Amazon Picking Challenge 2016: Team NimbRo of University of Bonn

Max Schwarz Sebastian Schüller Christian Lenz Arul Selvam Periyasamy Aura Muñoz Michael Schreiber <u>Anton Milan</u> Sven Behnke

Computer Science Institute VI - Autonomous Intelligent Systems

Outline

Control

Perception

Special Features

System Overview

Concept and Design

- UR 10: Workspace, Payload, Cost, Safety
- Single suction gripper: Avoid design complexity

Second supporting finger planned

Folding finger:
 front, top, and side grasps

Aim for highest performance at lowest complexity!

Outline

Control

Perception

Special Features

Motion Generation

- Replace complex motion planning with:
 - Keyframe-based motion generation
 - Collision detection at runtime (triggered in picking run)
- Assumption: If we can see a point, we can suction it
- Self-collision detection using >Movelt!
- Avoid collisions with shelf in IK solver!

Inverse Kinematics

- Redundancy resolution by nullspace cost optimization:
 - 1. Joint limit avoidance
 - 2. Cartesian plane avoidance (keep wrist out of shelf/tote)
 - 3. Keep linear extension short
- Robust solution using damped least squares
- For in-shelf manipulation, only position + suction direction (5D IK)

Outline

System

Special Features

Sensors

2x Intel RealSense SR-300

3 Depth measurements per pixel

- 1) Depth 1
- 2) Depth 2
- 3) RGB Stereo

Fusion: 2 out of 3

RGB

Depth

- ca. 100 images per setting (shelf/tote)
 - → 10 images per object
- Manual annotation

[Johnson et al., CVPR 2016]

a plate of food. food on a plate. a blue cup on a table. a plate of food. a blue bowl with red sauce. a bowl of soup. a cup of coffee. a bowl of chocolate. a glass of water. a plate of food. a silver metal container. a small bowl of sauce. table with food on it. a slice of orange. a table with food on it. a slice of meat. yellow and white cheese.

DenseCap

[Johnson et al., CVPR 2016]

a plate of food. food on a plate. a blue cup on a table. a plate of food. a blue bowl with red sauce. a bowl of soup. a cup of coffee. a bowl of chocolate. a glass of water. a plate of food. a silver metal container. a small bowl of sauce. table with food on it. a slice of orange. a table with food on it. a slice of meat. yellow and white cheese.

DenseCap

[Johnson et al., CVPR 2016]

a plate of food. food on a plate. a blue cup on a table. a plate of food. a blue bowl with red sauce. a bowl of soup. a cup of coffee. a bowl of chocolate. a glass of water. a plate of food. a silver metal container. a small bowl of sauce. table with food on it. a slice of orange. a table with food on it. a slice of meat. yellow and white cheese.

DenseCap

Replace Text Generation with Online SVM Training

Semantic Segmentation

[Husain et al., RA-L 2016]

3 GEFORCE GTX 3 GEFORCE GTX

Fully Convolutional Neural Network

- Pre-trained OverFeat on ImageNet
- Fine-tuned (last 3 layers) on APC Data

Training:

~ 3 hours on multiple GPUs

Testing:

~ 200 ms per image

Semantic Segmentation

RGB

Result

HHA

Combined Detection and Segmentation

- Center grasp for "standing" objects:
 - Find support area for suction close to bounding box center
- Top grasp for "lying" objects:
 - Find support area for suction close to horizontal bounding box center
- Custom rules for specific objects (9 rules in total)

6D Pose Estimation

- Capture item on turn table
- Build 3D model
- Generate proposals
- Register to test image

Pick / Stow Strategy

• Pick:

- order A ... L
- On failure, retry at end
- Drop at 3 predefined positions in tote

• Stow:

- Try to put all items into one 20 points bin
 - (select the one with most free space)
- Stow "large" items into own bin
 - (coffee, socks, paper towels, tissue box, curtain, pencil cup, mailer)
- If leftover object at end, retry segmentation with all classes

Outline

System

Control

Perception

Special Features

Foldable Funnel

Foldable Funnel

Tricky Items to Grasp

Heavy / cylindrical

→ Ensure that grasp is on **center of mass**!

Hard to suck

→ Grasp on one ball

Sucking the Pencil Cup

1. Knock over

2. Suck on bottom

Sucking the Pencil Cup

1.5x

Summary

Stow: 2nd place

Pick: 3rd place

DELFT	214
NimbRo	186
MIT	164

DELFT	105
PFN	105
NimbRo	97

Do it as simple as possible, but not simpler!

Thank you

Max Schwarz Aura Muñoz

Sebastian Schüller

Christian Lenz Michael Schreiber Anton Milan

Arul Selvam Periyasamy Sven Behnke