
Neural Strands: Learning Hair Geometry
and Appearance from Multi-View Images

Radu Alexandru Rosu1⋆, Shunsuke Saito3, Ziyan Wang2,3,
Chenglei Wu3, Sven Behnke1, and Giljoo Nam3

1 University of Bonn, Germany
2 Carnegie Mellon University

3 Reality Labs Research

radualexandru.github.io/neural_strands

Abstract. We present Neural Strands, a novel learning framework for
modeling accurate hair geometry and appearance from multi-view image
inputs. The learned hair model can be rendered in real-time from any
viewpoint with high-fidelity view-dependent effects. Our model achieves
intuitive shape and style control unlike volumetric counterparts. To en-
able these properties, we propose a novel hair representation based on a
neural scalp texture that encodes the geometry and appearance of indi-
vidual strands at each texel location. Furthermore, we introduce a novel
neural rendering framework based on rasterization of the learned hair
strands. Our neural rendering is strand-accurate and anti-aliased, mak-
ing the rendering view-consistent and photorealistic. Combining appear-
ance with a multi-view geometric prior, we enable, for the first time, the
joint learning of appearance and explicit hair geometry from a multi-view
setup. We demonstrate the efficacy of our approach in terms of fidelity
and efficiency for various hairstyles.

1 Introduction

Photorealistic rendering of digital humans plays an important role in many
AR/VR applications such as virtual telepresence. In recent years, data-driven
approaches have shown compelling results on geometry and appearance model-
ing of digital humans, especially for face [21, 19, 41, 43] and body [36, 2, 46].
Hair, on the other hand, still remains a challenge due to the sheer number of thin
hair strands, their complex geometric structures, and non-trivial light transport
effects such as subsurface scattering and specular reflections at microscale.

To enable strand-accurate hair reconstruction, a recent work [28] leveraged
explicit line assumption in multi-view stereo reconstruction. However, the recon-
struction does not provide complete hair strands from the root on the scalp due
to heavy self-occlusions. To date, connecting line segments from the scalp to the
tip of hair for a variety of hairstyles remains difficult without strong data prior.

⋆ Work done during an internship at Reality Labs Research, Pittsburgh, PA, USA.

https://radualexandru.github.io/neural_strands/
behnke
Schreibmaschine
European Conference on Computer Vision (ECCV), Tel Aviv, Israel, October 2022.

2 Radu Alexandru Rosu et al.

Hair geometry Rendering Ground-truth

Hair geometry Rendering Ground-truth

Hair geometry Rendering Ground-truth

Fig. 1: Given multi-view images we recover both explicit geometry (left) and
photo-realistic appearance of hair that generalizes to novel views (middle).

Appearance modeling of hair is also an active research field [17, 4]. Physics-
based rendering approaches typically require extensive light-transport compu-
tation to represent complex appearance of 3D hair strands, hence are too slow
for real-time applications. Recently, data-driven approaches [6, 45] enable pho-
torealistic rendering from geometric proxies such as orientation fields using neu-
ral rendering techniques. However, due to sub-optimal geometric quality and
feature representations, these image-space neural rendering methods typically
suffer from view-inconsistency and lack of fidelity. Volumetric rendering tech-
niques [27, 23], on the other hand, achieve view-consistent novel-view rendering,
but geometry-driven manipulation is not possible.

In this work, we present Neural Strands, a novel learning framework for
jointly modeling hair geometry and appearance, which can be readily used for
real-time rendering of photorealistic hair from an arbitrary viewpoint. Our idea
is to build a strong data prior using a strand-based generative model learned
from synthetic data. This allows us to register complete hair strands from the
partial hair reconstruction obtained by [28]. To parameterize the appearance and
geometry of complete hairstyles from registration, we further present a novel hair
representation called neural scalp textures, where each texel on a UV texture
stores a feature vector describing both the shape and appearance of a single
strand at a corresponding scalp position. With the aforementioned strand gen-
erator, the neural scalp texture is decoded into dense 3D strands, which are then
rendered into RGB images by a neural renderer.

Our strand generator is a multilayer perceptron network that takes as input
a strand shape feature vector and outputs the 3D shape of the strand. Inspired
by neural ordinary differential equations [10], we design our strand generator
to yield the first-order derivatives of a strand geometry, i.e., directional vectors
with magnitudes. A complete 3D strand shape can be obtained by integrating the
derivatives. This formulation allows for generation of smooth strands and also
enables a trade-off between compute and accuracy by changing the integration
step size. To learn a generic strand generator, we pre-train the network on a

Neural Strands 3

hair renderer

𝓡𝓡()

hair segments

3D hair strands

ℒ𝑔𝑔𝑔𝑔𝑔𝑔

composed image

GT image

ℒ𝑟𝑟𝑔𝑔𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟

𝓖𝓖()

strand
generator

shape
texture, Zg

facial geometry

appearance
texture, Za

2D descriptor map

splatting

differentiable
rasterizer

3D Strand Generation Neural Hair Rendering
RGBA image

body /
background

+

Fig. 2: System overview. A neural scalp texture describing the strand shapes is
embedded onto the scalp. A strand generator decodes the shape descriptors into
explicit strands. The 3D strands are then rasterized to the screen space. Finally,
a hair renderer decodes the 2D descriptors into an RGBA image of the hair which
is composited with the body and background. We train our system end-to-end
with both a geometrical loss towards sparse line segments and a rendering loss
towards the ground-truth images.

wide variety of strand data, resulting in a generic strand prior for robust strand
fitting to the noisy real-world scan data.

In order to render photo-realistic hair images using the generated strands,
we propose a neural hair renderer. The renderer comprises two parts: a differen-
tiable rasterizer and an image synthesizer. The rasterizer splats the appearance
feature vectors onto 2D images while being differentiable w.r.t. the 3D positions
of strands and the splatted features. The image synthesizer is a UNet architec-
ture that takes as input the rasterized feature map and yields the final rendered
images. We train all the components in an end-to-end manner with direct image
supervision. With an explicit strand representation, our method can directly edit
or control the hair for rendering, e.g. for virtual haircut or hair blowing, which
differentiates our approach from the recent work on free-viewpoint volumetric
rendering [22, 23, 27, 31].

In summary, our main contributions are:

– the first joint learning framework for high-quality strand geometry and ap-
pearance from multi-view images, which can be readily used for photo-
realistic real-time rendering of human hair,

– a highly expressive strand generative model, which enables strand-level hair
registration from partial scan data,

– a novel neural scalp texture representation that compactly models explicit
hair strand geometry and view-dependent appearance for real-time rendering

– an experiment showing that our approach enables intuitive manipulation
of 3D hair and its rendering, which remains challenging for volumetric ap-
proaches.

4 Radu Alexandru Rosu et al.

2 Related Work

2.1 Image-based Hair Modeling

Strand-based Representation. A common geometric representation for hair
modeling is a set of 3D strands, where a strand is parameterized by a sequence
of connected 3D points. To obtain 3D hair strands, typically multi-view hair
capture methods first reconstruct a low-resolution base geometry using various
image-based 3D modeling techniques, and run an additional strand-fitting pro-
cess to obtain dense 3D hair strands that are connected to the scalp [3, 24,
25, 13, 14, 12, 11]. However, these methods often lack fine details like flyaway
hairs because of the low-resolution base geometry. To overcome this limitation,
Nam et al. [28] proposed a line-based multi-view stereo (LMVS) that is tai-
lored to hair capture tasks and directly obtains 3D line segments from images.
Sun et al. [38] further improved LMVS and estimated the reflectance param-
eters of hair for photo-realistic rendering. However, the reconstructed strands
from both methods [28, 38] only cover the outer surface of hair and they are
not connected to the scalp. Another line of research focuses on single-view hair
modeling [9, 8, 5, 7, 49, 52, 50, 47]. While these works show promising results
from less constrained capture setups, due to the ill-posed nature, these meth-
ods do not provide metrically accurate 3D geometry of hair strands. Moreover,
they are not directly applicable to novel-view synthesis in a photorealistic man-
ner. In contrast, our approach jointly learns metrically accurate geometry and
appearance from multi-view images, enabling rendering from any viewpoint.
Volumetric Representation. Volumetric representation is also used for hair
modeling. Saito et al. [35] propose to regress 3D hair from a single image us-
ing volumetric orientation fields as an intermediate representation, which can
be easily handled by 3D convolutions. However, due to the low grid resolution
of voxels, fine details such as flyaway hairs are not well represented. Combined
with differentiable volumetric rendering, Neural Volumes [22] and NeRF [27]
enable highly expressive geometry and appearance modeling of objects from
multi-view images. Mixture of volumetric primitives (MVP) addresses the per-
formance bottleneck of volumetric representations by representing scenes as a
collection of small voxels [23]. While these methods enable realistic rendering of
3D hairs, lack of geometric hair control hinders us from driving and intuitive
manipulation of photorealistic hair models.

2.2 Neural Hair Rendering

Neural rendering [40] has recently gained great attention for rendering photo-
realistic images. Given 2D segmentation masks [39] and 2D orientation maps [30,
15, 33, 39], generative adversarial networks (GANs) are trained to create RGB
hair images that match the input data. By rendering these 2D features from 3D
hair strands, these approaches allow us to photorealistically render hair images
as well [45, 6]. However, we observe that rendering quality of these image-based
approaches is highly dependent on the conditioned 2D features, and often leads to

Neural Strands 5

view-inconsistent results with limited fidelity. In this work, we show that highly
accurate strands with a per-strand appearance code improve view consistency
and fidelity of neural hair rendering.

3 Overview

Fig. 2 shows the overview of our learning framework. Neural Strands consists of
three parts: neural scalp textures, strand generator, and neural hair renderer.
A neural scalp texture is a 2D UV-texture that stores either the shape (shape
texture, Zg) or the appearance (appearance texture, Za) of strands. The strand
generator, G(), is a generative neural network that transforms a strand feature
vector into a 3D strand geometry. Finally, the hair renderer, R(), is a UNet-
architecture that renders hair images from rasterized appearance feature maps.

The design of Neural Strands is motivated by several hair-specific attributes.
First, in terms of geometry, each strand has its own attachment point in 3D scalp
position. By using an explicit scalp UV-map, we can easily control or edit the
geometric features of strands based on the scalp location. The shape texture Zg

exploits this property and enables several applications such as virtual haircut and
hairstyle manipulation. Second, while hair shows extremely complex appearance
in 2D images, individual strands have a smooth color variation along their strand
directions. The complex hair appearance is determined by how the strands are
shaped in 3D and how they are projected to each viewpoint. Therefore, we
only store the low-frequency appearance information of each strand using our
appearance texture Za. The high-frequency appearance in 2D images can be
effectively represented by our rasterizer and hair renderer. This separation of
per-strand appearance modeling and rendering is one of the keys that enable
our high-fidelity results. In the following sections, we explain the details of each
component and how they form the final hair images (Section 4) and then present
the training procedure of our learning framework (Section 5).

4 Neural Strands

4.1 Neural Scalp Textures

Neural scalp textures are our base hair representation for explicit 3D geometry
and appearance of strands. Each texel in the shape texture Zg stores a feature
vector zig ∈ RDg that conveys the shape information of a single hair strand.
Since the strand roots are created in 3D to ensure uniform coverage, the strands
sample their corresponding zg from the scalp texture using bilinear interpolation.
Similarly, the appearance texture is denoted as Za and zia ∈ RDa stores the
appearance information of the strand. For the remaining of this paper, we assume
that the scalp UV-mapping is known in advance. We set the texture resolutions
to 2562 for Zg, 512

2 for Za, and Dg = 64, Da = 16.

4.2 Strand Generator

6 Radu Alexandru Rosu et al.

z

z

z

z

z

0.0

0.2

0.5

0.7

1.0

Strand Gen

Strand Gen

Strand Gen

Strand Gen

Strand Gen

Integrate

Fig. 3: The strand generator takes as in-
put the shape descriptor z and a param-
eter t ∈ [0, 1] indicating the position be-
tween root and tip. It outputs a direc-
tion vector for each section of the strand.
The directions are integrated from root
to tip in order to recover the explicit 3D
positions of the strand nodes.

A single hair strand S is a sequence
of 3D points: S = {pk}Lk=0, where L
is set to 100. The full hair shape is
a collection of strands {Sj}, where j
indexes over the strands. Our strand
generator G() is a neural network that
transforms a shape feature vector zg
into a full 3D strand geometry S, i.e.,
G() : RDg → R3×L.
Network Architecture. Inspired
by NeuralODEs [10], we model the
strand generation as an integration of
hair gradients along each strand. We
thus design the network to output fi-
nite differences along hair growing di-
rections, i.e., dk = pk −pk+1, instead
of 3D positions pk.

In order to model the high-
frequency geometric details, we imple-
ment our strand generator using the modulated SIREN [26]. Our strand gener-
ator has two multilayer perceptron (MLP) networks: a modulator and a synthe-
sizer. The modulator takes as input the strand shape feature zg and outputs
modulation vectors that modify the amplitude, frequency, and phase shift of the
sinusoidal activation functions of the synthesizer network. The SIREN[37]-based
synthesizer takes as input a parameter t ∈ [0, 1] that indicates the relative po-
sition along the strand from root (0) to tip (1). The output of the synthesizer
is a 3D directional vector dt with magnitude. The final positions of the strand
nodes are obtained by the forward Euler method, i.e., pk =

∑k
i=0 di. See Fig. 3

for illustration.
Discussion. The benefit of working in the gradient domain is that each node
of the strand has only local effect. When working directly with the positions,
rotating the hair along the root node modifies the positions of all the subse-
quent nodes of the strand since they can all be considered as a kinematic chain.
However, in the gradient domain, modifying the root node direction d0 does not
necessarily modify the rest of the directions. This independence between nodes
makes the learning easier, as the network does not need to learn the kinematic
dependency between hair nodes. In addition, long straight hair can be easily
represented by a network which outputs mostly constant directions.

4.3 Neural Hair Renderer

Since we have an explicit hair geometry {Sj} from our strand generator, we now
render the hair appearance using a differentiable rasterization-based neural ren-
derer. We take inspiration from the Neural Point-Based Graphics (NPBG) [1]
and the Deferred Neural Rendering (DNR) [42] which use a point/mesh raster-
izer. Both NPBG and DNR use a geometry proxy (points or mesh) in order to

Neural Strands 7

carry a neural descriptor either with a texture map or at a per-point level. The
neural descriptors are rasterized to a screen space and a UNet regresses the final
color image.

In our case, the geometry proxy is a 3D line segment, and the neural de-
scriptors are given by the appearance texture Za. However, hair has various
properties that need to be properly addressed. First, hair is not opaque and can
show complex scattering effects. Second, the thin geometry also tends to create
aliasing artifacts when rendered. We effectively solve these issues by using alpha
blending and let the UNet renderer directly output the alpha maps for natural
strand color blending.
Neural Hair Descriptor. The appearance texture Za stores the vectors zia for
each texel position i. For each strand Sj , we bi-linearly interpolate the neigh-
bouring four texels at the root to obtain the corresponding za for the strand. The
3D points {pk}Lk=0 belonging to the same strand Sj share the same per-strand
feature vector za. A per-point neural descriptor is then defined as a concatenated
vector of the strand feature, the point direction d, and the t parameter:

g = [za,d, t] , g ∈ RDa+3+1. (1)

The per-point descriptors are rasterized to each viewpoint via a differentiable
line rasterizer.
Differentiable Rasterization. We project the neural descriptors to screen-
space by rasterizing the strand lines. However, as näıve rasterization methods are
non-differentiable, we replace the hard rasterizer with soft-rasterization [34, 20,
48]. We first hard-rasterize unique strand indices onto the screen using OpenGL
which allow to recover for each pixel a 3D point that lies on a non-occluded strand
line. The 3D point is associated with a descriptor g̃ by linearly interpolating the
descriptors from the two points that define the strand segment. At the end of
this step, we obtain a point cloud of the visible points of the hair together with
their neural descriptors. As a second step, we project the cloud to screen and the
descriptors are bi-linearly splatted to the neighboring pixels. In the case where
multiple 3D points contribute to the same pixel, the splatted descriptor at the
pixel is defined as the weighted average of the contributing 3D points:

hu =

∑
w · g̃∑
w

, (2)

where the subscript u is the pixel index in the rasterized image space, hu is
the rasterized and averaged descriptor at the pixel, and w is the contribution
weight of each descriptor g̃. This soft-rasterization for hair is crucial to ensure
the rendering loss to be back-propagated to the neural scalp textures Zg and
Za as in Fig. 2. In order to deal with possible holes in the hair, we also splat
at multiple resolutions and concatenate each resolution with the corresponding
layer in the UNet, similar to the previous works [1, 34].
Image Generation. The multi-resolution descriptor maps are concatenated
with per-pixel viewing directions in order to model view-dependent effects and
are given as input to the UNet which predicts an RGB and an opacity map for

8 Radu Alexandru Rosu et al.

the hair. Effectively, the input to the UNet is a descriptor map of (Da +3+ 1+
3) channels concatenated to each downsampling stage of the network, and the
output is a four-channel image of RGB and alpha.

We find that the intermediate activation maps of the UNet were aliased by
the down-sampling with strided convolutions. Therefore, we replace the down-
sampling and up-sampling layers of the UNet with the anti-aliased versions used
in [16] and the activation function with their filtered leaky ReLU. We find this
change effectively solves the aliasing issue and removes temporal flickering arti-
facts when rendering novel-view images.
Image Composition. In order to blend the hair with the background and body
parts, we also learn a low-resolution texture for a body mesh and a background
mesh represented as a sphere around the subject. The background, body, and hair
are alpha-blended together in order to recover the full image. The compositing
can be viewed in Fig. 2.

5 Training

Training Neural Strands is twofold. First, we pre-train the strand generator G()
using synthetic hair models and freeze the parameters. Then, for each subject,
we optimize the feature vectors of neural scalp textures Zg and Za, as well as
the parameters of the UNet renderer R() using the pre-trained generator G().

5.1 Strand Generator

VAE Training. The role of our strand generator G() is to provide a strong prior
of realistic hair strand shapes that can be readily used for our image-based hair
modeling framework. To this end, we train it in an auto-encoder fashion with
synthetic 3D curves. Concretely, we implement it as a variational autoencoder
(VAE) [18] in order to obtain a smooth embedding of zg. The input and output
of the VAE is a strand, i.e., {pk}Lk=0 .

We design a simple encoder network with a 1D CNN. Given the 3D points
of a strand, the encoder outputs the parameters sµ and sσ of the Gaussian
distribution over the latent variables. During training, we sample zg from this
distribution using the reparameterization trick: zg = sµ + ϵ · sσ, ϵ ∼ N (0, 1).
Given the strand embedding zg, we decode it back to the original points using
the decoder G() which is implemented as a modulated SIREN.

We use the L2 loss between the predicted and ground-truth 3D points. Since
this loss gives little regard to high-frequency detail like curls, we add a loss on
the predicted directions. The data term is defined as

Ldata =

L∑
i=0

∥pi − p̃i∥22 + λd

(
1− di · d̃i

)
, (3)

where p and p̃ are the original and reconstructed points, and d and d̃ are their
directions. λd is set to 1× 10−3. We also add the Kullback–Leibler divergence

Neural Strands 9

term LKL [18]. We train the VAE with the total loss:

LV AE = Ldata + λKLLKL (N (sµ, sσ) || N (0, I)) , (4)

where λKL is set to 1× 10−3. Once the VAE is trained, we discard the encoder
network and only use the decoder as our pre-trained strand generator G().
Training Data. The dataset to train the strand generator is a set of synthetic
3D curves and each curve represents a hair strand as a sequence of 100 points.
To remove the variance between the strands, we represent each one in a local
coordinate system defined by the root position and the tangent-bitangent-normal
(TBN) at the scalp. We also augment each strand by randomly stretching each
dimension, mirroring along the tangent and bitangent vectors and rotating along
the normal.

5.2 End-to-End Optimization

Data Preparation. Given multi-view images as input, we first perform multi-
view stereo to obtain 3D geometry of the subject. We then fit the reconstructed
face geometry to the FLAME face template [19]. This fitting process gives us
a known UV-mapping for the scalp region and also effectively removes the hair
geometry in the reconstructed mesh. We also perform the line-based multi-view
stereo (LVMS) [28] to get partial hair strand reconstruction. Note that the partial
strands only include the strands in the outer surface of hair and are not connected
to the scalp. We additionally perform a diffusion algorithm based on user strokes
similar to [8] in order to resolve the directional ambiguity of the line segments
and obtain a consistent direction of growth.
End-to-end training. The input to our end-to-end optimization framework
are 1) multi-view images, 2) the fitted facial geometry, and 3) the partial hair
strands. Given the pre-trained strand generator G and input data, we jointly
optimize for the neural scalp textures Zg and Za as well as the parameters of
the UNet renderer R() for each captured subject.
Geometric Loss. The geometric loss encourages our strand generator G() to
output hair strands that align with the partial hair strands from the LMVS [28].
The loss is defined as the bi-directional Chamfer of the distance and directions
between the two point clouds:

Lgeo =
∑
x∈X

(
∥x− yx∥2 + (1− dx · dy)

)
+

∑
y∈Y

(
∥xy − y∥2 + (1− dx · dy)

)
,

(5)
where X is a set of 3D points in the generated strands, Y is a set of points in
the LMVS-reconstructed hair segments, and yx represents the point y which is
the closest one in Y to the point x. Effectively, the Chamfer distance brings the
closest points closer together and also aligns their directions.

While the geometric loss alone gives us plausible hair geometry, it can lead to
missing or sub-optimal fitting results as the LMVS-reconstructed hair segments
do not cover the entire region of the hair. Because the strands that are not

10 Radu Alexandru Rosu et al.

reconstructed from the LMVS could still be visible from the images, there is
an opportunity to supervise the strand generation with the rendering loss. We
therefore also use the rendering loss to optimize for the shape texture Zg. This is
done by back-propagating the rendering loss not only to the appearance texture
Za, but also to the shape texture Zg.
Rendering Loss. The neural rendererR() together with the appearance texture
Za is trained using a combination of L2 and LPIPS [51] loss. The rendering loss
Lrender is thus defined as:

Lrender =

N∑
n=1

(∥∥∥In − Ĩn

∥∥∥2
2
+ λLLLPIPS(In, Ĩn)

)
, (6)

where In and Ĩn are the rendered and captured images from n-th view, and N
is the number of multi-view images. We set λL = 0.1.
Alpha Loss. In order to also offer supervision to the predicted alpha, we ras-
terize the LMVS line-segments to the image. By itself, this hard LMVS mask
would be inadequate to be used as alpha supervision since it enforces a strictly
opaque hair. To remedy this, we dilate the mask and define a region without
hair that we can claim should be empty and therefore should have an alpha of 0.
After the dilation, we erode to define an interior region that we can be certain
that it should be opaque. These two regions are used for supervision, while the
border regions containing stray hairs are left unsupervised as we cannot reliably
supervise their soft opacity. The alpha map loss Lalpha is defined as:

Lalpha =

N∑
n=1

(∥∥∥An − Ãn

∥∥∥2
2
·Mn

)
, (7)

where An and Ãn are the reference alpha map from LMVS and the generated
alpha map from n-th view, and Mn is their mask of union of the interior and
exterior regions. See Fig. 4 for illustration.
Total Loss. The total loss for our end-to-end optimization is:

Ltotal = λ1Lgeo + λ2Lrender + λ3Lalpha, (8)

where λ1,λ2, and λ3 are set to 1, 1× 10−3, and 1× 10−3, respectively.
Optimization Details. Fitting the geometry of the strands based on the Cham-
fer loss to the line-segments is a highly ill-posed problem. To solve this, we pro-
pose two solutions: a coarse-to-fine and a root-to-tip optimization of the shape
texture Zg. Coarse-to-fine optimization of the scalp imposes a smoothness prior
on the features. We implement this by sampling from the texture map in the
forward pass and blurring the gradient of the loss w.r.t to the texture ∇L

∇Zg
in

the backward pass, so that neighboring pixels receive similar gradients. We start
by blurring with a large kernel and gradually decrease it until the gradient is
propagated only towards the pixels that correspond to the strand root. This
optimization scheme is similar to the Laplacian Pyramid from [42]. However,

Neural Strands 11

(a) LMVS mask (b) Mask trimap (c) Predicted alpha (d) Novel image

Fig. 4: Alpha prediction and blending. (a) Mask from LMVS; (b) Trimap ob-
tained from (a); (c) Predicted alpha map; (d) Composed image using (c).

Fig. 5: Synthetic data and geometry
reconstructions. From left: GT im-
age, LMVS geometry, our geometry,
GT geometry. Note that the strands
from LMVS are segmented and not
connected to the scalp.

a) No coarse-to-fine

nor root-to-tip

b) With coarse-to-

fine and root-to-tip

Fig. 6: Our coarse-to-fine and root-
to-tip optimization of the shape tex-
ture helps the network converge to
the correct shape.

instead of optimizing various textures at multiple resolutions, we optimize only
one, which makes it faster for training and inference.

Root-to-tip optimization is performed by starting the training with only the
roots of the strands and masking out the gradient for the rest of the strand
vertices. We linearly anneal the rest of the nodes gradually during optimization.
In addition, for stable training, we set λ2 and λ3 to 0 for the first 1,000 iterations
since at the beginning, the strands are far away from the correct hair region in
image-space. In Fig. 6 we show the impact of our coarse-to-fine and root-to-tip
optimization scheme.

12 Radu Alexandru Rosu et al.

Table 1: Comparison between the previous work LMVS [28] and our method
using synthetic dataset.

Short hair Long hair
τp/τd 1mm / 10◦ 2mm / 20◦ 3mm / 30◦ 1mm / 10◦ 2mm / 20◦ 3mm / 30◦

Method LMVS Ours LMVS Ours LMVS Ours LMVS Ours LMVS Ours LMVS Ours
Precision 56.91 52.79 93.42 92.94 98.85 98.18 26.25 32.59 75.13 71.40 93.51 71.40
Recall 12.11 13.78 30.29 48.38 46.62 71.51 16.54 14.62 39.12 42.06 54.01 62.91
F-score 19.98 21.85 45.75 63.64 63.36 82.75 20.30 20.19 51.45 52.94 68.47 66.89

6 Results

We evaluate our method using both real and synthetic data. For real images,
we use a multi-view camera dome with ∼140 cameras uniformly distributed on
a sphere of two meter diameter. For synthetic images, we use artist-created 3D
hair models. Virtual cameras are placed to mimic the real capture setup. Fig. 5
shows the synthetic renderings of two 3D models with short and long hairstyles.
We train our model for 48 h on a single NVIDIA V100 GPU.

6.1 Evaluation with Synthetic Data

Since it is impossible to obtain the ground truth geometry of hair strands from
real captured images, we use synthetic data for the evaluation. In Tab. 1, we
show quantitative comparison on recovered strand geometries over the state-
of-the-art hair geometry reconstruction method [28]. We follow the error metric
from [28, 38] and show the precision, recall, and F-scores of the reconstructed 3D
point clouds over their ground truth with various threshold values. It is shown
that the previous work [28] tends to have better precision (accuracy), whereas
our method has better recall (completeness) and F-score values in general. This
shows the effectiveness of our method to reconstruct complete hair strands that
are connected to the scalp. We further emphasize that LMVS only recovers
disjoint strand segments while our method recovers full strands of hair which
enables further applications such as animations. Fig. 5 illustrates the limitation
of [28] and how Neural Strands overcomes it.

6.2 Evaluation with Real Data

We compare our method with two view-synthesis methods, NeRF [27] and MVP [23],
that can model and render hair appearance from captured multi-view images. As
shown in Fig. 7, our method is capable of rendering highly detailed hair textures,
which is difficult to achieve with the other methods.

Tab. 2 shows quantitative comparisons. We compute PSNR, SSIM [44], and
LPIPS [51] for the hair region of nine novel-view images that are not used in
training. The numbers show the averaged values of six subjects for each method.
While our method shows the best LPIPS loss with better visual quality, PSNR
and SSIM values are slightly lower than the other methods. This is also reported
in previous works [51, 29, 32] on image quality metric; PSNR and SSIM do not

Neural Strands 13

NeRF MVP Ours G.T.

NeRF MVP Ours G.T.NeRF MVP Ours G.T.
NeRF MVP Ours G.T.NeRF MVP Ours G.T.

NeRF MVP Ours G.T.NeRF MVP Ours G.T.
NeRF MVP Ours G.T.NeRF MVP Ours G.T.

NeRF MVP Ours G.T.NeRF MVP Ours G.T.

NeRF MVP Ours G.T.NeRF MVP Ours G.T.

Fig. 7: We compare our method against NeRF [27] and MVP [23]. We render
from novel view not seen during training. Our method can achieve higher hair
detail and also recovers fine stray hairs unlike the other approaches.

Table 2: We perform better under
the perceptual metric (LPIPS), in-
dicating that ours have more realis-
tic looking hairs.

NeRF MVP Ours

PSNR (↑) 31.71 32.82 31.30
SSIM (↑) 0.9383 0.9599 0.9452

LPIPS (↓) 0.1598 0.1226 0.0811

Table 3: Our method can render a
static hair in real-time (>25 fps) and
dynamic strands at interactive rates
(>13 fps).

NeRF MVP Ours

decode (↓) - 20.40 34.54
render (↓) - 81.60 38.82

total (ms) (↓) 27,910 102.00 73.36

properly reflect the perceptual quality of reconstructed images. We also compare
the rendering time of each method in Tab. 3. Note that we only need to run the
decode step (strand generation) once, and the generated strands can be rendered
to novel viewpoints in less than 40 ms, thus achieving real-time rendering of > 25
frames per second. All experiments were conducted on a NVIDIA V100 GPU.

14 Radu Alexandru Rosu et al.

Fig. 8: Hair manipulation. Our explicit strand representation allows to directly
manipulate the hair by moving it in various directions (animation) or cutting it
to any length (haircut).

6.3 Applications

In this section, we describe two demos that show the ability of post-capture
manipulation of hair strands, which differentiates our method from other view-
synthesis methods. Please see the supplemental video for better visualization.
Virtual Haircut. By having an explicit strand with the shape texture Zg, we
can trim its length and let the neural renderer infer how the hair would look like
at the new length. In Fig. 8, we show that the UNet generalizes and produces
realistic appearance even for this hair configuration that was never seen during
training.
Animation. The explicit hair strands can also be deformed by slightly modify-
ing the direction between adjacent strand nodes to convey a sense of dynamics
of hair blowing in the wind. In Fig. 8, we show examples of animating the hair
with the appearance inferred for this novel hair configuration.
Interpretable Strand Generator. As the strands are generated from the
latent space of a VAE, we can traverse this latent space to generate novel strands.
In the supplemental video, we show that we can traverse each dimension of the
latent space and discover interpretable controls for curliness, length, etc.

7 Limitations and Future Work

Here we discuss several exciting future research directions to overcome current
limitations of our method. First, for complicated hairstyles like the hair-bun in
Fig. 7, it is challenging to infer the exact topology since most of it is occluded.
Stronger priors for hairstyles learned from various subjects could help alleviate
these issues. Second, although our hair model is fully editable, due to the compli-
cated light transport, the generated appearance may not generalize to large hair
movement, since lighting effects, like shadows, may be baked in the learned ap-
pearance. We will take it as future work to explore more physics-aware rendering
since strand-level geometry is available from our model.

Neural Strands 15

References

1. Aliev, K.A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural
Point-Based Graphics. In: Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16. pp. 696–712.
Springer (2020)

2. Bagautdinov, T., Wu, C., Simon, T., Prada, F., Shiratori, T., Wei, S.E., Xu, W.,
Sheikh, Y., Saragih, J.: Driving-signal aware full-body avatars. ACM Transactions
on Graphics (TOG) 40(4), 1–17 (2021)

3. Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R.W., Gross,
M.: Coupled 3d reconstruction of sparse facial hair and skin. ACM Transactions
on Graphics (ToG) 31(4), 117 (2012)

4. Benamira, A., Pattanaik, S.: A combined scattering and diffraction model for el-
liptical hair rendering. In: Computer Graphics Forum. vol. 40, pp. 163–175. Wiley
Online Library (2021)

5. Chai, M., Luo, L., Sunkavalli, K., Carr, N., Hadap, S., Zhou, K.: High-quality hair
modeling from a single portrait photo. ACM Transactions on Graphics (TOG)
34(6), 204 (2015)

6. Chai, M., Ren, J., Tulyakov, S.: Neural hair rendering. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVIII 16. pp. 371–388. Springer (2020)

7. Chai, M., Shao, T., Wu, H., Weng, Y., Zhou, K.: Autohair: fully automatic hair
modeling from a single image. ACM Transactions on Graphics 35(4) (2016)

8. Chai, M., Wang, L., Weng, Y., Jin, X., Zhou, K.: Dynamic hair manipulation in
images and videos. ACM Transactions on Graphics (TOG) 32(4), 75 (2013)

9. Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., Zhou, K.: Single-view hair modeling
for portrait manipulation. ACM Transactions on Graphics (TOG) 31(4), 116
(2012)

10. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differ-
ential equations. arXiv preprint arXiv:1806.07366 (2018)

11. Herrera, T.L., Zinke, A., Weber, A.: Lighting hair from the inside: A thermal
approach to hair reconstruction. ACM Transactions on Graphics (TOG) 31(6),
146 (2012)

12. Hu, L., Bradley, D., Li, H., Beeler, T.: Simulation-ready hair capture. In: Computer
Graphics Forum. vol. 36, pp. 281–294. Wiley Online Library (2017)

13. Hu, L., Ma, C., Luo, L., Li, H.: Robust hair capture using simulated examples.
ACM Transactions on Graphics (TOG) 33(4), 126 (2014)

14. Hu, L., Ma, C., Luo, L., Wei, L.Y., Li, H.: Capturing braided hairstyles. ACM
Transactions on Graphics (TOG) 33(6), 225 (2014)

15. Jo, Y., Park, J.: Sc-fegan: Face editing generative adversarial network with user’s
sketch and color. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 1745–1753 (2019)

16. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.:
Alias-free generative adversarial networks. arXiv preprint arXiv:2106.12423 (2021)

17. Khungurn, P., Marschner, S.: Azimuthal scattering from elliptical hair fibers. ACM
Transactions on Graphics (TOG) 36(2), 1–23 (2017)

18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

19. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial
shape and expression from 4d scans. ACM Trans. Graph. 36(6), 194–1 (2017)

16 Radu Alexandru Rosu et al.

20. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 7708–7717 (2019)

21. Lombardi, S., Saragih, J., Simon, T., Sheikh, Y.: Deep appearance
models for face rendering. ACM Trans. Graph. 37(4) (Jul 2018).
https://doi.org/10.1145/3197517.3201401, https://doi.org/10.1145/3197517.

3201401

22. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. ACM Trans.
Graph. 38(4) (Jul 2019). https://doi.org/10.1145/3306346.3323020, https://doi.
org/10.1145/3306346.3323020

23. Lombardi, S., Simon, T., Schwartz, G., Zollhoefer, M., Sheikh, Y., Saragih, J.: Mix-
ture of volumetric primitives for efficient neural rendering. ACM Trans. Graph.
40(4) (Jul 2021). https://doi.org/10.1145/3450626.3459863, https://doi.org/

10.1145/3450626.3459863

24. Luo, L., Li, H., Paris, S., Weise, T., Pauly, M., Rusinkiewicz, S.: Multi-view hair
capture using orientation fields. In: Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. pp. 1490–1497. IEEE (2012)

25. Luo, L., Li, H., Rusinkiewicz, S.: Structure-aware hair capture. ACM Transactions
on Graphics (TOG) 32(4), 76 (2013)

26. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker,
M.: Modulated periodic activations for generalizable local functional representa-
tions. arXiv preprint arXiv:2104.03960 (2021)

27. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean conference on computer vision. pp. 405–421. Springer (2020)

28. Nam, G., Wu, C., Kim, M.H., Sheikh, Y.: Strand-accurate multi-view hair capture.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 155–164 (2019)

29. Nilsson, J., Akenine-Möller, T.: Understanding ssim. CoRR abs/2006.13846
(2020)

30. Olszewski, K., Ceylan, D., Xing, J., Echevarria, J., Chen, Z., Chen, W., Li, H.: Intu-
itive, interactive beard and hair synthesis with generative models. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
7446–7456 (2020)

31. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5865–5874 (2021)

32. Patel, Y., Appalaraju, S., Manmatha, R.: Deep perceptual compression. CoRR
abs/1907.08310 (2019), http://arxiv.org/abs/1907.08310

33. Qiu, H., Wang, C., Zhu, H., Zhu, X., Gu, J., Han, X.: Two-phase hair image syn-
thesis by self-enhancing generative model. In: Computer Graphics Forum. vol. 38,
pp. 403–412. Wiley Online Library (2019)

34. Rückert, D., Franke, L., Stamminger, M.: Adop: Approximate differentiable one-
pixel point rendering. arXiv preprint arXiv:2110.06635 (2021)

35. Saito, S., Hu, L., Ma, C., Ibayashi, H., Luo, L., Li, H.: 3d hair synthesis using
volumetric variational autoencoders. ACM Transactions on Graphics (TOG) 37(6),
1–12 (2018)

36. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:

https://doi.org/10.1145/3197517.3201401
https://doi.org/10.1145/3197517.3201401
https://doi.org/10.1145/3197517.3201401
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/3450626.3459863
http://arxiv.org/abs/1907.08310

Neural Strands 17

Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
2304–2314 (2019)

37. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. Advances in Neural Information
Processing Systems 33 (2020)

38. Sun, T., Nam, G., Aliaga, C., Hery, C., Ramamoorthi, R.: Human hair inverse
rendering using multi-view photometric data (2021)

39. Tan, Z., Chai, M., Chen, D., Liao, J., Chu, Q., Yuan, L., Tulyakov, S., Yu,
N.: Michigan: Multi-input-conditioned hair image generation for portrait editing.
arXiv preprint arXiv:2010.16417 (2020)

40. Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-
Brualla, R., Simon, T., Saragih, J., Nießner, M., Pandey, R., Fanello, S., Wet-
zstein, G., Zhu, J.Y., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D.B.,
Zollhöfer, M.: State of the Art on Neural Rendering. Computer Graphics Forum
(EG STAR 2020) (2020)

41. Tewari, A., Zollhofer, M., Kim, H., Garrido, P., Bernard, F., Perez, P., Theobalt, C.:
Mofa: Model-based deep convolutional face autoencoder for unsupervised monocu-
lar reconstruction. In: Proceedings of the IEEE International Conference on Com-
puter Vision Workshops. pp. 1274–1283 (2017)

42. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: Image synthesis
using neural textures. ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019)

43. Tran, L., Liu, X.: Nonlinear 3d face morphable model. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 7346–7355 (2018)

44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. IEEE Trans. Image Processing 13(4),
600–612 (Apr 2004), http://dx.doi.org/10.1109/TIP.2003.819861

45. Wei, L., Hu, L., Kim, V., Yumer, E., Li, H.: Real-time hair rendering using sequen-
tial adversarial networks. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 99–116 (2018)

46. Xiang, D., Prada, F., Wu, C., Hodgins, J.: Monoclothcap: Towards temporally
coherent clothing capture from monocular rgb video. In: 2020 International Con-
ference on 3D Vision (3DV). pp. 322–332. IEEE (2020)

47. Yang, L., Shi, Z., Zheng, Y., Zhou, K.: Dynamic hair modeling from monocular
videos using deep neural networks. ACM Transactions on Graphics (TOG) 38(6),
1–12 (2019)

48. Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable sur-
face splatting for point-based geometry processing. ACM Transactions on Graphics
(TOG) 38(6), 1–14 (2019)

49. Zhang, M., Chai, M., Wu, H., Yang, H., Zhou, K.: A datadriven approach to four-
view image-based hair modeling. ACM Trans. Graph 36(4), 156 (2017)

50. Zhang, M., Zheng, Y.: Hair-gan: Recovering 3d hair structure from a single image
using generative adversarial networks. Visual Informatics 3(2), 102–112 (2019)

51. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)

52. Zhou, Y., Hu, L., Xing, J., Chen, W., Kung, H.W., Tong, X., Li, H.: Hairnet: Single-
view hair reconstruction using convolutional neural networks. In: Proceedings of
the European Conference on Computer Vision (ECCV). pp. 235–251 (2018)

http://dx.doi.org/10.1109/TIP.2003.819861

	Neural Strands: Learning Hair Geometry and Appearance from Multi-View Images

