
3D Planning and Trajectory Optimization for
Real-time Generation of Smooth MAV Trajectories

Matthias Nieuwenhuisen and Sven Behnke
Autonomous Intelligent Systems Group, Institute for Computer Science VI

University of Bonn, Germany

Abstract—Complex indoor and outdoor missions for au-
tonomous micro aerial vehicles (MAV) constitute a demand for
fast generation of collision-free paths in 3D space. Often not
all obstacles in an environment are known prior to the mission
execution. Consequently, the ability for replanning during a
flight is key for success. Our approach utilizes coarse grid-based
path planning with an approximate model of flight dynamics
to determine collision-free trajectories. To account for the flight
dynamics and to mitigate discretization effects, these trajectories
are further optimized with a gradient-based motion optimization
method. We evaluate our method on an outdoor map with
buildings and report trajectory costs and runtime results.

I. INTRODUCTION

In recent years, micro aerial vehicles (MAVs) became
increasingly popular for inspection and surveillance tasks. With
MAVs it is possible to reach otherwise inaccessible areas
with low effort, e.g., it is possible to inspect structures in
higher altitudes without the need for scaffolds or climbers.
Nevertheless, at the moment most of the MAVs are remotely
controlled or navigate to fixed GPS waypoints and hold the
position. This restricts the applications to well observable
obstacle-free areas in the line of sight of an operator. Flying in
more challenging 3D environments, like low altitude flight in
outdoor environments with vegetation or indoor environments,
demands a higher level of autonomy.

Especially on larger sites, a constant connection to the
MAV may not be maintainable. Also, passages may be narrow
and surrounding environmental structures may be hard to
perceive for a human operator. In order to safely navigate in
such environments, an alternative is to have an autonomous
MAV that can on its own—and without interaction with
the operator—solve well-defined sub-tasks, i.e., autonomously
approach multiple view-poses and collect (and/or transmit)
sensor information. For the autonomous operation of MAVs, a
key prerequisite is the planning of collision-free trajectories.

To quickly react on changing environments, planning times
need to be low to allow for frequent replanning. We achieve
this by employing a multi-layer approach to navigation: from
slower deliberative to fast reactive layers, including mission
planning, global and local path planning, fast local obstacle
avoidance, and robust motion controllers [1].

In contrast to fixed-wing MAVs, multirotors are capable
of flying omnidirectionally and can stop or change direction
within a short time horizon. Hence, when flying with low
velocity, the dynamics of a multirotor MAV can be neglected
on higher planning layers. When aiming at shorter mission ex-
ecution times, higher average velocities are desirable, though.

Fig. 1: Exact planning of smooth trajectories with velocity
and acceleration dimensions for MAVs is often not feasible
fast enough needed for frequent replanning. We plan coarse
3D trajectories (pink), incorporate simple assumptions about
the MAV’s dynamics (white), and optimize this initial guess
quickly to obtain a least cost kinodynamic trajectory (yellow)
w.r.t. distance to obstacles and control costs.

To achieve these, we extend our previous work on allocentric
path planning by optimizing flight trajectories with a simple
MAV dynamic model.

In this work, we employ a static environment model
acquired by SLAM from prior flights [2] or derived from other
sources, e.g., building models. To obtain smooth collision-
free trajectories, we use the gradient-based trajectory optimizer
CHOMP [3]. Trajectory optimization is prone to getting stuck
in local minima, hence, a good initialization is necessary. For
initialization, we plan coarse feasible 3D paths using a grid-
based path planner. Although, these coarse plans prevent an
optimizer to get stuck in local minima that yield unfeasible
trajectories, they are far from smooth and lack velocity and
acceleration dimensions. This leads to longer optimization
times—too long for frequent replanning.

We mitigate the influence of the suboptimal initialization
by approximating optimal velocities and accelerations with a
simple MAV dynamics model and by smoothing the input
trajectory to a trajectory requiring less control effort. With
these fast preprocessing steps, we achieve a combined planning
and optimization time of approximately 1 s for allocentric
trajectory generation, for the example depicted in Fig. 1. We
evaluate the effects of the intermediate processing steps in a
simulated large-scale outdoor environment.

behnke
Schreibmaschine
European Conference on Mobile Robots (ECMR), Lincoln, UK, September 2015.

II. RELATED WORK

The application of MAVs varies especially in the level of
autonomy—ranging from basic hovering and position hold-
ing [4] over trajectory tracking and waypoint navigation [5]
to fully autonomous navigation [6]. Particularly important for
fully autonomous operation is the ability to perceive obstacles
and to avoid collisions. Obstacle avoidance is often neglected,
e.g., by flying in a sufficient height when autonomously flying
between waypoints.

A good survey on approaches to motion planning for
MAVs is given in [7]. Due to the limited computational power
onboard the MAV, especially low computational costs are
crucial for the applicability of these methods. To meet real-
time demands, layered planning approaches are often used.

Israelsen et al. [8] present an approach to local collision
avoidance that works without global localization and can aid a
human operator to navigate safely in the vicinity of obstacles.
Our work extends the safety layer by a deliberative planning
layer based on local maps and commands.

Heng et al. [9] use a multiresolution grid map to represent
the surroundings of a quadrotor. A feasible plan is generated
with a vector field histogram. Schmid et al. [10] autonomously
navigate to user specified waypoints in a mine. The map used
for planning is created by an onboard stereo camera system. By
using rapidly exploring random belief trees (RRBT), Achtelik
et al. [11] plan paths that do not only avoid obstacles, but also
minimize the variability of the state estimation. Recent search-
based methods for obstacle-free navigation include work of
MacAllister et al. [12]. They use A* search to find a feasible
path in a four-dimensional grid map. They also incorporate
the asymmetric shape of their MAV. Cover et al. [13] use a
search-based method as well.

A two-level approach to collision-free navigation, using
artificial potential fields on the lower layer is proposed by
Ok et al. [14]. Similar to our work, completeness of the path
planner is guaranteed by an allocentric layer. Andert et al. [15]
use a three-level hierarchical behavior control algorithm to fly
a helicopter through a gate. Whalley et al. [16] employ five
navigation layers to fly 230 km with a helicopter. Obstacles are
detected and avoided with an onboard laser scanner. While in
their work sensing and consequently planning is limited to a
narrow FoV in flight direction, we employ full 3D planning,
including flying sideways and backwards. Johnson et al. [17]
use reactive obstacle avoidance on a small helicopter for
velocities up to 12 m/s.

To plan high-dimensional trajectories, often sampling-
based planners are employed, including KPIECE [18] and
randomized kinodynamic planning [19]. Implementations for
many sampling-based planners are provided in the Open
Motion Planning Library (OMPL) [20]. In addition to those
sampling-based motion planning algorithms, trajectory opti-
mization allows for efficient generation of high-dimensional
trajectories. Covariant Hamiltonian Optimization and Motion
Planning (CHOMP) is a gradient-based optimization algorithm
proposed by Ratliff et al. [3]. It uses trajectory samples,
which initially can include collisions, and performs a covariant
gradient descent by means of a differentiable cost function to
find an already smooth and collision-free trajectory. A planning
algorithm based on CHOMP is the Stochastic Trajectory

Optimization for Motion Planning (STOMP) by Kalakrishnan
et al. [21]. STOMP combines the advantages of CHOMP
with a stochastic approach. In contrast to CHOMP, it is no
longer required to use cost functions for which gradients are
available, while the performance stays comparable. This allows
to include costs with regard to, for instance, general constraints
or motor torques. Another algorithm derived from CHOMP is
ITOMP, an incremental trajectory optimization algorithm for
real-time replanning in dynamic environments [22]. In order
to consider dynamic obstacles, conservative bounds around
them are computed by predicting their velocity and future
position. Since fixed timings for the trajectory waypoints
are employed and replanning is done within a time budget,
generated trajectories may not always be collision-free.

Augugliaro et al. [23] compute collision-free trajectories
for multiple MAVs simultaneously. Other obstacles than the
MAVs are not considered here. Similar to our approach,
Richter et al. [24] plan MAV trajectories in a low dimen-
sional space (using RRT*) and optimize the trajectory with
a dynamics model afterwards to achieve short planning times.
Our approach does not have the constraint that the optimized
path has to include the planned waypoints. Another approach
using optimization by means of polynomial splines between
waypoints focuses on time-optimal trajectories computed in
real-time (Bipin et al. [25]). Collisions are avoided by interme-
diate waypoints from a high-level planner and are not explicitly
considered in the optimization process.

III. TRAJECTORY OPTIMIZATION

The static state of an MAV is a 6-tuple of a 3D position p =
(x, y, z) and a 3D rotation r = (roll, pitch, yaw). Although in
general poses of the MAV are six dimensional, for multirotors
only four dimensions can be controlled independently. The roll
and pitch angles directly influence the horizontal acceleration
of multirotors. Thus, our start and goal poses are 4D tuples
(x, y, z, θ) with a 3D position and yaw-rotation θ.

We formulate trajectory planning as an optimization prob-
lem. Accordingly, the goal is to find a trajectory, which mini-
mizes the costs calculated by a predefined cost function. As an
input, the trajectory optimizer gets a start and a goal configu-
ration x0 = (x0, y0, z0, θ0)>, xN = (xN , yN , zN , θN)> ∈ R4.
The output of the algorithm is a trajectory Θ ∈ R4×N+1

consisting of one trajectory vector Θd = (xd0, . . . , x
d
N)> ∈

RN+1 per dimension d, discretized into N + 1 waypoints
with fixed duration ∆t. Besides a cost function, the trajectory
optimizer has to be initialized with an initial trajectory, e.g.,
an interpolation between start and goal configuration. The
optimization problem we solve iteratively is defined by

min
Θ

[
N∑
i=0

q(Θd
i) +

∑
d

1

2
Θd>RΘd

]
.

Here, q(Θi) is a predefined cost function calculating the costs
for each state in Θ, Θd>RΘd is the sum of control costs along
the trajectory in dimension d with R being a matrix repre-
senting control costs. The trajectory optimizer now attempts
to solve the defined optimization problem by means of the
gradient-based optimization method CHOMP [3]. If a gradient
for the used cost function cannot be computed, an alternative is
to optimize the trajectory w.r.t. to the cost function q(Θ̃) with

Θ̃ = N (Θ,Σ) being a noisy state parameter vector with mean
Θ and covariance Σ by means of a stochastic optimizer [21].

The cost function q(Θi) is a weighted sum of I) piece-
wise linear increasing costs co induced by the proximity to
obstacles, II) squared costs ca caused by acceleration limits,
and III) squared costs cv caused by velocity constraints. The
obstacle costs co increase linear with a slope ofar from a
maximum safety distance to a minimum safety distance plus
a margin. From the minimum safety distance plus a margin to
the obstacle, the costs increase with a steeper slope oclose to
allow for gradient computation in the vicinity of obstacles.

Velocities and accelerations as derivatives of the state are
implicitly modeled by the fixed duration between discretization
steps. The trajectory optimization converges faster when the
initialization is close to the (locally) optimal trajectory. This
includes velocities and accelerations. Even though the optimal
solution is naturally not known in advance, we can make some
assumptions about the MAV dynamics that reduce the conver-
gence time and avoid unfeasible local minimum trajectories.

IV. MODEL-BASED INITIALIZATION

In order to generate a collision-free flight trajectory be-
tween mission points, we employ a three-step approach. First,
we plan a coarse obstacle-free 3D path, second, we process this
plan to fill missing dimensions (i.e., yaw rotation, velocities)
with an initial guess as close as possible to the expected final
result, and third, we optimize this initialization trajectory w.r.t.
control and obstacle costs to obtain a smooth trajectory that
can be followed with low control effort.

To efficiently obtain obstacle costs during planning, we
calculate a distance field [26] with a 20 cm resolution from
our static environment model. We propagate distances up to a
maximum distance where obstacle costs are zero. Our distance-
dependent obstacle costs are modeled as a piecewise linear
function, with decreasing costs up to a maximum distance from
obstacles of 4 m.

Initial path planning is performed in a 3D grid employ-
ing the A* algorithm. As the convex hull of our robot is
approximately a cylinder along the z-axis, we neglect the robot
orientation at this point. In later steps, we interpolate between
start and goal orientation along the trajectory. We simplify the
resulting plans to reduce discretization effects. These plans
can already be executed on the MAV with a simple position
controller, but the MAV has to lower its velocity at every
waypoint.

The hard transitions between consecutive segments of the
plan cause large acceleration changes, exceeding the MAV
dynamic limits at high velocities. Due to the low angular
resolution of the grid-based planner, the path is discontinuous
at the connection of consecutive plan segments. Hence, the
derivatives calculated by the trajectory optimizer have spikes
with high values. During the optimization process, the con-
vergence at these points is poor which increases the overall
optimization time. We employ cubic spline interpolation to
acquire smoother trajectories. The sampling points are the
endpoints of the segments from the simplified path at the
timesteps from our motion model. Splines mitigate the dis-
cretization effects leading to lower accelerations. Fig. 2 shows

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

A
cc

e
le

ra
ti

o
n
 [

m
/s

^
2

]

Timesteps [n]

Plan
Spline

Fig. 2: Accelerations of the trajectory before optimization. Ini-
tialization with the path from a grid-based planner yields high
accelerations at the connection points between plan intervals.
Spline-interpolation of the path reduces these spikes yielding
faster convergence.

the necessary accelerations to follow the planned and spline-
based trajectories. Nevertheless, splines can overshoot and
cause collisions without further processing. Furthermore, the
trajectories tend to oscillate. The derivatives at the sampling
points are omitted. Velocities and accelerations are calculated
after the interpolation. Even though the spline-based trajecto-
ries are smooth, acceleration and velocity limits can still be
violated without further optimization by non-optimal timings
and large curvature necessary to pass the planned waypoints.

To use this plan as initialization for the trajectory optimizer,
we have to rediscretize the plan to match the fixed-duration
timesteps of the parameter vector. To get an easy to compute
closed form solution for our discretization, we assume that the
MAV starts with a maximum acceleration a(0) = amax, stops
with a maximum deceleration a(T) = −amax at the end of
the trajectory, and a linear transition between these states. With
an estimated flight duration of T for the whole trajectory, we
can derive a simple motion model of the MAV for acceleration
a(t), velocity v(t), and position x(t)

a(t) = −2
amax

T
t+ amax, (1)∫

a(t)dt = v(t) = −amax

T
t2 + amaxt, (2)∫∫

a(t)dt = x(t) = −amax

3T
t3 +

1

2
amaxt

2, (3)

at time t ∈ [0, T].

With x(T) = L, given a total length L of the planned path,
and (3) we can calculate the estimated flight duration T as

L = −amax

3T
T 3 +

1

2
amaxT

2 ⇒ T =

√
6L

amax
.

With T = (N + 1)∆t, we get the necessary number of time
steps N for our trajectory discretization.

A uniform discretization of the planned path into these
N timesteps can serve as an input to the optimizer, but the
derivatives (constant velocity, zero acceleration) are far from
optimal. Hence, a large amount of optimization effort is spent
on optimizing the timing of the trajectory.

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250

Po
si

ti
o
n
 [

m
]

Timesteps [n]

w/o timing
w/ timing

Fig. 3: Uniform plan discretization (red) vs. discretization
according to motion model (blue) of the MAV’s trajectory in
the x-coordinate. Discretizing according to a motion model
facilitates faster convergence of the trajectory optimizer.

The position x(t) ∈ [0, L] is the part of the planned path
that has been traversed until time t. This can be used to
rediscretize the path with a better initial guess about veloc-
ities and accelerations that reduce the control costs over the
complete trajectory. Fig. 3 shows the effect of the timing-based
discretization on the initial parameter vector. The velocities at
the start and goal are lower and the velocity in the middle of
the trajectory is higher.

Fig. 4 shows a comparison of the position trajectories
for (x, y, z) after initial planning, spline interpolation and
optimization.

V. FREQUENT OPTIMIZATION

To cope with newly perceived obstacles and deviations
from the planned trajectory during flight, we optimize the tra-
jectory frequently. To calculate the derivatives of the trajectory
points by finite differencing [27], the parameter vectors Θd

have a padding of 6 parameters at start and end with fixed
values not changed during optimization. In the first run, the
paddings are filled with start and goal configuration of the
trajectory.

For frequent optimization, we increase the start index of
the parameters to optimize with the elapsed execution time and
move the fixed length start padding window forward with this
index. As result, the padding contains the next future timesteps
of the trajectory which are not altered in the next optimization
iteration and can be executed by the MAV during processing
of the new trajectory. This ensures feasible dynamic transitions
from the currently followed trajectory to the new optimization
result.

As the optimizer is initialized with the already optimized
trajectory from the previous iteration, the initialization steps
necessary for the first trajectory can be omitted and the
trajectory converges fast to a new local optimum in cases of
small changes in the environment, e.g., small obstacles or slow
dynamic obstacles. The optimization cannot leave local optima
if another trajectory becomes closer to a global optimum.
This can happen by newly perceived obstacles blocking or
influencing the old locally optimal trajectory. To avoid this,
we perform global replanning from points on the trajectory in
the more distant future to the goal and newly initialize and

-15

-10

-5

 0

 5

 10

x
-D

iff
e
re

n
ce

 f
ro

m
 L

in
e
 o

f
S

ig
h
t

[m
]

A* Plan
Spline

Optimized

-15

-10

-5

 0

 5

 10

 15

 20

 25

y
-D

iff
e
re

n
ce

 f
ro

m
 L

in
e
 o

f
S

ig
h
t

[m
]

A* Plan
Spline

Optimized

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200

z-
D

iff
e
re

n
ce

 f
ro

m
 L

in
e
 o

f
S

ig
h
t

[m
]

Timesteps [n]

A* Plan
Spline

Optimized

Fig. 4: Comparison of trajectories for individual position
dimensions at different stages of optimization. Planned paths
(red) with applied timing correction require still large acceler-
ations when the movement direction changes. Spline interpo-
lation (green) mitigates these effects, but tend to overshooting
and are bound to the initial plans sampling points. The opti-
mized trajectories (blue) are much smoother and reduce the
necessary control effort.

optimize the remaining part of the trajectory, similar to the
initial trajectory planning.

To perceive obstacles during flight, our MAV employs a
rotating 3D laser scanner [1]. Our scanner measures 1080
distances per scan line at 40 Hz. The maximum time for
incorporating a single scan line into the distance field is
29 ms, exceeding the time window by 4 ms. However, when
incorporating complete 3D scans of an cluttered environment
with obstacles in any direction into an empty distance field,
the updates are possible in real-time on average. On average,
the time per scan line for the first complete 3D scan of an
environment—a half rotation of the laser scanner, yielding 20
scan lines—is approximately 10 ms. With only small changes
in the environment and no movement of the MAV, distance

Fig. 5: We employ frequent optimization to recover from
disturbances during trajectory execution. In this example the
MAV follows an initial trajectory from start to goal (black).
Gusts of wind push it away from the trajectory, the colored
trajectories depict the newly optimized trajectories after every
gust of wind.

Fig. 6: OctoMap of the evaluation area. We have restricted
the maximum allowed altitude for our experiments to approx.
10 m over ground, otherwise flying at higher altitudes always
yields shortest paths. Yellow: Obstacles influencing the MAV
at 10 m altitude. Red: Obstacles the MAV cannot overfly.

field updates are performed in 0.2-5 ms per scan line.

To evaluate the capability to recover from disturbances
during trajectory execution, we simulate strong gusts of wind
while following an initial trajectory. Fig. 5 shows the resulting
trajectories in an experiment where the MAV is pushed away
3 m from its current position every second until passing a
building higher than the flight altitude. As the MAV dynamic
state is not altered and thus the motion direction cannot be
changed immediately, we move the initial part of the old
trajectory to the deviated current MAV pose. We distribute
the trajectory error over the remaining part of the trajectory.
This part is then used as initialization for optimization yielding
locally optimal trajectories to the goal.

VI. EVALUATION

We evaluate our approach on an outdoor map containing
buildings from a farm area, depicted in Fig. 6. In this en-
vironment, shortest paths are often direct connections at a

certain height. To avoid this simple solution, we restrict the
allowed flight altitude to a fixed absolute height. Depending
on the terrain elevation, this limit is 10-14 m above ground-
level. Some buildings are higher than this allowed altitude and
have to be surrounded by the MAV. The path planning grid has
a size of 100×100×14 m and a cell size of 1 m. Our distance
field is 3 m larger in every dimension to allow for correct
gradient calculations and has a resolution of 20 cm. The higher
resolution of the distance field compared to the planner grid
is exploited in the following optimization step. The allowed
minimum distance to obstacles is 2 m, the maximum distance
influenced by an obstacle is 4 m. The generation of the initial
distance field from an OctoMap takes 6.1 s. All timings are
evaluated on a single core of our MAV [28] onboard computer
equipped with an Intel Core i7-3820QM CPU running at
2.70 GHz.

In the first experiment, we plan a path of 229 m for further
optimization. A valid path is found in 0.46 s. Our second step,
the calculation of timings and spline-based-trajectories runs in
under 1 ms. Fig. 7 shows the convergence of the trajectory
optimizer in our four evaluation cases. 1) uniform sampling
of the planned path as initialization for the optimizer, 2)
sampling of the planned path according to a motion model,
3) spline interpolation with uniform sampling, 4) combining
spline interpolation and motion model. The costs of a trajectory
are a sum of state and control costs. The control costs penalize
the change in control input, i.e., minimize the jerk of the
trajectory. State costs incorporate obstacle costs, accelerations,
and velocity of the MAV. Clearly, the spline-based initializa-
tions start with much lower trajectory costs and converge faster
to the local optimum. The effect of the motion model-based
timings are visible in the plan-based initializations. The model-
based initialization combined with splines is not visible at the
beginning of the optimization. This can be explained by a
larger overshoot causing higher velocities and obstacle costs
in parts of the initial trajectory. We depict the control cost
part without state costs in Fig. 8. Here, the initialization with
motion model-based timings is better in the plan and spline
case. We achieve 25% and 34% lower control costs in the
beginning by using improved timings and approximately 75%
lower initial costs by using splines. In combination, the initial
control costs can be reduced by 77%. In normal operation of
we stop the optimization after 500 iterations. The optimization
process takes 0.96 s for trajectory points with a ∆t of 0.05 s.

Fig. 1 shows resulting trajectories from each of the pro-
cessing steps, i.e., a planned path, a spline interpolation of
this path with motion model-based timings, and the resulting
trajectory after 500 optimizer iterations.

In the second experiment, we generate trajectories for pairs
of obstacle-free start and goal poses uniformly distributed
over the evaluation area. We omit trajectories between poses
with less than 70 m distance. This results in 1,216 trajectories
with an average length of 101 m. The shortest planned path
was about 72 m, the longest trajectory was about 155 m.
We stop the optimization after 500 iterations and evaluate
the trajectory cost reduction with our proposed initializations
during optimization. We calculate the cost reduction ri after
optimizer iteration i as ri =

(
1− ci/cbasei

)
·100%. Here, cbasei

is the average cost of a trajectory after iteration i with the
baseline algorithm and ci is the average cost with the evaluated

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000

Tr
a
je

ct
o
ry

 C
o
st

s

Iteration

Plan Uniform
Spline Uniform

Plan Accel.
Spline Accel.

Fig. 7: Trajectory costs (state and control costs) per iteration
of the optimizer. Whereas the optimizer converges to nearly
the same value for all initializations, spline-based initializa-
tions (green/pink) reach a low value much faster. Also the
combination of spline-based initialization with non-uniform
accelerations (pink) reduces the convergence time.

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Tr
a
je

ct
o
ry

 C
o
st

s

Iteration

Plan Uniform
Spline Uniform

Plan Accel.
Spline Accel.

Fig. 8: Summed control costs per iteration of the optimizer.
After initialization the overall control costs of the trajectory
could be reduced by 25 - 34% by employing better timings
and by approx. 75% by using splines in this example.

initialization. Fig. 9 shows the trajectory cost at each iteration
compared to the baseline, i.e., direct initialization with the plan
from the grid-based planner. With enough iterations, the cost
reduction converges to zero as the optimization initialized with
the baseline approach will finally converge to the local opti-
mum, but this makes frequent planning unfeasible. Especially
spline-based initialization reduces the initial cost drastically.
Combined with the motion model-based timing correction,
after 500 iterations the trajectory is still less costly than with-
out. By means of spline interpolation, the initial costs can be
significantly reduced. This leads to faster convergence resulting
in 20-45% less costly trajectories after 250 iterations and 9-
24% less costly trajectories after 500 iterations, compared to
the baseline.

Employing motion model-based timings reduces the cost
at some iterations when directly applied to a planned path.
But higher velocities and accelerations in other iterations can
lead to much higher control costs in cases where connections
between plan segments have to be traversed with high speeds.
This results in low improvements or even negative effects. A
positive effect can be observed in the long run, after the initial
plan has been smoothed enough by optimization.

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

C
o
st

 R
e
d
u
ct

io
n
 [

%
]

Iteration

Timing
Spline

Both

Fig. 9: Reduction of trajectory costs compared to baseline (ini-
tialization with A* planned path) in each optimizer iteration.
The results are an average over 1,216 trajectories.

TABLE I: Runtimes of planning and optimization averaged
over 1,216 trajectories.

Mean (s) Std Dev. (s) Max. (s)
Path Planning 0.07 0.03 0.29
Optimization 0.58 0.13 1.16
Total 0.64 0.14 1.45

Tab. I shows the average and maximum runtimes of the
planning and trajectory optimization. In 98.8% of the opti-
mization runs, the summed planning and optimization times
are below 1 s. Some more complex trajectories take longer
planning and optimization time (maximum 1.45 s), yielding
an average total optimization time of 0.64 s.

We evaluated the frequent reoptimization by simulating
strong gusts of wind while the MAV follows a trajectory.
As baseline we move an initial fixed part of the trajectory
to the new MAV position and perform complete replanning
and optimization from the endpoint of that fixed trajectory
part to the goal. The fixed part is the part the MAV will
follow during replanning, due to its current dynamic state.
Fig. 10 shows the cost reduction of the trajectory during
initial optimization and while repairing the trajectory after
two gusts of wind, each pushing the MAV away 4.25 m.
Reoptimization yields a close-to-optimal cost trajectory in less
than 100 iterations. In contrast the complete replanning needs
about 500 iterations. To evaluate the overall compute time we
simulated MAV flights, disturbed every second by strong gusts
of wind. On average the reoptimization finished in 18.3% of
the time complete replanning took. The maximum was 28.3%
and the minimum 14.8%. Without disturbances the trajectory
improves with every reoptimization step.

VII. CONCLUSION

In this paper, we presented an approach to speed up
trajectory generation for MAVs based on a grid-based path
planner and the trajectory optimizer CHOMP. This allows
for frequent replanning during mission execution. This work
extends our prior work on fast MAV planning by taking
dynamic constraints of the robot into account, facilitating
higher possible execution speed. The optimized trajectories are
smooth in position, velocity, and acceleration of the MAV. Key
for accelerating the optimization process is a good guess for
an initial trajectory and its derivatives. We employ a simple

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

C
o
st

s

Iterations [n]

Initial Optimization
Reoptimization

Replanning

Fig. 10: Frequent reoptimization allows for quick reactions on
deviations while following a trajectory. The initial trajectory is
planned and optimized for 500 iterations (red). Reoptimizing
the old trajectory yields a close-to-optimal new trajectory with
fewer iterations than complete replanning.

motion derived from the acceleration capabilities of the MAV,
combined with cubic spline interpolation. This reduces the
necessary initial optimization effort drastically and allows for
fast convergence to a locally optimal and globally feasible
trajectory.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry for
Economic Affairs and Energy (BMWi) in the Autonomics for
Industry 4.0 project InventAIRy.

REFERENCES

[1] D. Droeschel, M. Nieuwenhuisen, M. Beul, D. Holz, J. Stückler, and
S. Behnke, “Multi-layered mapping and navigation for autonomous
micro aerial vehicles,” Journal of Field Robotics, available online, 2015.

[2] D. Droeschel, J. Stückler, and S. Behnke, “Local multi-resolution surfel
grids for MAV motion estimation and 3D mapping,” in Int. Conf. on
Intelligent Autonomous Systems (IAS), 2014.

[3] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C. Dellin, J. A. D. Bagnell, and S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” International Journal
of Robotics Research, vol. 32, pp. 1164–1193, 2013.

[4] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an
indoor micro quadrotor,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2004.

[5] T. Puls, M. Kemper, R. Kuke, and A. Hein, “GPS-based position con-
trol and waypoint navigation system for quadrocopters,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2009.

[6] S. Grzonka, G. Grisetti, and W. Burgard, “A fully autonomous indoor
quadrotor,” IEEE Trans. on Robotics, vol. 28, no. 1, pp. 90–100, 2012.

[7] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous uav guidance,” Journal
of Intelligent & Robotic Systems, vol. 57, no. 1-4, pp. 65–100, 2010.

[8] J. Israelsen, M. Beall, D. Bareiss, D. Stuart, E. Keeney, and J. van den
Berg, “Automatic collision avoidance for manually tele-operated un-
manned aerial vehicles,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2014.

[9] L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, F. Fraun-
dorfer, and M. Pollefeys, “Autonomous visual mapping and exploration
with a micro aerial vehicle,” Journal of Field Robotics, vol. 31, no. 4,
pp. 654–675, 2014.

[10] K. Schmid, P. Lutz, T. Tomic, E. Mair, and H. Hirschmüller, “Au-
tonomous vision-based micro air vehicle for indoor and outdoor navi-
gation,” Journal of Field Robotics, vol. 31, no. 4, pp. 537–570, 2014.

[11] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart, “Motion-
and uncertainty-aware path planning for micro aerial vehicles,” Journal
of Field Robotics, vol. 31, no. 4, pp. 676–698, 2014.

[12] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and M. Likhachev,
“Path planning for non-circular micro aerial vehicles in constrained
environments,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
2013.

[13] H. Cover, S. Choudhury, S. Scherer, and S. Singh, “Sparse tangential
network (SPARTAN): Motion planning for micro aerial vehicles,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

[14] K. Ok, S. Ansari, B. Gallagher, W. Sica, F. Dellaert, and M. Stilman,
“Path planning with uncertainty: Voronoi uncertainty fields,” in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2013.

[15] F. Andert, F.-M. Adolf, L. Goormann, and J. S. Dittrich, “Autonomous
vision-based helicopter flights through obstacle gates,” in Selected
papers from the 2nd International Symposium on UAVs. Springer,
2010, pp. 259–280.

[16] M. S. Whalley, M. D. Takahashi, J. W. Fletcher, E. Moralez, L. C. R.
Ott, L. M. G. Olmstead, J. C. Savage, C. L. Goerzen, G. J. Schulein,
H. N. Burns, and B. Conrad, “Autonomous Black Hawk in flight:
Obstacle field navigation and landing-site selection on the RASCAL
JUH-60A,” Journal of Field Robotics, vol. 31, no. 4, pp. 591–616, 2014.

[17] E. N. Johnson and J. G. Mooney, “A comparison of automatic nap-of-
the-earth guidance strategies for helicopters,” Journal of Field Robotics,
vol. 31, no. 4, pp. 637–653, 2014.

[18] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning
by interior-exterior cell exploration,” in Algorithmic Foundation of
Robotics VIII, Int. Workshop on the Algorithmic Foundations of
Robotics (WAFR), ser. Springer Tracts in Advanced Robotics, vol. 57.
Springer, 2008, pp. 449–464.

[19] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[20] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[21] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.

[22] C. Park, J. Pan, and D. Manocha, “Itomp: Incremental trajectory
optimization for real-time replanning in dynamic environments,” in
Int. Conference on Automated Planning and Scheduling (ICAPS).
AAAI, 2012.

[23] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2012.

[24] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
quadrotor flight,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2013.

[25] K. Bipin, V. Duggal, and K. M. Krishna, “Autonomous navigation
of generic quadrocopter with minimum time trajectory planning and
control,” in IEEE Int. Conf on Vehicular Electronics and Safety (ICVES),
2014.

[26] M. Kalakrishnan and K. Anderson, “MoveIt: Propagation distance
field,” Online available: github.com/ros-planning/moveit_core.

[27] B. Fornberg, “Generation of finite difference formulas on arbitrarily
spaced grids,” Mathematics of computation, vol. 51, no. 184, pp. 699–
706, 1988.

[28] D. Holz, M. Nieuwenhuisen, D. Droeschel, M. Schreiber, and
S. Behnke, “Towards multimodal omnidirectional obstacle detection
for autonomous unmanned aerial vehicles,” in Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sci. (ISPRS), vol. XL-1/W2, 2013, pp. 201–
206.

