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Some of our Cognitive Robots 

2 

 

Soccer Domestic service Mobile manipulation 

■ Equipped with numerous sensors and actuators 

■ Complex demonstration scenarios 

Aerial inspection Bin picking 



Motivation 

■ Capabilities of disaster-response  
robots were insufficient for providing  
effective support to rescue workers. 

● Mobility: difficulties with uneven  
terrain, stairs, and debris  

● Manipulation: only a single actuator  
with simple end-effectors 

● User interface: requires extensive training, not 
intuitive, situation awareness problematic 

■ Complexity of achievable tasks and execution speed 
are low 
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Fukushima disaster 2011, Image: Digital Globe CC 3.0. 

iRobot PackBot in Plant, Image: Tepco. 



Mobile Manipulation  
Robot Momaro 

■ Four compliant legs ending in 
pairs of steerable wheels 

■ Anthropomorphic upper body 

■ Sensor head 

● 3D laser scanner 

● IMU, cameras 
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[Schwarz et al. Journal of  Field Robotics 2017] 



DRIVING A VEHICLE 

Sven Behnke: Semantic Environment Perception 5 

 



EGRESS 

Sven Behnke: Semantic Environment Perception 6 

 



Manipulation Operator Interface 

■ 3D head-mounted 
display 

■ 3D environment  
model  
+ 
images 

■ 6D magnetic tracker 
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[Rodehutskors et al., Humanoids 2015] 



OPENING A DOOR 

Sven Behnke: Semantic Environment Perception 8 

 



Local Multiresolution Surfel Map 

■ Registration and 
aggregation of 3D laser 
scans 

■ Local multi-resolution grid 

■ Surfel in grid cells 
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3D scan                  Aggregated scans 

Multiresolution grid      Surfels 

[Droeschel et al., Robotics and  

  Autonomous Systems 2017] 



Filtering Dynamic  
Objects 

■ Maintain occupancy in each 
cell 

■ Remove measurements of 
empty cells 
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Allocentric 3D Mapping 

■ Registration of egocentric maps 
by graph optimization 
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[Droeschel et al., Robotics and  

  Autonomous Systems 2017] 



Valve Turning Interface 

■ Align wheel model with 3D points 
using interactive marker 
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[Schwarz et al. Journal of Field Robotics 2017] 



TURNING A VALVE 

Sven Behnke: Semantic Environment Perception 13 

 



OPERATING A SWITCH 

Sven Behnke: Semantic Environment Perception 14 

 



PLUG TASK 

Sven Behnke: Semantic Environment Perception 15 

 



Debris Tasks 
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DRIVE THROUGH DEBRIS 

Sven Behnke: Semantic Environment Perception 17 

 



CUTTING DRYWALL 

Sven Behnke: Semantic Environment Perception 18 

 



 Team NimbRo Rescue 
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Best European Team (4th place overall), 
solved seven of eight tasks in 34 minutes  



DLR SpaceBot Cup 2015 

■ Mobile manipulation in rough terrain 
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[Schwarz et al., Frontiers on   

 Robotics and AI 2016] 



DLR SPACEBOT CAMP 2015 
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Autonomous Mission Execution 

■ 3D mapping,  
localization, 
mission and 
navigation 
planning 
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[Schwarz et al. Frontiers 2016] 

■3D object 
perception 
and grasping 



Navigation 
Planning 

■ Costs from local height 
differences 

■ A* path planning 
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[Schwarz et al., Frontiers 

in Robotics and AI 2016] 



3D Map 
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Improved Sensor Head 

■ Continuously rotating Velodyne Puck 
VLP-16 

● 300,000 3D points/s 

● 100 m range 

● Spherical field of view 

■ Three wide-angle color cameras (total 
FoV 210×103°) 

■ Kinect V2 RGB-D camera on pan-tilt 
unit 
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3D Map of Indoor+Outdoor Scene 
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[Droeschel et al., Robotics and Autonomous Systems 2017] 



Considering Robot  
Footprint 

■ Costs for individual wheel pairs 
from height differences 

■ Base costs 

■ Non-linear combination yields  
3D (x, y, θ) cost map 

 

27 

Scene                                 Wheel costs 

Base costs                           Combined [Klamt and Behnke, IROS 2017] 



3D Driving Planning (x, y, θ): A* 

■ 16 driving directions 

 

 

 
■ Orientation changes 

 

 
 
=> Obstacle between wheels 
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Costs 

Height 

[Klamt and Behnke, IROS 2017] 



Making Steps 

■ If not drivable obstacle in front of 
a wheel 

■ Step landing must be drivable 

■ Support leg positions must be 
drivable 
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[Klamt and Behnke: IROS 2017] 
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[Klamt and Behnke: IROS 2017] 



Centauro Robot 
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[Tsagarakis et al., IIT 2017] 

 Serial elastic actuators 

 42 main DoFs 

 Schunk hand 

 3D laser 

 RGB-D camera 

 Color cameras 

 Two GPU PCs 



Main Operator Telepresence Interface 

32 [Frisoli et al., SSSA 2017] 

■ Tendon-driven  
dual-arm  
exoskeleton 

■ Active wrist with  
differential tendon  
transmission 

■ Underactuated hand 
exoskeleton 

■ Head-mounted display 

■ Foot pedals 

 



Main Operator Control 
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Turning a Valve 
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Connecting a Plug 
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3D Mapping and Localization 
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Walking over a Step Field 
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Terrain Classification 
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[Schilling et al., IROS 2017] 



Hybrid Driving-Stepping Locomotion Planning: Abstraction 
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[Klamt and Behnke,  
 IROS 2017, ICRA 2018] 



Deep Learning Object Detection 
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[Johnson et al. 2015] 



CENTAURO Workspace Perception Data Set 
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https://www.centauro-project.eu/data_multimedia/tools_data 



Tool Detection Results  
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[Schwarz et al. IJRR 2017] 



Tools Detection Examples 
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[Schwarz et al. IJRR 2017] 



Semantic Segmentation 

■ Deep CNN 
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[Husain et al. RA-L 
2016] 

Pixel-wise accuracy: 

[Husain et al. RA-L 2016] 



RefineNet for Semantic Segmentation 
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■ Scene represented as 
feature hierarchy 

■ Corse-to-fine semantic 
segmentation 

■ Combine higher-level 
features with missing 
details 

 

[Lin et al. CVPR 2017] 



The Data Problem 

■ Deep Learning in robotics (still) suffers from shortage of available examples 

■ We address this problem in two ways: 

1. Generating data: 
Automatic data capture,  
online mesh databases,  
scene synthesis 
 

2. Improving generalization: 
Object-centered models, 
deformable registration, 
transfer learning,  
semi-supervised learning 
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Object Capture and Scene Rendering 
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■ Turntable + DLSR camera  

[Schwarz et al. ICRA 2018] 

■ Rendered scenes 



Semantic Segmentation Example 

48 [Schwarz et al. ICRA 2018] 



Object Pose Estimation 

■ Cut out individual 
segments 

■ Use upper layer of 
RefineNet as input 

■ Predict pose 
coordinates 
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Input 

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018] 

Predicted pose 



From Turntable Captures to Textured Meshes 

50 
Fused & textured result 



Transfer of Manipulation Skills 

■ Objects belonging to the same category can be handled in a very similar manner. 
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Transfer of Manipulation Skills 
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Knowledge 
Transfer 



Learning a Latent Shape Space 

■ Non-rigid registration of instances and canonical model 

■ Principal component analysis of deformations  
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Interpolation in Shape Space 

54 [Rodriguez and Behnke ICRA 2018] 



Shape-aware Non-rigid Registration 
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■ Partial view of novel instance 
■ Deformed canonical model 

[Rodriguez and Behnke ICRA 2018] 



Shape-aware Registration for Grasp Transfer 
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■ Full point cloud 

 

■ Partial view  

 



Constrained Trajectory Optimization: 

■ Collision avoidance 

■ Joint limits 

■ Time minimization 

■ Torque optimization 

Collision-aware Motion Generation 

57 [Pavlichenko et al., IROS 2017] 



Grasping an Unknown Power Drill 
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Fastening a Screw 
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Bimanual Fastening Task  
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Bimanual Grasping 
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Bimanual Drilling 
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4x 



Opening a Door with a Key 

63 



Closing a Shackle 
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Bimanual Plug Tasks 
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Step Field with Debris 
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Autonomous Navigation 
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CENTAURO Team 
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Conclusions 

■ Developed capable humanoid robot systems for disaster-response scenarios 

■ Teleoperation is flexible, but demanding and error-prone 

■ Autonomy for common navigation and manipulation tasks needed 

■ Challenges include 
● Capable and affordable  

robot platforms 
● 4D semantic perception 
● High-dimensional motion  

planning 

■ Promising approaches 

● Shared autonomy 

● Structured learning 
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