
frequency φ∗ and step size S∗ = (S∗x, S

∗
y , S

∗
z ) ∈ R2× [−π, π],

where S∗x and S∗y are the desired sagittal and lateral Cartesian
coordinates of the footstep, expressed in the reference frame
of the current support foot, and S∗z is a rotation of the feet.
We will refer to φ∗ and S∗ as desired step parameters.

B. Foot Placement Control

The middle layer is the foot placement control layer. Its
purpose is to maintain the balance of the biped while re-
specting the reference velocity as much as possible without
becoming unstable. In addition to the desired step parameters
φ∗ and S∗, this layer receives input from a module that we call
kinematic-balance-model (KB-model). The KB-model applies
the joint angles received from the robot to the kinematic model
using forward kinematics and rotates the entire model around
the center of the support foot such that the trunk has the
angle reported by the inertial measurement unit. From the
rotated model, we extract the sagittal and lateral distances and
velocities of the center of mass (CoM) with respect to the
current support foot and obtain a four-dimensional CoM state
(x, ẋ, y, ẏ), where x and ẋ denote the sagittal center of mass
location and velocity, and y and ẏ denote the lateral center
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Fig. 4. Hierarchical structure of our gait control architecture. The Foot
Placement Control layer receives the center of mass (CoM) state with respect
to the support foot from the kinematic balance model. The step parameters
from the Control Interface can be modified by the modules of the Foot
Placement Control layer in order to maintain balance. The lowest layer is
a parameterized central pattern-based motion generator for stepping motions.



of mass location and velocity. The CoM state is a simple,
low-dimensional representation of balance, sufficient for the
foot placement layer to detect instabilities and to estimate
footstep timings and coordinates. As a consequence of our
assumptions in Section III, the internal structure of the foot
placement control layer is horizontally decomposed into three
independent control units that determine the time t, the sagittal
step size Sx, and the lateral step size Sy of the next balanced
footstep in parallel. The implementation of these components
will be discussed in detail in Section VI.

C. Motion Generator

The bottom layer generates stepping motions using the
central pattern generator-based method described in [2]. The
step size S as input from the foot placement control layer
defines the leg swing amplitudes and the gait frequency φ
determines the timing. This is all the information needed
to generate the next step. Thus, the motion generation layer
does not need to be concerned with balance. In principle, any
motion generation algorithm can be used in conjunction with
our balance control layer, as long as it allows parameterized
input of footstep coordinates and timing.

V. THE LINEAR INVERTED PENDULUM MODEL

The linear inverted pendulum model is an approximation of
the principle dynamics of human walking [9]. In its simplest
form, it describes a motion in one dimension governed by the
equation

ẍ = Cx, (1)

where C is a gravitational constant. Given an initial state
(x0, ẋ0), the set of equations

x(t) = c1e
√

Ct + c2e
−
√

Ct (2)

ẋ(t) = c1
√
Ce
√

Ct − c2
√
Ce−

√
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1√
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x

2c1
±

√
x2

4c21
− c2
c1

)
(4)

t(ẋ) =
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ẋ
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√
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√
ẋ2

4c21C
+
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)
(5)

c1 =
1
2

(x0 +
ẋ0√
C

) (6)

c2 =
1
2

(x0 −
ẋ0√
C

) (7)

allows analytic calculation of the state (x, ẋ) at a given time t
((2), (3)), or of the time t, when the center of mass will reach a
given position x (4) or a given velocity ẋ (5). Furthermore, the
law of conservation of energy is valid. Unless the pendulum
is disturbed by external forces, the orbital energy

E =
1
2

(ẋ2 − Cx2) (8)

is constant for an entire trajectory.

To model sagittal and lateral motion, we use a set of uncou-
pled equations for each of the two dimensions, respectively:

ẍ = Cx, (9)
ÿ = Cy. (10)

In this model, the motion in sagittal (x) direction does not
depend on the motion in lateral (y) direction and vice versa.
They can be treated as two orthogonally superimposed, one-
dimensional pendulum motions.

VI. DERIVATION OF CONTROL LAWS

The analysis of the model behavior leads directly to control
laws that we can utilize to implement the balance control
components. Figure 5 gives a “top down” view of our two-
dimensional model to illustrate its concepts.

We define the nominal center of mass trajectory as the
trajectory generated by the open-loop walk in the absence of
disturbances. For now, we assume a constant sagittal velocity
and concentrate only on the lateral case. The lateral component
of our bipedal walking model is characterized by a perpetual
oscillation of the center of mass in between two feet alternating
the role of support. Figure 5(a) illustrates the trajectory of a
nominal step. The step starts when both legs are in a symmetric
configuration in the moment of the support exchange. We
denote the distance between the CoM and the support foot
in this moment with δ. As the step continues, the center
of mass approaches the support foot and reaches the closest
proximity α at the apex of the step. Here, the sign of the
lateral velocity changes and the center of mass returns to
the gait center δ. The support exchange can occur anywhere
between δ and the maximal CoM location ω, depending on
the commanded lateral velocity from the higher layer. The
next footstep coordinate is chosen such that the CoM velocity
vanishes again at a distance α to the next support foot. We
model the support exchange as instantaneous and collision-
less, so that the center of mass velocity remains continuous.
Other than these “steps”, the system is driven only by its own
passive dynamics.

An important observation to be made is that since the orbital
energy (8) stays constant on every undisturbed CoM trajectory,
and all our nominal steps have the same representative lateral
state (α, 0) even if the robot is walking in lateral direction, the
lateral energy level remains constant at all times at a nominal
value of En = −C

2 α
2. A deviation from this energy level in

any direction is undesirable and needs to be corrected.
If a disturbance modifies the CoM trajectory, the step apex

will not be reached at distance α and we can categorize the
trajectory as unstable. There are two possible cases that can
result from a disturbance. In the better case, the center of mass
will still turn back and eventually reach the support exchange
location currently desired by the higher layer. This case is
shown in part (b) of Figure 5. In the worse case, the CoM
will cross the support foot and the robot will most likely fall.
If a non-returning trajectory is detected early on in a gait cycle,
the remaining time is better invested in preparing a damage-
rejecting fall sequence [4]. Any returning CoM trajectory,
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location, and the maximal support exchange location, respectively. (b) A push can defer the center of mass trajectory to an unstable one, but as long as the
robot does not tip over the support leg, a capture step can always be calculated such that the center of mass returns to a nominal trajectory.

however, can easily be captured, as it requires only a simple
adjustment of step timing and step size.

In summary, the following lateral control law can be dis-
tilled. The time of the support exchange is the time when
the center of mass will reach the currently desired support
exchange point ys between δ and ω. This accounts for main-
taining the currently desired walking velocity even if the robot
was pushed. At any point of the gait cycle, the estimated step
time can be computed by setting (y0, ẏ0) to the current CoM
state and using the desired support exchange location ys as
input for Equation (4).

To calculate the lateral coordinate of the capture step, the
CoM velocity ẏs at the support exchange location is needed.
It follows directly from (8):

ẏs =
√
ẏ2
0 + C(y2

s − y2
0). (11)

Now, using (α, 0) as a representative state at the apex of the
next step, the lateral distance yc between the center of mass
at the support exchange location and the new support foot can
be calculated using again the energy equation (8):

yc =

√
α2 +

ẏ2
s

C
. (12)

The lateral footstep coordinate Sy in the reference frame of
the current support foot is then given by

Sy = ys + yc. (13)

Please note that the energy formula does not depend on
time. Hence, the lateral footstep coordinate can be calculated
without knowing the time of the support exchange.

VII. MODEL FITTING

Let us now concentrate on finding suitable pendulum param-
eters to match the physical behavior of a robot. As initially
stated, our starting point is a readily available open-loop gait

that can walk stable on flat terrain without disturbances. This
gives us easy access to data by calculating the KB-model
during walking and recording the low-dimensional CoM state
representation, introduced in Section IV.

Instead of setting C = G
h , as originally suggested in [9], we

allow not only an arbitrary gravitational constant C, but also
a lateral offset ∆y from the support foot.

ÿ = C(y + ∆y), (14)

We performed a grid search on this two-dimensional pa-
rameter space and found that choosing C = 10.33/s2 and
∆y = 0.16m significantly improves the accuracy of the
predictions that can be made with the pendulum model.

In Fig. 6, we show the mean squared error of the step time
estimations using the default LIPM and our LIPM with the
fitted parameters. The large difference between the suggested
and our value for C, as well as the relatively high lateral offset
∆y that places the pendulum pivot point outside of the support
polygon, are not surprising. A humanoid robot is a complex
kinematic chain. Its system dynamics must surely deviate from
the linearized dynamics of a point mass. Also, our robot has
relatively large and flexible feet, which further distort the
physical behavior, compared to the point feet of a pendulum.
Finally, while the inverted pendulum model assumes pure
passive dynamics, the robot is actuated at all times and actively
influences its motion during walking.

The KB-model reports CoM states relative to the support
foot, without the offset ∆y. Before using the pendulum
equations for footstep estimation, we apply a mapping by
adding the offset to the lateral location y with the adequate
sign, depending on which leg is the support leg. The offset
is later subtracted again from the result to obtain footstep
coordinates in the reference frame of the actual support foot.

In addition to the pendulum parameters C and ∆y, the CoM
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Fig. 6. Mean squared error and standard deviation of estimated step times by
the default LIPM (left) and our parameterized pendulum (right). Fitting the
model parameters to the data significantly improves the prediction accuracy.
The mean step time of our robot is 0.43 seconds.

location parameters α, δ, and ω can also be extracted from the
recorded data, so there is no need for manual tuning.

VIII. NOISE SUPPRESSION

An essential part of the capture step algorithm is a filter that
we apply to suppress sensor noise. The sensor noise increases
right after support exchange and the CoM state cannot be
estimated with sufficient precision in this phase of the step.
The reason for this is a sensitive reaction of the MEMS
acceleration and angular rate sensors to the vibrations caused
by the collision of the feet with the ground.

Furthermore, the calculation of the speed of the stepping
motions to match the anticipated step times is inherently
unstable. We calculate a motion speed factor σ as

σ =
tm
ts

(15)

with the remaining motion time tm and the remaining time
until the support exchange ts, and use it to adapt the motion
execution speed to the remaining time until the swing foot
is expected to touch down. tm and ts both converge to zero
towards the end of the step cycle. The remaining time until
the step is, however, only an estimate that always contains an
error ε, which does not converge to zero. Therefore, the impact
of the error increases towards the end of a step. The best time
to estimate the motion speed is early in a swing phase. To deal
with both sources of noise at once, we apply a simple Gaussian
function f(φ) with the mean µ = 0.5 set into the center of the
swing phase 0 ≤ φ < 1 and a standard deviation of σ = 0.2,
as depicted in Figure 7. These are the only parameters that we
set manually, but they could also be automatically determined
by analyzing the noise distribution with respect to the step
phase. The Gaussian noise suppression function defines how
much we adapt to modified footstep coordinates and timings
calculated by the balance regulators. At the beginning of the
step, where the sensor noise is high, and towards the end of
the step, where the motion speed estimation is instable, the
adaptation rate is low. In the middle of the step, the adaptation
rate is allowed to be high.

Aside from the Gaussian filter, we maintain an expected
energy level Ee during the step. By default, this is set to

the nominal orbital energy En. Adaptation to modified step
parameters only takes place if the deviation from the expected
energy level is significant, for example as a result of a push.
Then the expected energy Ee itself is also adapted to the new
energy level Em measured by the sensors. As long as the
center of mass keeps traveling on a trajectory with a constant
energy level, there is no need to continue adaptation after the
step parameters have been adjusted.

The complete noise suppression algorithm that calculates
the adaptation rate ρ is implemented as

∆E = ‖Ee − Em‖,
ρ = ∆E · f(φ),
Ee = ρEm + (1− ρ)Ee.

After a footstep has been detected, we reset the gait fre-
quency, the step size, and the expected energy to their nominal
values. The capture steps are calculated in a way that one step
should be enough to restore stability, so the best strategy is
to anticipate this effect by continuing with open-loop, nominal
step parameters after the support exchange has occurred. Even
if the capture step did not fully reject the disturbance, we can
safely assume that at least some balance was restored and
there will be another chance during the next step to correct
the remaining instability. By measuring the time that passes
between when a step should occur according to the gait signal
and when we detect the step using the kinematic model, we
determined that our system suffers from a fixed latency of
approximately 100 ms in the sensorimotor loop. To deal with
the latency, we simply subtract a constant offset from the step
times that the LIPM controller predicts, before they are used
for motion speed estimation.

IX. EXPERIMENTAL RESULTS

The robustness of our lateral balance controller is best
demonstrated in action on a real robot. The accompanying
video material [12] shows our robot Dynaped dealing with
several disturbances, even during lateral walking. For detailed
analysis, we have selected a capture step situation that can be
seen in the video at time mark 0:44. Figure 7 shows a sequence
of nine steps in total, where the fourth step was a notable
capture step as a response to a push from the side. The time
line is synchronized with the video. At the beginning of the
time line, the robot performs three nominal steps where almost
no adaptation takes place. The energy level (bottom) stays
nearly constant near the expected value. The instability of the
gait frequency estimate (center) can be clearly seen. The lateral
push occurs at the end of step number three, approximately at
time mark 0:44. The sudden rise of the energy level is clearly
visible. In step four, where the value of the noise suppression
Gaussian and the energy deviation (bottom) are high at the
same time, the adaptation rate rises as well. The result is
a smooth transition to a slower step frequency and a larger
step size (center). At the same time, the energy deviation
is consumed and the adaptation rate drops even before the
Gaussian reaches a low value. For the remainder of step four,



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 43  43.5  44  44.5  45  45.5  46  46.5

Ti
m

e 
U

nt
il 

S
te

p 
[s

]

ground truth
estimate

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

 43  43.5  44  44.5  45  45.5  46  46.5

Fr
eq

ue
nc

y 
[H

z]
 a

nd
 S

te
p 

S
iz

e

estimated frequency
used freqency

step size

-1

-0.5

 0

 0.5

 1

 1.5

 2

 43  43.5  44  44.5  45  45.5  46  46.5

E
ne

rg
y 

an
d 

A
da

pt
at

io
n 

ra
te

time [s]

Gaussian suppression
energy deviation

adaptation rate
energy

Fig. 7. Data recorded from the robot during a pushing experiment. The top row shows the ground truth and estimated time until support exchange. The middle
row shows the actual gait frequency and step size as a result of the adaptation. In the bottom row, the energy curve can be seen and the noise suppression
functions that lead to the adaptation rate.

-1.5

-1

-0.5

 0

 0.5

 1

-1  0  1  2  3  4  5

en
er

gy

time [s]

with capture steps

-1.5

-1

-0.5

 0

 0.5

 1

-1  0  1  2  3  4  5

en
er

gy

time [s]

without capture steps

Fig. 8. Time series of measured energy during push experiments with (left) and without (right) capture step feedback. The plotted time series are synchronized
so that the disturbance occurs approximately at time mark 0. Non-returning trajectories cannot be captured. These are marked with red color. With capture
step feedback, all returning trajectories were successfully stabilized at the nominal energy level after few steps, as can be seen on the left. When the capture
steps are turned off, the robot does not return to the nominal energy level, as can be seen on the right. The discontinuities in the energy level without feedback
is caused by the robot placing its swing foot on the floor at a wrong time when the body has a high roll angle.



the robot executes the adapted motion speed and step size in
open-loop mode. When the support exchange occurs at time
mark 0:45, the frequency, the step size and the expected energy
level are reset to their default values and a stable step follows,
which is close the nominal one. In step number six, there is
obviously still some instability left to correct. The robot adapts
to a higher frequency for one step and continues with nominal
steps starting from step seven. The capture step number four
appears to be very effective, as the residual instability of steps
five and six can barely be seen with the naked eye when
watching the video.

In a quantitative experiment, we evaluated the reliability
of the capture step controller by repeatedly pushing the robot
from the side during walking on the spot. We applied relatively
strong pushes and tried to get close to the non-returning
boundary each time. In total, we recorded approximately
one hundred pushes. Twenty pushes were performed without
lateral capture steps. These are plotted in Figure 8 on the
right. The remaining pushes were performed with enabled
capture steps. These are plotted in Figure 8 on the left.
Twelve pushes were strong enough to produce non-returning
trajectories, which we cannot capture. These are explicitly
marked with red color. All returning CoM trajectories were
successfully recovered. The time series of the energy levels
during the pushing experiments are synchronized so that the
push always occurs approximately at time mark 0. The effect
of the capture steps is very clear to see. On the left, the energy
level quickly returns to the nominal level of -0.45 after a few
steps. Without capture steps on the right, the robot is unable
to recover balance in most cases. We did not produce any
non-returning trajectories when the capture step controller was
disabled, but the robot still toppled in a number of cases after
increasing instability with a badly timed step. These cases are
also marked with red color.

We evaluated the computational costs of our algorithm and
measured a runtime of 0.06 ms on our reference machine (Intel
2.4 GHz, 32 bit) for the entire cycle starting from Kalman
filtering the raw sensor input up to the output of the motion
signal. This makes our approach applicable for low power,
embedded PCs and even microcontrollers.

X. CONCLUSIONS

We have presented a bipedal locomotion framework that
simplifies the implementation of a closed-loop walk by de-
composing the task into hierarchical layers and independent
balance components. We implemented balance regulation com-
ponents for timing and lateral step size and demonstrated
their efficiency on a real robot that can cope with any lateral
disturbance as long as the robot does not tip over the support
leg.

In future work, we are planning to complete the third
balance module for the sagittal step size and investigate further
improvements of the robustness against external disturbances
during walking.
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