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Abstract— Free space detection based on visual clues is an
upcoming approach in robotics. Our working domain is the
Virtual Rescue League of the RoboCup. In this domain efficient
obstacle avoidance is crucial to find victims under challenging
conditions. In this study a machine-learning approach is applied
to distinguish the difference in visual appearance of obstacles
and free space. Omnidirectional camera images are transformed
to bird-eye view, which makes comparison with local occupancy
maps possible. Bird-eye view images are automatically labeled
using Laser Range information, allowing completely autonomous
and continuous learning of accurate color models. Two color-
based models are compared; a Histogram Method and a Gaussian
Mixture Model. Both methods achieve very good performances,
with results in a high precision and recall on a typical map
from the Rescue League. The Gaussian Mixture Model achieves
the best scores with much less parameters on this map, but is
beaten by the Histogram Method on real data collected by our
Nomad robot. Additionally, the importance of the right color
normalization scheme and model parameters is demonstrated in
this study.

Index Terms— visual obstacle detection, machine learning,
omnidirectional vision

Collecting accurate information about a robot’s environment
is a very important aspect of robotics, especially when the
environment in which the robot performs its task is unstruc-
tured. Hence, many methods have been devised to extract
information about a robot’s environment based on a broad
spectrum of sensor types (i.e. visual, sonar, laser, radar, etc.).
There can be many aspects of interest in an environment which
detection methods have been designed to detect. This paper
focuses on the extension of the perception system of a rescue
robot which could be used in the Virtual Robot competition
of the RoboCup Rescue League.

The motivation behind using a visual sensor to detect free
space is the fact that visual sensors are passive sensors.
Until now, to detect obstacles and free space, rescue robots
used active sensors which emit a beam and analyze the
reflections (i.e. sonar scanners, laser scanners, etc). Though
being very accurate, active sensors have limited range and
most active sensor implementations have a limited field of
view. Additionally, active sensors are relatively heavy and
consume considerable amounts of energy, which makes them
less attractive for small mobile robots. In contrast, the limit
of a visual sensor range can lie as far as the horizon and
omnidirectional vision methods can provide a 360◦ view of the
environment. A method to identify free space based on visual
sensor data could well expand the environment observation
quality of a rescue robot. An instance of such a method has
been applied previously with great success to the DARPA
Grand Challenge, were automobile robots must detect and
avoid obstacles at great speeds [13].

Indoor this technique is typically applied in combination
with sonar measurements. With laser range scanning they
training can be much more accurate. Further, two existing
techniques for object classification based on color are
compared, including an extensive study of the sensitivity of
the parameters. Such a sensitivity study was not available
for robot applications. We combine bird-eye view images
vision with laser scanning measurements. This innovative
combination makes the automatic labeling of training
images very accurate and straightforward. Maps can be
effectively build from the the labeled bird-eye view images,
in combination with localization. With normal perspective
images this task would be very complex. This makes our
approach also particularly suitable for smaller autonomous
mobile robots were online map building is an important issue.

In this paper two color based statistical models are com-
pared which are used to identify free space in bird-eye perspec-
tive images of the robot’s environment: a RGB color histogram
pixel classifier and a hue/saturation mixture of Gaussians
pixel classifier. Using as reference laser range scanner data to
identify free space in the immediate surroundings of the rescue
robot, these statistical model based classification methods can
be trained on the spot. The same laser range data, acquired
elsewhere on the map, is used as reference to accurately
test the precision and recall of the methods. In this paper
a comparison is provided of their performance in different
environments and under different circumstances.

In Sect. I we first describe the environment in which the
identifiers have been tested as well as all the methods which
contributed to the development and validation of the free space
identifier. In this section we also describe the measures which
have been used to represent the performance of the free space
identifier methods. In Sect. II an extensive analysis of the test
results is made. In Sect. III we discuss the consequences of
these test results. We end this paper with a section containing
our conclusions and an indication of the limits and possible
usage of these methods.

A. Related Work

Shakey, the first autonomous mobile robot, already used a
simple form of visual obstacle detection [8]. In the artificial
environment of textureless floor tiles, simple edge detection
sufficed to detect obstacles. Ulrich and Nourbakhsh [14]
describe a color-based obstacle detection method used on a
mobile robot. In their work they use a mobile robot with a
normal perspective camera, combined with information about
the robot’s trajectory to find image pixels which are certain
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to belong to empty space. Sun et al. [12] combine color-
based obstacle modeling with a ”Learning from Example”
method, to perform automatic region-preferability learning,
planning and navigation in unstructured outdoor terrains. Their
approach relies on a combination of binocular and monocular
vision. In contrast, the work of Michels et al. [6] focuses on
using only monocular information in combination with color
and texture modeling to perform obstacle avoidance. First
they train a classifier on a combination of real and synthetic
labeled data, that estimates depths from single monocular
images. Reinforcement learning is next applied to a simulator
of synthetic scenes to learn a control policy that selects a
steering direction as a function of the vision system’s output.
Sridharan and Stone [11] use color information to perform
structure based learning of colors for specific objects, with
special attention to automatic model adaptation in case of
changing illumination conditions. Rauskolb et al. [9] discuss
an extension to the original Stanley [13] vision based obstacle
detection used in the DARPA Grand Challenge. They improve
the original algorithm to make it usable for the Urban
Environments, were the usability of laser range scanners is
decreased, and more preprocessing of the visual information
is required.

For omnidirectional cameras, obstacles are typically de-
tected from the optical flow, after removing the egomotion
[2]. A nice example is the visual obstacle detection developed
in the PERSES project [3]. Visual obstacle detection is
accomplished by first creating bird-eye view transformations,
and uses the difference to create panoramic optical flow
images.

I. METHOD

In this section the method is described with which free space
pixel identification has been performed. First, omnidirectional
views were collected from a simulated environment1 or from
a real dataset2. Image data obtained in this manner has then
been transformed into bird-eye views. Then, two color pixel
classifiers have been trained using laser range data to identify
free space pixels. Finally, those pixel classifiers have been
used to identify free space pixels and the results have been
compared to free space pixels identified with laser range data
to measure the performance of the pixel classifiers.

1) Bird-Eye Views: The simulation environment supports
simulation of a catadioptric omnidirectional camera providing
a 360◦ view of the robot’s environment, which is used to create
a bird-eye view of the environment, as depicted in Fig. 1.
The omnidirectional camera uses texture projection to simulate
the reflecting surface of a hyperbolic convex mirror and the
data which the camera simulation model generates has been
validated in [10].

Bird-eye views (both simulated and real) are obtained
by radial correction around the image center which is the
result of a scaled perspective projection of the ground plane.

1USARSim, the simulation environment used in the Virtual Robot
competition of the RoboCup Rescue League.

2Radish dataset provided as part of the IROS 2006 Workshop “From sensors
to human spatial concepts“.

(a) Omnidirectional image
data obtained from the
simulation environment.

(b) A bird-eye view projection
of Fig. 1a.

Fig. 1: Images depicting bird-eye view image transformation.

Fig. 2: Combination of bird-eye view and laser range data for
the real dataset. On the left the occupancy grid obtained from
the laser range data drawn on top of the bird-eye view image,
in the middle the contained pixels in the free space and on the
right the original bird-eye view image of a corridor in a home
environment.

Nayar describes a direct relation between a location in a 3D
environment and the location in the omnidirectional image
where this point can be seen if nothing obstructs the view
[7]. He describes the correspondence between a pixel in the
omnidirectional image pomni = (xomn, yomn) and a pixel in
the birds-eye view image pbe = (xbe, ybe) to be defined by the
following equations:

θ = arccos
z√

x2
be + y2

be + z2
, (1)

φ = arctan
ybe

xbe
, ρ =

h

1 + cos θ
(2)

xomn = ρ sin θ cos φ, yomn = ρ sin θ sinφ (3)

where h is the radius of the circle describing the 90◦ incidence
angle on the omnidirectional camera effective viewpoint. The
variable z is defined by the distance between the effective
viewpoint and the projection plane in pixels. These equations
can be used to construct perspectively correct images based
on omnidirectional camera data by translating 3D projection
plane pixel locations to omnidirectional pixel locations.

2) Laser Range Data: In the simulation environment the
laser range scanner is simulated by ray tracing multiple lines
from the sensor position in the simulated world. The sensor
returns the distance between the sensor and the first line
intersection with a surface (a ‘hit point’), though if the range is
beyond the sensor’s detection range, the sensor will return the
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maximum detection range for that line. Before the simulation
provides the data, a random number is added to simulate
random noise (uniformly distributed) and a distortion curve
is used to interpolate the range data to simulate a real laser
range scanner.

Multiple laser-range measurements (both real and sim-
ulated) can be accumulated in an occupancy grid, which
indicates the probability that free space is present as a
number between 0 and 1. A binary image with the same
dimensions as the bird-eye view can be created from this
probability information, by thresholding the probability values.
The information from the omnidirectional camera and the laser
range scanner can easily be fused, as illustrated in Fig. 2. Note
that the top of the robot is always visible in the omnidirectional
camera. The pixels representing the robot have been indicated
in yellow, and have not been used to train the classification
methods.

A. Color Pixel Classification Methods

The two classification methods studied in this article use
statistical models to identify color pixels based on their R, G
and B values. The concept behind these classifiers is using a
large collection of pixels of which the class (i.e. free space
or non free space) is known to determine the likelihood that
a certain rgb value belongs to a certain class. The same
methods were successfully applied earlier in another domain
by Jones and Rehg [4], to perform skin detection. As has been
explained in Sect. I-.2, laser range data has been used to obtain
a reference classification for this large set of pixels, which will
be referred to as training data and testing data.

1) Histogram Method: The first method used to identify
free space pixels was a pixel classifier based on a well
established statistical model, the color histogram. The color
histogram classifier uses training data to create a 3D histogram
with a specified number of bins per color channel. The total
number of bins (n), bins per color channel (Bcc) and bin-
length per color channel (Lcc) are three interchangeable ways
to specify the amount of bins used by the Histogram Method,
as expressed by the following equation:

Bcc = 256/Lcc, n = B3
cc (4)

The histogram counts were then converted into a discrete
probability distribution PHIST(·):

PHIST(rgb) =
c[rgb]

Tc
(5)

where c[rgb] gives the count in the histogram bin associated
with the color rgb ∈ RGB and Tc is the total count obtained
by summing the counts in all of the bins. A particular color
rgb is labeled positive by the classifier if

PHIST(rgb) ≥ Θ (6)

where 0 ≤ Θ ≤ 1 is a threshold which can be adjusted to
trade-off between correct classifications and false positives.
The sensitivity of this threshold is studied in section II. As
the classifier is trained to detect the colors of free space, all
pixels in the image can be labeled either positive or negative,
indicating the presence of free space.

2) Gaussian Mixture Model Method: The second pixel
classifier is based on another established statistical model, a
Mixture of Gaussians. Initially, a number of three dimensional
Gaussians is initiated in the RGB color space by a K-Mean
algorithm using all observed free space color values. Then,
an EM algorithm optimizes the likelihood of the distributions
with respect to these color values until convergence of the
likelihood is observed. These Gaussian distributions can subse-
quently be converted to the continuous probability distribution
PGMM (·):

PGMM (rgb) =
n∑

i=1

wiNi(rgb) (7)

where n is the total number of normal distributions N (·), and
wi is the weight applied to the distribution i and for which∑n

i=1 wi = 1. A particular color rgb ∈ RGB is labeled
positive by the classifier if

PGMM (rgb) ≥ Θ (8)

where 0 ≤ Θ ≤ 1 is again a threshold which can be adjusted
to trade-off between missed detections and false positives. As
the classifier is trained to detect the colors of free space, all
pixels in a normalized image can be labeled either positive or
negative, indicating the presence of free space.

B. Normalized RGB Color Spaces

Important for obstacle detections applications is the sen-
sitivity to shadows. A solution could be to perform the
training in another color space, such as HSI or YUV. In
the field of image processing many advanced techniques
exist to enhance or modify image data for specific purposes.
Multiple of these image modification techniques belong to
the normalization category, which is based on normalizing
the range of color values in an image. While there are
multiple types of normalization, normalizing color intensity
is one of the most commonly used [1]. This normalization
is implemented by division through the total intensity, and
provides invariance to lightning intensity differences. The
method transforms each color col : {r, g, b} ∈ [0, 255]3 in
an image according to the following formula:

colnorm : {rnorm, gnorm, bnorm} = {r, g, b} ∗ 255
r + g + b

(9)

For this project the influence of this type of normalization on
the effectiveness of the classification methods was investigated
and compared to the performance of the classification methods
based on the standard {r, g, b} values.

C. The Experimental Setup

Using the free space pixel identification method described
in Sect. I-.2, both color pixel classifiers have been trained and
tested in the following settings.

4th European Conference on Mobile Robots – ECMR’09, September 23–25, 2009, Mlini/Dubrovnik, Croatia

15



4

1) Map 1: the Maze: Synthetic testing data was obtained
by the traversal of a simulated P2DX, a 2-wheel drive pioneer
robot from ActivMedia Robotics, LLC., through a maze.
The P2DX was mounted with both a SICK Laser Scanner
LMS200 simulation model to obtain laser range data and
a Catadioptric Omnidirectional Camera simulation model to
obtain omnidirectional camera image data.

The maze is present on a map used in the 2006 RoboCup
competition; DM-compWorldDay1 250.ut23. At the start of
each test run, the robot was spawned on a location inside the
maze. Tele-operation was then used to drive around, collecting
data for training and testing purposes. In this maze, the walls
are dark green hedges and the floor consists of light green
grass. The lighting conditions are synthetic, but realistic, with
result in several shades of green inside the maze.

2) Map 2: the Home: Real testing data was obtained
by traversal of our Nomad Scout II robot through a home
environment [15]. The Nomad was equipped with a SICK
Laser Scanner LMS200, and a Catadioptric Omnidirectional
Camera constructed from a Dragonfly2 camera combined with
a convex hyperbolic mirror from Accowle. For this dataset4,
the measurements collected in the corridor of the home were
used. Here the walls are white and yellow, although many
other colors are present (e.g. a brown coat rack). The floor is
dark blue. Natural light was coming from the large windows
in the living room and bed room, but the main source of light
were the ceiling lamps.

3) Testing Parameters: To properly analyze the behavior of
both classification methods, method performance differences
have been measured by varying the following parameters:

• Number of Mixtures/Bins n - The amount of Mixtures
or Bins influences the classifier performance, as too
few mixtures/bins might make the classifier incapable of
discerning required rgb value differences, while too many
mixtures/bins will result in overfitting of the statistical
model on the training data.

• Normalized Color Space - As lighting in the environment
greatly influences the intensity with which colors are
observed, normalization is a classic method to improve
classification of colored pixels [1]. However, as the
normalization process effectively reduces the 3-D color
space to a 2-D color plane, the Mixture Components can
be trained with only two of the three normalized color
channels. The Histogram Method keeps three dimensions
but will effectively use only part of its bins.

• Threshold Θ - varying the threshold described in Equa-
tions 6 and 8 influences the amount of rgb values labeled
free-space pixels. The threshold value Θ dictates a trade
off between correct classifications and false positives and
produces optimal classification performance between 0
and 1.

Each combination of testing parameters n and Θ were tested
by performing twenty runs on images from the synthetic and
real dataset which resulted in an estimate of the method
performance including the variance. The used image set

3Available for download on: http://downloads.sourceforge.net/usarsim/
4Available for download on: http://radish.sourceforge.net/

(a) Bird-eye
view image
from the maze.

(b) The Nor-
malized version
of Fig. 3a.

(c) Free space
detected by
GMM classifier.

(d) Free space
detected by
HIST classifier.

Fig. 3: Bird-eye view images from the maze and free space
detection results.

was deliberately kepts small to allow running tests with all
parameter combinations within a reasonable time, it contained
28 images and was randomly split into half train half test
images for every run. In practice a few images are already
sufficient to train reliable color models.

II. EXPERIMENTAL RESULTS

In this section we provide detailed descriptions of exper-
imental results obtained in the test runs described in the
previous section.

A. Performance Measurement

The performance of the two free space color pixel classifiers
(Sect. I-A.1) is based on measurements of true positive tp and
true negative tn pixel classifications versus false classifications
fn of both classes.

With these measurements the precision and recall can be
calculated. Because both measures are important to build
obstacle avoidance teams, our evaluation is based on the
combination of the precision and recall. The F-measure is the
harmonic mean of precision and recall. This measure is defined
by the following formula:

precision =
tp

tp + fp
, recall =

tp

tp + fn
(10)

F =
2 · precision · recall

precision + recall
(11)

Performance scores are computed directly from the free-
space images generated by the classifiers, without any further
post processing.

B. Gaussian Mixture Model

Figures 4a and 4b display 3D plots of the measured F-
measure set against the logarithmic scale of the threshold,
log(Θ) and the normal scale of the number of Mixtures, n.
The two images display results obtained in the optimal color
space for each map. Figure 4c displays the corresponding ROC
curves [5]. The Gaussian Mixture Model is not very sensitive
for the number of Mixtures, which is visible in the flat top in
both 3D plots and overlap in the ROC curves.

The optimal F-measure measurements obtained in all four
settings have been recorded in Table Ia. For map 1, the
Maze, the GMM performed very well, with F-measure scores
of nearly 90% for both the standard and normalized RGB.
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(a) Map 1, Normalized RGB (b) Map 2, Standard RGB (c) Map 2, Standard RGB

Fig. 4: GMM Test Results. Note that the number of mixture components (n) is represented on a normal scale and threshold
values Θ are represented on a logarithmic scale.

(a) Map 1, Normalized RGB (b) Map 2, Standard RGB (c) Map 2, Standard RGB

Fig. 5: HIST Test Results. Note that both the number of bins (n) and threshold values Θ are represented on a logarithmic
scale.

For map 2, the Home, the performance is lower, but still
respectable. Normalization decreases the performance for the
real data. This is explained by the greater similarity between
the ground color and the wall color after normalization for the
real data.

C. Histogram Method

Figures 5a and 5b display 3D plots of the measured F-
measure set against the logarithmic scale of the threshold,

F±σ Standard Normalized
{n, log(Θ)} RGB RGB
Map 1 0.867±1.3e−2 0.896±6.2e−3

the Maze {1,−1.602} {1,−1.523}
Map 2 0,747±2.1e−2 0.640±2.2e−2

the Home {4,−2.602} {2,−1}
(a) Gaussian Mixture Model Results

F±σ Standard Normalized
{log(n), log(Θ)} RGB RGB
Map 1 0.858±1.7e−2 0.890±3.5e−3

the Maze {3.967,−2.523} {4.669,−2.155}
Map 2 0.753±8.7e−3 0.653±2.7e−3

the Home {5.419,−3.301} {5.419,−2.398}
(b) Histogram Method Results

TABLE I: Overview of the highest average F-measure scores
F in the 8 setups.

log(Θ) and the logarithmic scale of the number of bins,
log(n). The two images display results obtained in the optimal
color space for each map. Figure 5c displays the corresponding
ROC curves. The Histogram method is clearly sensitive for the
number of bins, which is visible in the curverture of the 3D
plot in 5b and difference between the ROC curves.

The optimal F-measure measurements obtained in all
four settings have been recorded in Table Ib. Using (4), the
optimal log(n) for the four settings can be translated back
into the following bin-length Lcc for the different settings:
12 for the Maze with Standard RGB, 7 for the Maze with
Normalized RGB, and 4 for the Home with Standard and
Normalized RGB.

For the Maze, the HIST method performed nearly as well as
GMM on the synthetic data. For the Home, the HIST method
performed slightly better than the GMM on the real data, while
color normalization lowers the results again.

III. DISCUSSION

The test results reveal the success of using both methods to
detect free space. Figure 3 gives an illustrative example of the
final classification results obtained on the Maze using the best
settings for both classifiers. The figure illustrates respectively
the classification of the Gaussian Mixture Model (GMM) using
only one component and the threshold with resulted in an F-
measure of 0.896. This F-measure corresponds with a preci-
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sion of 0.933 and a recall of 0.863. The Histogram Method
(HIST) classifier has an almost equally high performance.

The best HIST classifier in this test has a bin size of 7. It
thus has approximately (256/7)3 ≈ 50000 bins and as much
parameters. In comparison, the GMM classifier with only
one mixture component has only 12 parameters. The HIST
classifier requires more memory and has a higher likeliness
to overfit the data. Training a Histogram has complexity
linear in the data size, while training a GMM with the EM
algorithm has complexity quadratic in the number of mixture
components and linear in the data size. With a small number
of mixture components, this makes no big difference however.
Given that the GMM classifier achieves a higher accuracy
using a far lower amount of parameters, we believe it is the
preferred classifier in the simulated world.

In the real world there should be enough variation in the
perceived colors to train both the Gaussian Mixture Model
and the Histogram Method more extensively. The likeliness
of overfitting the Histogram Method on real data is strongly
reduced. The optimal F-measure of 0.753 is achieved with the
Histogram Method, with a corresponding precision of 0.917
and a recall of 0.644. When comparing the surfaces in the
upper row of Fig. 5 with those on the lower rows it is clear
that the F-measure surface is much more smooth for the real
dataset.

Normalization of the color space eliminates the effect of
shadows, and therefore positively effects the results in the
synthetic world, where the color variations are mainly due
to shadows. For the real data however, it also creates more
overlap between the free space and non-free space color
models, so there its total effect on performance is negative.

IV. CONCLUSION

In this article a method is described which is able to
learn to classify free space based on color information. The
applicability of this method is demonstrated in a simulated
world. This world allows to test in a controlled environment,
with a constant texture on the floor. The simulated world has
a constant but realistic lighting, and the same texture is seen
in variety of shades. This explains why both tested methods
work better for the Normalized color space in the Maze. Both
methods where able to visually recognize free space with a
F-measure of nearly 90%.

A real dataset was used to validate if this approach also
valuable for real robots. The algorithm was still able to classify
free space, although the performance dropped with nearly
15%. For the real data the Histogram Method outperformed the
Gaussian Mixture Model. Note that the performance measure
was calculated on pixel-level. Further processing of the free
space pixels can remove solitary regions of free space, and
group pixels into the large closed areas attractive for navigation
algorithms.

We realize that this is only a proof by example. In the
real world it is easy to find situations too difficult for this
approach: corridors with walls and floor in nearly the same
color, obstacles difficult to detect with range scanners and
appearance (stairs), fast changing lighting conditions. On the

other hand, situations suitable for this approach are also easy
to find. Floors, walls and ceilings have often a constant
color scheme. Corridors typically have no natural lighting
conditions. More extensive experiments are needed to find the
appropriate usage of this free space algorithm in robotics.

This vision based free space detection can be learned by
robots equipped with both a camera and a laser range scanner
and distributed wirelessly to other robots equiped with only a
camera. This is a realistic scenario in the Rescue League where
heterogeneous robot teams are needed to face all mobility
challenges in a disaster setting.
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