Perception and Planning for Humanoid Disaster-response Robots

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Some of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Soccer

Domestic service

Mobile manipulation

Bin picking

Aerial inspection

Motivation

- Capabilities of disaster-response robots were insufficient for providing effective support to rescue workers.
 - Mobility: difficulties with uneven terrain, stairs, and debris
 - Manipulation: only a single actuator with simple end-effectors
 - User interface: requires extensive training, not intuitive, situation awareness problematic
- Complexity of achievable tasks and execution speed are low

Fukushima disaster 2011, Image: Digital Globe CC 3.0.

Mobile Manipulation Robot Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

[Schwarz et al. Journal of Field Robotics 2017]

Manipulation Operator Interface

- 3D head-mounted display
- 3D environment model
 +

images

6D magnetic tracker

[Rodehutskors et al., Humanoids 2015]

Local Multiresolution Surfel Map

- Registration and aggregation of 3D laser scans
- Local multi-resolution grid
- Surfel in grid cells

Multiresolution grid

Filtering Dynamic Objects

- Maintain occupancy in each cell
- Remove measurements of empty cells

Allocentric 3D Mapping

 Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]

Valve Turning Interface

 Align wheel model with 3D points using interactive marker

[Schwarz et al. Journal of Field Robotics 2017]

23:25:56 05/06/2015 UTC

H

4x

23:28:21 05/06/2015 UTC

4x

02:23:20 07/06/2015 UTC

O

4X

Debris Tasks

23:36:46 05/06/2015 UTC

16h

2

VALLENGE

C

-6

Team NimbRo Rescue

KEEP OUT

Best European Team (4th place overall), solved seven of eight tasks in 34 minutes

DLR SpaceBot Cup 2015

Mobile manipulation in rough terrain

Autonomous Mission Execution

 3D mapping, localization, mission and navigation planning

3D object perception and grasping

[Schwarz et al. Frontiers 2016]

Navigation Planning

- Costs from local height differences
- A* path planning

[Schwarz et al., Frontiers in Robotics and Al 2016]

3D Map

Improved Sensor Head

- Continuously rotating Velodyne Puck VLP-16
 - 300,000 3D points/s
 - 100 m range
 - Spherical field of view
- Three wide-angle color cameras (total FoV 210×103°)
- Kinect V2 RGB-D camera on pan-tilt unit

3D Map of Indoor+Outdoor Scene

[Droeschel et al., Robotics and Autonomous Systems 2017]

Considering Robot Footprint

- Costs for individual wheel pairs from height differences
- Base costs
- Non-linear combination yields
 3D (x, y, θ) cost map

[Klamt and Behnke, IROS 2017]

3D Driving Planning (x, y, \theta): A*

16 driving directions

Orientation changes

=> Obstacle between wheels

UNIVERSITÄ'

Making Steps

- If not drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable

[Klamt and Behnke: IROS 2017]

Planning for Challenging Scenarios

[Klamt and Behnke: IROS 2017]

Centauro Robot

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

Main Operator Telepresence Interface

- Tendon-driven dual-arm exoskeleton
- Active wrist with differential tendon transmission
- Underactuated hand exoskeleton
- Head-mounted display
- Foot pedals

Main Operator Control

Manipulation Tasks

- Surface
- Valve (lever)
- Valve (gate)
- Snap hook
- Fire hose
- 230V connector
- Cutting tool
- Driller
- Screw driver
- Grasping

Used control interfaces

Turning a Valve

Connecting a Plug

Manipulation Tasks

- Surface
- Valve (lever)
- Valve (gate)
- Snap hook
- Fire hose
- 230V connector
- Cutting tool
- Driller
- Screw driver
- Grasping

Used control interfaces

3D Mapping and Localization

Walking over a Step Field

Terrain Classification

[Schilling et al., IROS 2017]

Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level	Map Resolution		Map Features		Robot Representation		Action Semantics		
1		• 2.5 cm • 64 orient.		• Height			\wedge	• Individual Foot Actions	
2		• 5.0 cm • 32 orient.		● Height ● Height Difference				• Foot Pair Actions	
3		● 10 cm ● 16 orient.		HeightHeight DifferenceTerrain Class				• Whole Robot Actions	

[Klamt and Behnke, IROS 2017, ICRA 2018]

Deep Learning Object Detection

CENTAURO Workspace Perception Data Set

129 frames, 6 object classes

https://www.centauro-project.eu/data_multimedia/tools_data

Tool Detection Results

[Schwarz et al. IJRR 2017]

extension_box stapler driller clamp [background]

Resolution	Clamp	Door handle	Driller	Extension	Stapler	Wrench	Mean
	AP / F1						
720×507	0.881/0.783	0.522/0.554	0.986/0.875	1.000/0.938	0.960/0.814	0.656/0.661	0.834/0.771
1080×760 1470×1035	0.926/0.829 0.913/0.814	0.867/0.632 0.974/0.745	0.972/0.893 1.000/0.915	1.000/0.950 1.000/0.952	0.992/0.892 0.999/0.909	0.927/0.848 0.949/0.860	0.947/0.841 0.973/0.866

Tools Detection Examples

[Schwarz et al. IJRR 2017]

Semantic Segmentation

Deep CNN

[Husain et al. RA-L 2016]

Pixel-wise accuracy:

Clamp	Door handle	Driller	Extension	$\operatorname{Stapler}$	Wrench	Background	Mean
0.727	0.751	0.769	0.889	0.775	0.734	0.992	0.805

RefineNet for Semantic Segmentation

- Scene represented as feature hierarchy
- Corse-to-fine semantic segmentation
- Combine higher-level features with missing details

The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in two ways:

Generating data:

Automatic data capture, online mesh databases, scene synthesis

2. Improving generalization: Object-centered models, deformable registration, transfer learning, semi-supervised learning

Object Capture and Scene Rendering

[Schwarz et al. ICRA 2018]

Semantic Segmentation Example

bronze_wire_cup conf: 0.749401 irish_spring_soap conf: 0.811500 playing_cards conf: 0.813761 w_aquarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467 paper_towels conf: 0.903645 white_facecloth conf: 0.895212 hand_weight conf: 0.928119 robots_everywhere conf: 0.930464

mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015

fiskars_scissors conf: 0.831069 ice_cube_tray conf: 0.976856

48

Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates

UNIVERSITÄT

From Turntable Captures to Textured Meshes

Transfer of Manipulation Skills

Objects belonging to the same category can be handled in a very similar manner.

Transfer of Manipulation Skills

Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations

Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]

Shape-aware Non-rigid Registration

Partial view of novel instance

[Rodriguez and Behnke ICRA 2018]

Shape-aware Registration for Grasp Transfer

Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

[Pavlichenko et al., IROS 2017]

Grasping an Unknown Power Drill

Fastening a Screw

Bimanual Fastening Task

Bimanual Grasping

Bimanual Drilling

Opening a Door with a Key

Closing a Shackle

Bimanual Plug Tasks

Step Field with Debris

Autonomous Navigation

CENTAURO Team

Conclusions

- Developed capable humanoid robot systems for disaster-response scenarios
- Teleoperation is flexible, but demanding and error-prone
- Autonomy for common navigation and manipulation tasks needed
- Challenges include
 - Capable and affordable robot platforms
 - 4D semantic perception
 - High-dimensional motion planning
- Promising approaches
 - Shared autonomy
 - Structured learning

