
Fast Autonomous Landing on a Moving Target at MBZIRC

Marius Beul, Sebastian Houben, Matthias Nieuwenhuisen, and Sven Behnke

Abstract— The ability to identify, follow, approach, and
intercept a non-stationary target is a desirable capability
of autonomous micro aerial vehicles (MAV) and puts high
demands on reliable target perception, fast trajectory planning,
and stable control. We present a fully autonomous MAV that
lands on a planar platform mounted on a ground vehicle,
relying only on onboard sensing and computing.

We evaluate our system in simulation as well as with
real robot experiments. Its resilience was demonstrated at
the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) where it worked under competition conditions. Our
team NimbRo ranked third in the MBZIRC Challenge 1 and –
in combination with two other tasks – won the MBZIRC Grand
Challenge.

I. INTRODUCTION

Fast autonomous landing of micro aerial vehicles (MAV)
on moving platforms is challenging. One of the three tasks
during the Mohamed Bin Zayed International Robotics Chal-
lenge (MBZIRC) 2017 consisted of landing a flying robot
on an artificial pattern on top of a golf cart, moving with
15 km h−1 on a figure eight course (cf. Fig. 1). The arena for
this task had a size of 90 m× 60 m. The entire competition
was executed under challenging outdoor conditions with
temperatures of up to 38 ◦C and strong gusts of wind.
Although the vehicle would slow down after a given amount
of time, a team had to land the robot in the first minutes,
autonomously, and without any damage in order to receive
a high score for its run. In fact, the teams ranked highest
were able to complete the task in less than 30 s after takeoff,
including the time needed to search for the moving target.

The MBZIRC task may seem like a toy example with no
immediate application, but landing on a moving platform is
an important step towards operating MAVs in more complex
dynamical environments in the future. Not only does the task
require precise state estimation but also low-latency, accurate
detection and prediction of the target and MAV movements.
In this paper, we present our integrated MAV system de-
signed for landing on a moving platform, including

• tailored hardware design,
• robust perception and fast tracking of a landing pattern,
• state estimation for the moving target, and
• fast, analytical trajectory generation for interception.

We evaluate our approach in both simulated and robot exper-
iments, and report results from the MBZIRC competition.

This work has been supported by a grant of the Mohamed Bin Zayed
International Robotics Challenge (MBZIRC), and grants BE 2556/7-2 and
BE 2556/8-2 of the German Research Foundation (DFG).

The authors are with the Autonomous Intelligent Systems
Group, Computer Science VI, University of Bonn, Germany
mbeul@ais.uni-bonn.de

Fig. 1. Final approach only seconds before a successful landing on a
moving vehicle at the MBZIRC Grand Challenge.

II. RELATED WORK

For reasons of brevity, in this overview, we cover lines of
research performing the landing without cooperation between
the robot and the ground vehicle. Lee et al. [1] demonstrated
the viability of the task by using visual servoing in order
to maneuver above the moving pattern, and relying on
a motion-capture system for external state estimation. A
similar system was demonstrated by Serra et al. [2] who also
use visual servoing but do not rely on a vision-based distance
estimation to the target. In comparison to our system, both
approaches are evaluated with a slow or even static target.
Borowczyk et al. [3] use a system of two cameras and
filter the detections together with an IMU and GPS receiver
mounted at the target. They report landing velocities of up
to 50 km h−1. Landing indoors on an inclined plane was
achieved by Vlantis et al. [4] who designed an adapted
model-predictive controller to optimize the local trajectory
in real time. However, due to the computational demand,
optimization was done on an external base station and, thus,
required a stable network connection.

Fast real-time trajectory planning and control is an ac-
tive area of research. Ezair et al. [5] compare polynomial
trajectory generation algorithms regarding the order, state
constraints, and constraints on initial and final conditions.
In their works [6] and [7], Mueller et al. present a trajectory
generator similar to our work. It is also capable of approach-
ing the full target state (position, velocity, and acceleration)
and is real-time capable. Analogue to our approach, they use
jerk (respectively the rotational velocity ω) as system input,
but the convex optimization problem is solved numerically.
Generated trajectories are not time-optimal.

From other MBZIRC participants, we want to cite the
early work by the team of the Korea Advanced Institute

behnke
Schreibmaschine
European Conference on Mobile Robotics (ECMR), Paris, France, September 2017.

Magnetic Feet

GNSS

Switches

Front Camera

Bottom Camera

Computer

Fig. 2. Design of our MAV equipped with two cameras, magnetic feet,
and a lightweight but fast onboard PC (shielding removed for better view).

of Science and Technology [8] where landing on a larger
platform at a velocity of 0.75 m s−1 was demonstrated, but
the visual detection was still simplified by a marker reflecting
infrared light.

In contrast to prior works, the setup of the MBZIRC chal-
lenge required most of the processing (i.e., state estimation,
control, sensor processing, mission- and trajectory planning)
to take place onboard the system. With the exception of a
ground station for GPS where a reference positioning signal
is provided over WiFi if and when a connection is available,
no external resources are used in our system.

III. SYSTEM SETUP

Our MAV, shown in Fig. 2, is based on the DJI Matrice 100
platform. It is equipped with a small but fast Gigabyte GB-
BSi7T-6500 onboard PC with an Intel® Core™ i7-6500U
CPU running at 2.5/3.1 GHz and 16 GB of RAM. The
landing pattern is perceived by two Point Grey BFLY-U3-
23S6M-C greyscale cameras with 2.3 MP. The first camera—
equipped with a wide-angle lens with an apex angle of
195°× 195°—points downwards. To facilitate the detection
of a far-away pattern and to keep it in the field of view (FoV)
during descent on a glide path, the second camera—with an
apex angle of 69°× 85°— points 30° into forward direction.
Both cameras capture 40 frames per second, resulting in 80
frames per second in total.

We replaced the landing feet of the MAV with strong
magnets with a total rated force of 860 N to keep it in
place on the moving target with ferromagnetic surface after
landing. A successful landing is detected by eight micro
switches attached to the landing feet. The switches are
individually connected to an Arduino Nano v3.0 that serves
as bridge to our onboard computer.

For allocentric localization and state estimation, we em-
ploy the filter onboard the DJI flight control that incorporates
GNSS (global navigation satellite system) and IMU data. To
avoid electromagnetic interference between components—
in particular USB 3.0 and GPS—the core of our MAV
is wrapped in electromagnetic shielding material. This in-
creases the system stability significantly. Fig. 3 gives an
overview of the information flow in our system. We use the
robot operating system (ROS) as middleware on the MAV
and the ground control station. We communicate over WiFi

2x Cameras 2x Pattern Detection Filter

State Machine

Trajectory Generation

Operator

Switches

MAV
GNSS

IMU

2x40Hz

Image

2x40Hz
3D Position

50Hz

3D Position
3D Velocity

50Hz
3D Position
3D Velocity
Yaw

50Hz

Roll
Pitch
Climbrate
Yawrate

100Hz

3D Position
3D Velocity
3D Acceleration
Yaw

Onboard Computer

DJI Matrice 100

Fig. 3. Structure of our method. Green boxes represent external inputs like
sensors, blue boxes represent software modules, and the red box indicates
the MAV hardware. All software components use ROS as middleware.
Position, Velocity, Acceleration and Yaw are allocentric.

with a robust UDP protocol, developed for connections with
low-bandwidth and high-latency [9].

IV. LANDING PATTERN PERCEPTION

When detecting the pattern with a camera, one must
consider two main objectives:

• the detection process itself should be low-latency and
yield accurate results and

• the detection range should be as large as possible.

A. Landing Pattern Detection

We developed a multi-stage detection pipeline (cf. Fig. 4):
The camera image is transformed to a bird’s eye represen-
tation (cf. Fig. 4 (c))1, a segmentation step detects line-like
structures within the image (cf. Fig. 4 (d)) that are processed
via a circular Hough transform in order to generate a number
of hypotheses and their respective confidence.

Let r be the radius of the landing pattern in meters. In
order to maximize the detection range the MAV’s flying

1Please note that a) the camera setup is not aligned to the ground
plane and b) the camera may have an arbitrary orientation during rapid
manoeuvres, thus, a prior image transform is necessary.

(a) Camera image (b) Region with sufficient resolution

(c) Undistortion / homography
(d) Presegment via

gradient symmetry
(e) Generate hypothesis

(f) Compute

confidence

91%

Fig. 4. Landing pattern detection from the front camera during the
competition: (a) original camera image, (b) image regions with sufficient
resolution for pattern detection (green), insufficient resolution (yellow), and
regions above the ground plane (red), (c) bird’s eye representation from
a region with (mostly) sufficient resolution, (d) results from symmetry
segmentation shown dilated for better visibility, (e) initial hypothesis in
green, (f) confidence computation via pattern-detection overlay: green and
blue denote correct pixels, red incorrect ones.

height h, obtained by relative barometric measurements, and
its attitude, represented by the IMU gravitational vector r̂z
within camera coordinates, is taken into account. Then the
rotation matrix

R̂ := (r̂x, r̂y, r̂z)

with r̂x :=
(
0 1 0

)T × r̂z,
r̂y := r̂z × r̂x

describes the rotation from the camera frame into a camera
frame where the image plane is aligned with the ground
plane, i.e., the matrix

M := KgR̂K
−1
c

with accordingly chosen camera matrices Kg,Kc describes a
pixel coordinate transform into a bird’s eye representation via
homogeneous coordinates. Finally, taking the lens distortion
into account, we arrive at

(u, v) 7→M

(
f(u, v)

1

)
(1)

with an invertible radial-tangential lens undistortion function
f operating on the image coordinates (u, v). Kc is given by
the camera intrinsics, Kg is set to

Kg := diag
(
2r·ρ
h , 2r·ρh , 1

)
where ρ is the desired resolution of the pattern (for ρ we
choose 60 pixels or lower, depending on the maximum
possible resolution of the pattern in the original camera
image). It remains to compute those image regions that yield
at least the resolution ρmin required for detection (chosen as
20 pixels) when transformed by M . To this end, a point
grid with a fixed stride of k pixels in the original image
is mapped via M and the distance between neighboring
points is computed. If this distance is below 2rk

ρmin
, the

resolution of the the corresponding image patch is too low
for detection. The maximum rectangular region in the camera
image containing all grid points with sufficient resolution
after mapping (i.e., the maximum rectangle enclosing only
green points in Fig. 4 (b)) is computed via a heuristic
approach and the resulting region of the camera image is
subsequently transformed. In order to efficiently execute this
transform, please note that f is static such that a pixel-
wise lookup table can be precomputed. The second part of
the mapping in Equation (1) is linear-projective and can be
computed very efficiently, in particular on rectangular regions
when not the entire image has to be traversed.

For segmentation, fast symmetry detection is performed.
Local pairs of pixels with approximately converse gradients
are identified and their center is segmented if their distance
matches the expected line width of the pattern (10 cm). The
procedure is detailed in [10]. A circular Hough transform—
the approximate diameter of the circle in image dimensions
is known—provides a fixed number of hypothesis that are
subsequently confirmed if two lines with a central perpen-
dicular intersection are detected within. Finally, a confidence
measure is computed by thresholding the potential region of

the intensity image with the expected quantile of dark versus
white pixels and computing the ratio of the correct pixels
with an artificial overlay (cf. Fig. 4 (f)).

In order to meet the required latency, after a sufficiently
confident detection only a rectangular image region around
the previous position is considered in the following iterations,
reducing the algorithm to steps (c) – (f) from Fig. 4. In order
to follow the pattern as long as possible, the requirement on
minimum image resolution of the pattern is ignored during
this tracking phase.

B. Landing Pattern Tracking

To predict the movement of the landing target in a world
frame, we use a simpler version of our onboard state esti-
mation filter presented in previous work [11]. We estimate
position and velocity of the target in an allocentric frame
with a constant velocity assumption in the prediction step.
We consider detections from both cameras as independent
observations and the filter merges them to a coherent world
view. The pose of the MAV and the projection of the landing
target perceptions into the allocentric frame are subject to the
same localization error. Thus, the allocentric estimate of the
target is consistent with the egocentric control of the MAV.
Since we do not make any assumptions about the path of the
landing target, e.g., moving in an eight pattern, our method
is applicable to arbitrary pattern motions and independent
from exact absolute MAV localization.

V. LANDING CONTROL

Since the total time to land during the challenge is crucial,
we employ our time-optimal trajectory generation method
described in [12] with the extensions from [13].

A. MAV Model

We assume the MAV to follow rigid body dynamics and
simplify it as a point mass with jerk j as system input.
Following Newton’s second law, the system is a triple in-
tegrator in each dimension (x, y, z) with position p, velocity
v, acceleration a, and jerk j:

ṗ = v, v̇ = a, ȧ = j. (2)

Thus, the three-dimensional allocentric state of the MAV
x can be expressed by

x =

px py pz
vx vy vz
ax ay az

 . (3)

We assume jerk j to be the direct control input to the linear
system. Without loss of generality, we define the z-axis to
be collinear to the gravity vector. Furthermore, we define the
origin to be the middle of the arena and the xy-plane equal
with the ground plane. We do not model

• moment of inertia,
• drag,
• yaw dynamics, and
• coupling of the axes that occurs in non-hover conditions,

0.0

1.0

2.0
I II III IV V VI VII

0.0

0.5

1.0

-0.5

 0.0

 0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

-1.0

 0.0

 1.0

Fig. 5. This time-optimal trajectory was generated with our method.
Starting from state (px = 0m, vx = 0m s−1, ax = 0m s−2), it brings the
MAV to the target state (px = 2.08m, vx = 0.5m s−1, ax = 0m s−2).
The trajectory satisfies constraints vmax = 1m s−1, amax = 0.5m s−2,
and jmax = 1m s−3. The calculated switching times are t1 = 0.5 s,
t2 = 0.82 s, t3 = 0.5 s, t4 = 1.55 s, t5 = 0.4 s, t6 = 0.0 s, and
t7 = 0.4 s. The trajectory corresponds to the x-axis in Fig. 7. It is
suboptimal (maximum velocity not reached), since this axis is slowed down
to synchronize with the slower y-axis.

but rely on fast replanning to account for model uncertainties
and unmodeled effects instead. Since our model is parame-
terless, our approach generalizes to all multicopters and no
cumbersome parameter tuning is required.

B. Time-optimal Control

Based on the simple triple integrator model, our method
analytically generates third-order time-optimal trajectories
that satisfy input (jmin ≤ j ≤ jmax) and state constraints
(amin ≤ a ≤ amax, vmin ≤ v ≤ vmax). The planned
trajectory consists of up to seven phases of constant jerk
(j = jmax ∨ j = 0 ∨ j = jmin), resulting in a third-order
bang-zero-bang trajectory.

Fig. 5 shows a 1-dimensional trajectory. We synchronize
all axes to arrive at the target at the same time. By doing so,
the MAV flies on a straight glide path towards the landing
position.

Furthermore, we use the ability of our trajectory genera-
tion method to calculate an optimal interception point, based
on the current velocity of the target. We predict the target
motion and do not fly to the current target location, but
to the position, the MAV can intercept the target assuming
a constant velocity motion and respecting the MAVs con-
straints. Although the assumption of constant velocity may
not be justified in the curved parts of the figure eight since
the acceleration is relatively large (|atarget| ≈ 1 m s−2), we
found the error to be compensable by fast replanning.

C. MPC Application

We use the above mentioned trajectory generation method
as an MPC (Model Predictive Controller), running in a closed
loop with 50 Hz. Our hardware does not support directly
sending jerk commands. We therefore assume pitch and roll
to directly relate to θ = atan2(ax, g) and φ = atan2(ay, g).

TABLE I
PARAMETERS USED AT MBZIRC

Param Axis Value Param Axis Value

vmax x,y 8.33 m s−1 vmax z 1.00 m s−1

amax x,y 4.73 m s−2 amax z 10.0 m s−2

jmax x,y 5.00 m s−3 jmax z 50.0 m s−3

∆tsetp x,y 0.15 s ∆tsetp z 0.50 s

So, instead, we send smooth pitch θ and roll φ commands
for horizontal movement and smooth climb rates vz in z
direction. Due to the linearization, the acceleration constraint
relates to an attitude constraint with θmax = atan2(amax, g).

Our method plans the whole trajectory to the target instead
of relying on a small constant lookahead commonly found in
MPCs. Since the whole future trajectory is known at every
replanning time step, one can choose from which future
time ∆tsetp to send the commands to the system. If the
value is small (e.g., ∆tsetp = 0 s), the system will react
slowly. This is because small lookahead values will render
the setpoint changes from the current state to be small and
thus the underlying control loops slow. If the lookahead value
is too large, the system can become unstable or perform sub-
optimal. Also communication delay has negative impact on
the system and is compensated by choosing an appropriate
lookahead. We experimentally determined that the values
found in Tab. I offer good performance.

In Sec. V-A we report that we model the MAV in three
orthogonal axes with the z-axis collinear to the gravity vector.
The rotation about the z-axis α however is not defined.
We define the rotation to be the allocentric angle of the
current position to the target position α = atan2(pywayp

−
py, pxwayp

− px). By doing so, we project the per-axis
velocity constraint to lie in the axis of the dominant motion.
Otherwise, the global horizontal velocity constraint would
result in being vmax =

√
v2maxx

+ v2maxy
and thus violating

the maximum allowed velocity at the MBZIRC of 30 km h−1.

D. Yaw Control

Although an arbitrary number of axes can be synchronized,
we do not consider the yaw-axis to be synchronized with the
x, y and z-axis. For simplicity, we use proportional control
for the yaw-axis Ψ. The yaw rate setpoint Ψ̇setp = Kp ·
(Ψsetp −Ψ) is sent to the MAV. A couple of different yaw
behaviors can be selected by the state machine described in
Sec. VI, depending on the current situational requirement.
The MAV can point towards

• a defined allocentric yaw angle,
• the current target,
• the optimal interception point,
• forward direction (current MAV horizontal velocity vec-

tor), and
• direction of target motion (current target horizontal

velocity vector).

VI. MISSION CONTROL STATE MACHINE

The behavior of the MAV is controlled by a state machine
that serves as a generator for position, velocity, and yaw

Takeoff Fly to
Search Point

Rotate at
Search Point

Found
Pattern?

Rotate to
Pattern

Angle
< 20°?

Approach
PatternLanded?Lost

Pattern?Land?

Landing Landed? Turn Off
Rotors

Yes

No

Yes
No

No

Yes

No

Yes

No

Yes

Yes

No

Fig. 6. The flowchart of our state machine. Besides the basic behavioral
control, it features strategies to recover from failed landing approaches.

setpoints for the lower layers. Fig. 6 shows a flowchart of our
state machine. After takeoff, the MAV flies with maximum
velocity to a search point 8 m above the field, already explor-
ing the arena through rotations. When the landing pattern is
first detected, we rotate the front camera approximately into
pattern direction before starting the descent.

We restrict the descent rate based on the distance to the
target to ensure good perceivability of the pattern in the
cameras. The state machine transfers the yaw authority to
the low-level trajectory generation during pattern following.
Depending on the distance to the target, the MAV yaws
towards the target or into flight direction, to ensure that the
pattern is visible in either the bottom camera or—in stable
forward flight without fast rotations—the front camera.

The final landing decision is based on relative orientation,
distance and relative height to the pattern, and visibility in
the cameras. If the landing decision has been taken, the MAV
descents until ground contact is detected by the switches at
its feet. This is necessary as the pattern cannot be reliably
tracked during the landing due to its proximity to the MAV.

To prevent unstable behavior while manoeuvring in the
vicinity of the fast moving landing pattern or in corner cases
for the perception, the descent is completely aborted and the
landing procedure restarts from the initial search point above
the field when the pattern is lost during following. For safety,
we also detect premature landings in the pattern following
state and turn off the rotors. Since the state machine is the
only subsystem which the operator interfaces with during
flight, we built a distinct GUI for situational awareness of
the operator.

VII. EVALUATION

We evaluate our system in simulation as well as with a
real MAV. Videos of our evaluation can be found on our
website2.

A. Evaluation in Simulation

Landing on a target moving at relatively high speed
imposes a risk for the MAV and persons who move the target.
Thus, we tested all individual software components and the
integrated software system in simulation.

Fig. 7 shows our Matlab simulation for the optimal inter-
ception of a moving landing pattern. We model the MAV as
pictured in Sec. V-A. It can be seen that the MAV lunges to
eliminate any velocity difference to the target when arriving
at the interception point.

2http://www.ais.uni-bonn.de/videos/ECMR_2017_Beul

Fig. 7. Landing simulation in Matlab and Gazebo. We first simulate the
interception of the target with a simplified linear model. The MAV is marked
with a green dot. The target is marked with an solid red dot. The predicted
target trajectory is marked with a dashed line, ending in the interception
point (red ring). Subsequently, we modeled the MBZIRC arena including the
moving target in Gazebo. The MAV can be simulated with HIL, employing
a complex motion model and challenging environmental conditions.

To achieve a high level of realism, we also modeled the
MBZIRC arena and the moving target in the RotorS simu-
lator [14]. In addition to the physics-based MAV simulation
of RotorS, we implemented a hardware in the loop (HIL)
bridge, employing the DJI simulator. Here, the flight control
is connected to the DJI Assistant 2 software via USB. Instead
of controlling the motors of the real MAV, the flight control
firmware sends control commands to the simulator, where
MAV dynamics and sensors like IMU and GPS are simulated
and sent back to the flight control. Thus, for our ROS
middleware it is undeterminable if the real or the simulated
MAV is used.

B. Real-robot Evaluation at MBZIRC

Our system was used to compete in the MBZIRC. We were
able to place third in Challenge 1 and – in combination with
two other tasks – first in the Grand Challenge of the total
24 resp. 14 competitors. During the first run in Challenge 1,
we first experienced a hardware problem with the USB 3.0
connection of the front camera and were forced to restart.
After fixing this issue, we were able to successfully land in
34 s—measured from spinning up the rotors to landing on
the pattern. In total, the time from the start of the challenge
to landing—including fixing the MAV—was 112 s, resulting
in the third place in the final ranking. In order to fix the
connection, we attached more shielding for the second trial.
Unfortunately, this shielding negatively affected the compass
of the MAV so that it went into failsafe mode directly after
the start. We canceled the second trial since we could not
fix this issue fast enough to improve our time from the first
challenge run.

In the first trial of the Grand Challenge, we were able to
land in 42 s. Fig. 8 shows the trajectory and detections of
this trial. After reaching the center of the field, the MAV
searched for another 11.9 s for the target because the cart
was in a disadvantageous position. In the second trial, we
could not improve our landing time and canceled this trial
after 42 s.

Start

Landing

Fig. 8. Landing in MBZIRC Grand Challenge. First, the MAV starts in the middle of the left circle and flies straight up to a height of 1.5m to not collide
with near objects. Next, it flies to the center of the field with a height of 8m to search for the landing target. The total ascent takes 8.5 s. After 20.4 s, the
landing target is first detected in the bottom camera. Immediately, the MAV begins to descent while tracking the target in both cameras. The descent only
takes 11.6 s, resulting in a total completion time of 32 s. Due to the fast motion of the target, the MAV cannot descent fast enough to reach the target on
the straight segment and has to land in the curved segment of the figure eight. The challenge completion time from start signal to landing is 42 s. Colored
markers are placed every 250ms on the trajectory. Every 20th of all 585 detections is indicated with the corresponding viewpoint on the trajectory.

VIII. CONCLUSION

We have provided detailed insight into our robust MAV
setup for quickly landing on a fast moving target. The
viability of this approach has been demonstrated in an
outside scenario with minimum preparation time during the
MBZIRC where the MAV consistently performed the landing
as one of the fastest among all competitors.

In particular the adaptive and fast trajectory replanning
combined with a high-frequency pattern detection turned out
to reliably match direction and velocity with the moving
target. Furthermore, the use of two cameras in combination
with an adaptive yawing strategy enabled us to track the
target pattern under fast manoeuvres and in close proximity.

We believe that our contribution, but in general all expe-
rience from the MBZIRC landing challenge, will facilitate
new ideas of how to operate flying robots in dynamic—and
hence real-world—environments.

REFERENCES

[1] D. Lee, T. Ryan, and H. J. Kim, “Autonomous landing of a vtol uav
on a moving platform using image-based visual servoing,” in Proc. of
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[2] P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre,
“Landing of a quadrotor on a moving target using dynamic image-
based visual servo control,” IEEE Trans. on Robotics, vol. 32, no. 6,
pp. 1524 – 1535, 12 2016.

[3] A. Borowczyk, D.-T. Nguyen, A. P.-V. Nguyen, D. Q. Nguyen,
D. Saussié, and J. L. Ny, “Autonomous landing of a multirotor micro
air vehicle on a high velocity ground vehicle,” ArXiv e-prints, vol.
1611.07329, 11 2016.

[4] P. Vlantis, P. Marantos, C. P. Bechlioulis, and K. J. Kyriakopoulos,
“Quadrotor landing on an inclined platform of a moving ground
vehicle,” in Proc. of IEEE Int. Conf. on Robotics and Automation
(ICRA), 2015.

[5] B. Ezair, T. Tassa, and Z. Shiller, “Planning high order trajectories
with general initial and final conditions and asymmetric bounds,” The
Int. J. of Robotics Research, vol. 33, no. 6, pp. 898–916, 2014.

[6] M. W. Mueller and R. D’Andrea, “A model predictive controller for
quadrocopter state interception,” in Proc. of the European Control
Conference (ECC), 2011.

[7] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient algorithm for state-to-state quadrocopter trajectory genera-
tion and feasability verification,” in Proc of IEEE/RSJ Int Conf. on
Intelligent Robots and Systems (IROS), 2013.

[8] H. Lee, S. Jung, and D. H. Shim, “Vision-based uav landing on the
moving vehicle,” in Proc. of Int. Conf. on Unmanned Aircraft Systems
(ICUAS), 2016.

[9] M. Schwarz, T. Rodehutskors, D. Droeschel, M. Beul, M. Schreiber,
N. Araslanov, I. Ivanov, C. Lenz, J. Razlaw, S. Schüller, D. Schwarz,
A. Topalidou-Kyniazopoulou, and S. Behnke, “NimbRo Rescue: Solv-
ing disaster-response tasks through mobile manipulation robot Mo-
maro,” Journal of Field Robotics, vol. 34, no. 2, pp. 400–425, 2017.

[10] S. Houben, M. Neuhausen, M. Michael, R. Kesten, F. Mickler, and
F. Schuller, “Park marking-based vehicle self-localization with a
fisheye topview system,” J. of Real-Time Image Processing, pp. 1–
16, 2015.

[11] M. Beul, N. Krombach, Y. Zhong, D. Droeschel, M. Nieuwenhuisen,
and S. Behnke, “A high-performance mav for autonomous navigation
in complex 3d environments,” in Proc. of Int. Conf. on Unmanned
Aircraft Systems (ICUAS), 6 2015.

[12] M. Beul and S. Behnke, “Analytical time-optimal trajectory generation
and control for multirotors,” in Proc. of Int. Conf. on Unmanned
Aircraft Systems (ICUAS), 2016.

[13] ——, “Fast full state trajectory generation for multirotors,” in Proc.
of Int. Conf. on Unmanned Aircraft Systems (ICUAS), 2017.

[14] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS–a mod-
ular gazebo MAV simulator framework,” in Robot Operating System
(ROS): The complete reference, A. Koubaa, Ed., 2016, vol. 1, ch. 23,
pp. 595–625.

