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A1. Defending against Adversarial Evidence
Our method produces explanations based on evidence in

the image and suppresses hallucination of adversarial ev-
idence. Without our adversarial defense the optimization
can produce an explanation for any class (i.e. even for a
class visually not present in the image).

To illustrate this differently to the experiment reported in
Sec. 3.1 (Tab. 1 and Fig. 3), we show an alternative version
of the evaluation, only using a black image as input. Fig. A1
shows an explanation for the adversarial class iguana with
and without defense. For Tab. A1 we create explanations
for each of the 998 ImageNet classes, using always the same
black input image. We omit the predicted class of the black
image and the class of the starting condition (image · zero
mask). Without defense an explanation can always be gen-
erated due to hallucination of adversarial evidence. The re-
sults are comparable to the evaluation in the main paper.

A2. Implementation Details
Unless otherwise specified, the explanations are com-

puted for the most-likely class using SGD with a learning
rate of 0.1, running for 500 iterations. To improve opti-
mization and avoid instabilities, we initialize the masks m
with noise sampled for each pixel from a uniform distribu-
tion U(a, b). with U(0, 0.01) for the generation and repres-
sion game and U(0.99, 1) for the preservation and deletion
game. We normalize the gradient using its maximum value
to avoid large changes of individual mask pixels.

For the similarity metric ϕ(·, ·) we use the cross-entropy
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Fischer, Michael Herman, Anna Khoreva for discussions and feedback.

Figure A1: Explanation for the adversarial class iguana
starting from a black image. An adversarial can only be
computed without defense (generation game, GoogleNet).
Mean masks are enhanced by a factor of 10.

Model GoogleNet VGG16 AlexNet ResNet50
No Defense 100 % 100 % 100 % 100 %
Defended 0.0 % 0.1 % 0.1 % 0.0 %

Table A1: How often an adversarial class could be gen-
erated from a black image averaged over 998 ImageNet
classes (generation game, λ = 0).

for the generation and preservation game and the negative
probability for the deletion and repression game.

When computing an explanation for the most-likely
class, we use a line-search for the parameter λ to deter-
mine its optimal value. Unless otherwise noted, we iter-
atively use 13 equally spaced λ values between 10−4 and
10−10 and stop when the resulting most-likely class of eml

shifts (deletion and repression game) or achieves the highest
probability among all classes (preservation and generation
game). We use images of the ImageNet [26] validation set
and pre-trained model weights.
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A comparison of resulting masks for different learning
rates and λ values for GoogleNet computed with the dele-
tion game are shown in Fig. A2.

A higher λ value causes sparser masks due to a higher
weighting of the sparsity invoking part ‖mCT

‖1 within the
loss function (Eq. 2 and Eq. 3). Especially for higher λ
values, the resulting masks are rather independent of the
chosen learning rate of the SGD optimization.

A3. Qualitative Results
A3.1. Entropy of Reference Images

FGVis computes explanations ecT by optimizing for a
perturbed version of the input image x. The perturbation is
modelled via a removal operator Φ [17, 14, 6, 11], which
computes a weighted average between the image x and a
reference image r, using a mask mCT

:

ecT = Φ(x,mcT ) = x ·mcT + (1−mcT ) · r. (7)

A good reference image r should carry little information
and lead to a model prediction with a high entropy, mean-
ing, ideally all classes are assigned the same softmax score
(see ’Maximum (1000 classes)’ in Tab. A2 for the resulting
maximum entropy). To compare references, we report their
entropy for different models in Tab. A2.

For all models except GoogleNet the zero image refer-
ence has the highest entropy. Interestingly, for the zero
image reference, the more recent architectures (GoogleNet,
ResNet50) have a lower entropy. This indicates that these
architectures do not assign a roughly equally distributed
softmax score to all classes (as AlexNet or VGG16).

As expected, an increasing noise level σn for a Gaussian
noise image as well as a decreasing standard deviation of the
Gaussian blur filter σb reduces the entropy. Only GoogleNet
does not fully follow this characteristic.

For comparison, we report the entropy for 1000 random
ImageNet validation images for the different models.

Due to the high entropy as well as the low computational
effort of a zero reference image, we choose this reference

for FGVis.

A3.2. Class Discriminative / Fine-Grained

In Fig. A3 and Fig. A4 we show additional explanation
masks for images containing two distinct objects. The ob-
jects are chosen from highly different categories to ensure
little overlapping evidence. The explanations are computed
using the deletion game, which generates the most pleasing
class-discriminative explanations, and GoogleNet.

Note that FGVis discriminates well even if the two ob-
jects partially overlap. The figures additionally highlight
the ability of FGVis to generate fine-grained explanations.

To determine λ we use for the most-likely class the strat-
egy as described in Sec. A2. For the second class λ is opti-
mized to significantly drop the softmax score of this class.

A3.3. Investigating Biases of Training Data

Learned objects. The coexistence of objects in images of-
ten results in a learned bias. In Fig. A5, we visualize such a
bias for GoogleNet trained on ImageNet.

Sports equipment like hockey pucks or ping-pong balls
frequently appear in combination with players. This bias is
learned by the neural network and results in explanations
that also contain pixels belonging to the players. Without
deleting these pixels, the deletion game is not able to shift
the class of the images.
Learned color. We quantitatively verify the color bias re-
ported in Sec. 4.3 and show the 19 classes of ImageNet
which are most and least affected by swapping the color
in Tab. A3. We swap each of the three color channels BGR
to either RBG or GRB and calculate the ratio of maintained
true classifications on the validation data after the swap.

Fig. A6 shows explanations for the class school bus com-
puted using the preservation game for VGG. The yellow
color, also visible in the original images (Fig. A7), is domi-
nant in most of the explanations.

Fig. A8 shows explanations for the class minivan com-
puted using the preservation game for VGG. The original
color of the car is not consistently preserved. Especially for

Reference image r AlexNet GoogleNet VGG16 ResNet50
Zero image 6.90 4.08 6.31 5.09

Gaussian noise image (σn = 8) 5.11± 0.16 4.62± 0.16 5.59± 0.09 4.56± 0.14
Gaussian noise image (σn = 32) 2.61± 0.29 4.67± 0.22 4.38± 0.23 4.07± 0.30

Blurred ImageNet image (σb = 5) 3.67± 1.12 3.15± 1.31 4.08± 1.43 2.38± 1.58
Blurred ImageNet image (σb = 10) 4.56± 0.88 4.09± 1.08 4.83± 0.86 3.22± 1.25

ImageNet image 1.73± 1.43 1.09± 1.14 1.06± 1.22 0.67± 0.91
Maximum (1000 classes) 6.91 6.91 6.91 6.91

Table A2: Entropy of reference images r for different models. The entropy is averaged over 1000 random instances of each
reference image. Gaussian noise images are generated by independently sampling for each pixel from a Gaussian distribution
with zero-mean and a standard deviation of σn. The blurred ImageNet images are computed using a Gaussian blur filter with
a standard deviation of σb. For all random references we report the mean ± standard deviation of the entropy.



white or grey cars (original images in Fig. A9) the visible
color in the explanation is reduced to a greenish-blue color.

Fig. A6 and A8 show all correctly classified images for
school bus and minivan.

(a) Image

(b) Masks of class otter.

Figure A2: Comparison of resulting masks for different learning rates (lr) and λ values computed using the deletion game
and GoogleNet.



Figure A3: Explanation masks for images with multiple objects computed using the deletion game and GoogleNet. FGVis
produces class discriminative explanations, even when objects partially overlap. Note that objects not belonging to either
class, e.g. the rug in the top row, the blue sign on the chainlink fence, or the window in the bottom row vanish in the
explanation. Additionally, FGVis is able to visualize fine-grained details down to the pixel level.



Figure A4: Explanation masks for images with multiple objects computed using the deletion game and GoogleNet. FGVis
produces class discriminative explanations, even when objects partially overlap. This is especially visible in the last row
where the tennis balls are almost all removed in the explanation mask for the class strainer.



Figure A5: Visual explanations computed using the deletion game for GoogleNet. For both classes (hockey puck and ping-
pong ball) the explanation method has to additionally delete pixels of the players and the table tennis bat/ice-hockey stick to
shift the prediction of the model. This clearly highlights a bias of the data towards images which contain a puck/ball, a player
and sports equipment.



ID Class name #Images Avg. RBG, GRB RBG GRB
168 redbone 31 0.00 % 0.00 % 0.00 %
964 potpie 28 0.00 % 0.00 % 0.00 %
159 Rhodesian ridgeback 35 0.00 % 0.00 % 0.00 %
930 French loaf 27 0.00 % 0.00 % 0.00 %
234 Rottweiler 42 1.19 % 0.00 % 2.38 %
214 Gordon setter 36 1.39 % 2.78 % 0.00 %
963 pizza, pizza pie 35 1.43 % 2.86 % 0.00 %
950 orange 35 1.43 % 2.86 % 0.00 %
184 Irish terrier 33 1.52 % 0.00 % 3.03 %
962 meat loaf, meatloaf 29 1.72 % 3.45 % 0.00 %
984 rapeseed 47 2.13 % 4.26 % 0.00 %
211 vizsla, Hungarian pointer 35 2.86 % 2.86 % 2.86 %

11 goldfinch, Carduelis carduelis 48 3.12 % 0.00 % 6.25 %
934 hotdog, hot dog, red hot 40 3.75 % 2.50 % 5.00 %
218 Welsh springer spaniel 39 3.85 % 2.56 % 5.13 %
191 Airedale, Airedale terrier 37 5.41 % 5.41 % 5.41 %
163 bloodhound, sleuthhound 18 5.56 % 5.56 % 5.56 %
961 dough 15 6.67 % 0.00 % 13.33 %
263 Pembroke, Pembroke Welsh corgi 41 7.32 % 7.32 % 7.32 %
· · · · · · · · · · · · · · · · · ·
779 school bus 42 8.33 % 9.52 % 7.14 %
· · · · · · · · · · · · · · · · · ·
656 minivan 21 83.33 % 71.43 % 95.24 %
· · · · · · · · · · · · · · · · · ·
528 dial telephone, dial phone 36 95.83 % 91.67 % 100.00 %
866 tractor 37 95.95 % 91.89 % 100.00 %
572 goblet 26 96.15 % 96.15 % 96.15 %

47 African chameleon, Chamaeleo chamaeleon 40 96.25 % 95.00 % 97.50 %
302 ground beetle, carabid beetle 27 96.30 % 96.30 % 96.30 %
463 bucket, pail 27 96.30 % 96.30 % 96.30 %
717 pickup, pickup truck 28 96.43 % 100.00 % 92.86 %
178 Weimaraner 44 96.59 % 93.18 % 100.00 %
669 mosquito net 44 96.59 % 97.73 % 95.45 %
661 Model T 46 96.74 % 97.83 % 95.65 %
769 rule, ruler 36 97.22 % 100.00 % 94.44 %
771 safe 40 97.50 % 97.50 % 97.50 %
829 streetcar, tram, tramcar, trolley, ... 41 97.56 % 97.56 % 97.56 %
713 photocopier 44 97.73 % 100.00 % 95.45 %
916 web site, website, internet site, site 47 97.87 % 100.00 % 95.74 %
423 barber chair 31 98.39 % 96.77 % 100.00 %
190 Sealyham terrier, Sealyham 39 98.72 % 97.44 % 100.00 %
340 zebra 47 100.00 % 100.00 % 100.00 %
545 electric fan, blower 37 100.00 % 100.00 % 100.00 %

Table A3: Ratio of maintained true classifications on the validation data of ImageNet after swapping color channels for the
most and least affected 19 classes and minivan / school bus. Each of the three color channels BGR are swapped to either
RBG or GRB. The class ID, class name, number of truly classified images before the color swap (#Images) and percentage
of maintained classification after the swap for the average over RBG or GRB and each swap individually are reported. Most
color-dependent classes are redbone or potpie. Most color-independent classes zebra or electric fan.



Figure A6: Explanations computed using the preservation game for VGG for the class school bus.

Figure A7: Input images for the explanations in Fig. A6



Figure A8: Explanations computed using the preservation game for VGG for the class minivan.

Figure A9: Input images for the explanations in Fig. A8

A3.4. Comparison of Networks

In Fig. A10 and Fig. A11 we compare the mask and
explanation for four network architectures (GoogleNet,
VGG16, AlexNet, ResNet50) using the deletion game. Re-
spectively, in Fig. A12 and Fig. A13 we use the preservation
game for the same comparison.

For all settings the explanations of ResNet50 and
VGG16 are more dense, meaning more pixels have to be
deleted/preserved to change/preserve the class prediction.
This could be an indicator that these models are more ro-
bust, though, a detailed explanation would require further
research. Besides, the grid-like pattern for the explanations
from ResNet50, described in Sec. 4.1 are visible.

The importance of the color to classify the school bus
(described in Sec. 4.3) can be seen in Fig. A13.

For VGG16 we have observed that the pixels at the im-
age edge are in many cases highlighted in the explanations.
Furthermore, VGG16 shows pronounced edges in the expla-
nation compared to the other networks.

A3.5. Comparison of Games

In Fig. A14 and A15 the different game types
(see Sec. 3.1) are visually compared for GoogleNet.

The resulting explanations for the repression and dele-
tion game are qualitatively similar. The similarity among
the two games is due to both using the same optimization
with only a different starting condition m = 0 for the re-
pression vs. m = 1 for the deletion game. The same obser-
vation holds for the generation / preservation game.

The explanations of the repression and deletion game
are more sparse compared to the generation / preservation
game. This is most likely due to the fact that only small
parts of the image need to be suppressed to change the
model output (e.g. shifting one breed of dog to another),
though, to evoke a certain model output one needs to create
sufficient amount of evidence for this class.

During the optimization only class pixels containing ev-
idence towards the target class need to be changed for the
generation and deletion game. After optimization most of
the mask values stay zero for the generation game and one



for the deletion game. The optimized masks are thus similar
to its starting conditions.

Vice versa, the opposite holds for the preservation and
repression game.

A3.6. Further Examples

In Fig. A16, A17, A18, and A19 further explanations
computed using FGVis are shown.

A4. Quantitative Results
A4.1. Faithfulness of Explanations

To evaluate the faithfulness of our approach, we use the
deletion metric of Petsiuk et al. [32]. This metric measures
how the removal of evidence affects the prediction of the
used model. The metric assumes that an importance map is
given, which ranks all image pixels with respect to their evi-
dence for the predicted class cml (i.e. the most-likely class).
We use the mean mask (see Sec. A3.5) as the pixel-wise im-
portance map. The mean mask is computed for all images
in the ImageNet validation dataset using the deletion game
with a learning rate of 0.3 and a line-search to determine
the λ value. We iteratively use 4 equally spaced λ values
between 10−7 and 10−10 and stop when ycTe < 0.02 · ycTx ,
where ycTe is the softmax score of class cT given the expla-
nation and ycTx the corresponding score given the image.

Using the importance map, the deletion curve is gener-
ated by successively removing pixels from the input image
according to their importance and measuring the resulting
probability of the class cml (see Fig. A20c). The removed
pixels are set to zero, as proposed in Petsiuk et al. [32].
The fraction of removed pixels is increased in increments
of 0.25% for the first 100 steps and in increments of 1%
for the remaining 75 steps. In Fig. A20b, we visualize for
an example image the binary masks used to successively
set pixels to zero. For a clearer illustration, we reduced the
number of deletion steps in this figure. The deletion metric
is computed by measuring the area under the curve AUC
of the deletion curve (see Fig. A20c) using the trapezoidal
rule.

A4.2. Visual Explanation for Medical Images

Background of the disease: As people with diabetes
have a high prevalence for RDR [47], a frequent retinal
screening is recommended and deep learning algorithms
have been successfully developed to classify fundus images
([8], [20], [3], [46]). The black box character of these algo-
rithms can be reduced by visual explanation techniques as
shown in [18].

Of the publicly available 88,702 images [15] from Eye-
PACS [10], we us 80% for training and 20% for valida-
tion for a classifier with binary outcome (referable diabetic
retinopathy (RDR) vs. non-RDR) which is later used for

the weakly-supervised localization. We use a similar setup
as in [18] to train the binary classifier (RDR vs. non-RDR).

Training was conducted with the same implementation
settings as described in [18] using an adopted version of the
CNN architecture proposed by [16] for classifying retinal
images. We use leaky ReLUs as non-linearities and include
batch normalization.

The DiaretDB1 dataset [25] used to evaluate the weakly-
supervised localization is a dataset of 89 color fundus im-
ages collected at the Kuopio University Hospital, Finland.
All images have a resolution of 1500x1152 pixels and are
scaled to the input dimension of the model.

The dataset is ground truth marked by four experts. As
proposed in [25] we consider pixels as lesions if at least
three experts have agreed.

We use FGVis with a fixed λ = 10−10 and a learning rate
of 0.25 stopping if the softmax score for RDR falls below
10% with a maximum of 500 iterations.

In Fig. A21 retinal images overlaid with the ground truth
(top row) are compared to our prediction (bottom row). To
be consistent with [18] the masks m are binarized for bet-
ter visualization and to be able to quantitatively report the
sensitivity (see Tab. 3). Values greater or equal than 4% of
the maximum are set to one, the remaining pixels to zero.
The predicted pixels in the fine-grained masksmmap to the
ground truth. Note that FGVis detects these pixels as they
are the important ones to be deleted to reduce the softmax
score for RDR.

A medical expert would also look at mutations in the op-
tic disk or blood vessels which additionally are an indicator
for the disease [41]. These mutations are also highlighted
by our method. They are not labelled in the ground truth
markings leading to visual false positives (FPs).

The strength of FGVis to visualize fine-grained struc-
tures can be seen in the detection of red small dots (microa-
neurysm) which are the earliest sign of diabetic retinopa-
thy [2]. As these often merely cover some pixels in the
image, it is hard to detect them (zooming in Fig. A21 is
necessary to spot these).



Figure A10: Masks and explanations computed using the deletion game for different networks.

Figure A11: Masks and explanations computed using the deletion game for different networks.



Figure A12: Masks and explanations computed using the preservation game for different networks.

Figure A13: Masks and explanations computed using the preservation game for different networks.



Figure A14: Explanations and masks computed using the different games for GoogleNet. For the repression and deletion
game the complementary masks (1−m) are plotted to have true-color representations (see Sec. A3.4).

Figure A15: Explanations and masks computed using the different games for GoogleNet. For the repression and deletion
game the complementary masks (1−m) are plotted to have true-color representations (see Sec. A3.4).



Figure A16: Explanation masks computed using the repression game for VGG16.

Figure A17: Explanation masks computed using the repression game for VGG16.

Figure A18: Explanation masks computed using the preservation game for ResNet50.



Figure A19: Explanation masks computed using the preservation game for ResNet50.

(a) Image

(b) Binary deletion masks with fraction of removed pixels

(c) Deletion curve

Figure A20: The deletion curve (c) is computed by successively deleting pixels (b) from the image according to their impor-
tance and measuring the resulting probability of the class cml.



Figure A21: Weakly-supervised localization results on DiaretDB1 images. The top row shows fundus images, the bottom
row our detection. All images are overlaid with ground truth markings in green (hard exudates), blue (soft exudates), orange
(hemorrhages), red (red small dots). Though the network was trained in a weakly-supervised way given only the image label,
most of the regions highlighted by FGVis fall within the ground truth markings. Note that mutations in the optic disk or
blood vessels are an indicator for the disease [41] but these are not covered by the ground truth markings leading visually to
false positives. FGVis highlights part of the blood vessels and optic disks.


