Perception and Planning for Autonomous Mobile Robots in Complex Environments

Sven Behnke

University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems

Some of Our Cognitive Robots

- Equipped with many sensors and DoFs
- Demonstration in complex scenarios

Service robot

Cognitive Service Robot Cosero

ais

Sven Behnke: Perception and Planning for Autonomous Mobile Robots

3

Table-top Analysis and Grasp Planning

• Detection of clusters above horizontal plane

 Flexible grasping of many unknown objects

universitätbonn

[Stückler et al, Robotics and Autonomous Systems, 2013]

3D Mapping by RGB-D SLAM

[Stückler, Behnke: Journal of Visual Communication and Image Representation 2013]

[Stoucken]

universität**bonn**

- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU
- Global optimization

- Multi-camera SLAM
- 5 Sven Behnke: Perception and Planning...

2,5cm

5cm

Learning and Tracking Object Models

• Modeling of objects by RGB-D-SLAM

Real-time registration with current RGB-D frame

6

Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration

universität**bonn**

Transformation of Poses on Object

• Derived from the deformation field

universität**bonn**

Grasp & Motion Skill Transfer

[Stückler, Behnke,

universitätbonn

ICRA2014]

ais

Tool use: Bottle Opener

• Tool tip perception

- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation

[Stückler, Behnke, Humanoids 2014]

Hierarchical Object Discovery trough Motion Segmentation

• Simultaneous object modeling and motion segmentation

universität**bonn**

Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Compare color / depth of regions
- Size normalization
- 3D fusion through RGB-D SLAM
- Evaluation on NYU depth v2

Learning Depth-sensitive CRFs

- SLIC+depth super pixels
- Unary features: random forest
- Height feature

- Pairwise features
 - Color contrast
 - Vertical alignment
 - Depth difference
 - Normal differences

	class average	pixel average
RF	65.0	68.3
RF + SP	65.7	70.1
RF + SP + SVM	70.4	70.3
RF + SP + CRF	71.9	72.3
Silberman et al.	59.6	58.6
Couprie <i>et al.</i>	63.5	64.5

13 Sven Behnke: Perception and Planning...

Pairwise Features

3D Point Cloud

Random forest

[Müller and Behnke,

ais

ICRA 2014]

Deep Learning

 Learning layered representations

14 Sven Behnke: Perception and Planning for Autonomous Mobile Robots

universität**bonn** ais

Object-class Segmentation

[Schulz, Behnke, ESANN 2012]

Class annotation per pixel

• Multi-scale input channels

 Evaluated on MSRC-9/21 and INRIA Graz-02 data sets

I. Input Layer O. Output Layer

 \rightarrow Convolution \gg Max-Pooling

universität**bonn**

Object Detection in Natural Images

- Bounding box annotation
- Structured loss that directly maximizes overlap of the prediction with ground truth bounding boxes
- Evaluated on two of the Pascal VOC 2007 classes

[Schulz, Behnke, ICANN 2014]

universität**bonn**

RGB-D Object-Class Segmentation

- Covering windows segmented with CNN
- Scale input according to depth, compute pixel hight

Method	floor	struct	furnit	prop	Class Avg.	Pixel Acc.
CW	84.6	70.3	58.7	52.9	66.6	65.4
CW+DN	87.7	70.8	57.0	53.6	67.3	65.5
CW+H	78.4	74.5	55.6	62.7	67.8	66.5
CW+DN+H	93.7	72.5	61.7	55.5	70.9	70.5
CW+DN+H+SP	91.8	74.1	59.4	63.4	72.2	71.9
CW+DN+H+CRF	93.5	80.2	66.4	54.9	73.7	73.4
Müller et al.[8]	94.9	78.9	71.1	42.7	71.9	72.3
Random Forest [8]	90.8	81.6	67.9	19.9	65.1	68.3
Couprie et al.[9]	87.3	86.1	45.3	35.5	63.6	64.5
Höft et al.[10]	77.9	65.4	55.9	49.9	62.3	62.0
Silberman [12]	68	59	70	42	59.7	58.6

CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP is averaged within superpixels and SVM-reweighted. CRF is a conditional random field over superpixels [8]. Structure class numbers are optimized for class accuracy.

[Schulz, Höft, Behnke, ESANN 2015]

Neural Abstraction Pyramid

Iterative Image Interpretation

- Interpret most obvious parts first
- Use partial interpretation as context to resolve local ambiguities \bigcirc

Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

• Recursive computation is efficient for temporal integration

universitätbonn

Geometric and Semantic Features for RGB-D Object-class Segmentation

- New **geometric** feature: distance from wall
- **Semantic** features pretrained from ImageNet
- Both help significantly

[Husain et al. RA-L 2016]

Semantic SegmentationPriors forObject DiscoverySemantic
segmentsClass-specific
superpixels

- Combine bottom-up object discovery and semantic priors
- Semantic segmentation used to classify color and depth superpixels
- Higher recall, more precise object borders

[Garcia et al. ICPR 2016]

RGB-D Object Recognition and Pose Estimation

[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view

 Colorization based on distance from center vertical

[Schwarz, Schulz, Behnke, ICRA2015]

Pretrained Features Disentangle Data

 t-SNE embedding

[Schwarz, Schulz, Behnke ICRA2015]

Recognition Accuracy

• Improved both category and instance recognition

universitätbonn

ais

Autonomous Flight Near Obstacles

- Multimodal obstacle detection
- 3D laser scanner

Stereo cameras

Stereo cameras PX4FLOW Onboard computer 3D laser scanner

[Droeschel et al.: Journal of Field Robotics, 2015]

Egocentric Laser-based 3D Mapping

Motion compensation Distorted

RET HAR

• Local multiresolution surfel maps

Allocentric 3D Map

- Registration of egocentric maps
- Global optimization of registration error by GraphSLAM

[Droeschel et al. JFR 2016]

Hierarchical Navigation

Mission plan

Allocentric

planning

Obstacle avoidance

Mapping on Demand Autonomous Flight to Planned View Poses

3D Simultaneous Localization and Mapping

Autonomous Flight in Warehouses

• Dual 3D laser scanner

Omnidirectional cameras

 Image: Non-state
 Image: Non-state

- RFID reader
- Sven Behnke: Perception and Planning for Autonomous Mobile Robots

3D Map

Localization

Autonomous Mission in Warehouse

and a state of the second s

Tes .

DITE:

8
DJI Matrice 600 with Velodyne Puck

InventAIRy Final Demonstration

Fully Autonomous indoor flight without external tracking.

EuRoC Challenge 3: ChimneySpector

Mobile Manipulation Robot Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

[Schwarz et al. Journal of Field Robotics 2017]

23:15:03 05/06/2015 UTC

Manipulation Operator Interface

- 3D headmounted display
- 3D environment model + images
- 6D magnetic tracker

[Rodehutskors et al., Humanoids 2015]

43 Sven Behnke: Perception and Planning...

Opening a Door

LAURPLEN FAIRPLEN FAIRPLEN FAIRPLEN FAIRPLEN FAIRPLEN F IN

GX

installant a

FAIRD S

lomaro Mili PLEX FAILPLEX

XP

23:20:32 05/06/2015 UTC

4x

Local Multiresolution Surfel Map

- Registration and aggregation of 3D laser scans
- Local multiresolution grid
- Surfel in grid cells

[Droeschel et al., Robotics and Autonomous Systems 2017]

Multiresolution grid

Filtering Dynamic Objects

 Maintain occupancy in each cell

ais

Allocentric 3D Mapping

 Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]

Valve Turning Interface

 Align wheel model with 3D points using interactive marker

[Schwarz et al. Journal of Field Robotics 2017]

Turning a Valve

#1 ...

H

4x

23:25:56 05/06/2015 UTC

Operating a Switch

23:28:21 05/06/2015 UTC

4x

02:23.20 07/06/2015 UTC

Plug Task

0

4X

Debris Tasks

Drive Through Debris

23:33:38:05/06/2015 UTC

Cutting Drywall

山

TALLENGE

C

23:36:46 05/06/2015 UTC

Team NimbRo Rescue

Best European Team (4th place overall), solved seven of eight tasks in 34 minutes

Stair Climbing

- Determine leg that most urgently needs to step
- Weight shift: sagittal, lateral, driving changes support
- Step to first possible foot hold after height change

universitätbonn

[Schwarz et al., ICRA 2016] 56 Sven Behnke: Perception and Planning for Autonomous Mobile Robots

Stair Crawling

Hose Connecting Task

- Bimanual task
 - Grab the left hose with the left gripper,
 - Grab the right hose with the right gripper, and
 - Connect both hoses
- 10/11 trials successful
- Execution time

Task	Time [min:s]				
	Avg.	Median	Min.	Max.	Std. Dev.
Left grasp	0:44	0:38	0:27	1:20	0:16
Right grasp	0:45	0:40	0:34	1:04	0:10
Connect	1:36	1:32	1:07	2:04	0:21
Total	3:04	2:57	2:21	3:51	0:28

universität**bonn**

[Rodehutskors et al., Humanoids 2015]

DLR SpaceBot Cup 2015

 Mobile manipulation in rough terrain

universität**bonn**

DLR SpaceBot Camp 2015

8X

Autonomous Mission Execution

 3D mapping, localization, mission and navigation planning

 3D object perception and grasping

[Schwarz et al. Frontiers 2016]

Navigation Planning

- Costs from local height differences
- A* path planning

[Schwarz et al., Frontiers in Robotics and Al 2016]

3D Map

New Sensor Head

- Continuously rotating Velodyne Puck VLP-16
 - 300,000 3D points/s
 - 100 m range
 - Spherical field of view
- Three wide-angle color cameras (total FoV 210×103°)
- Kinect V2 RGB-D camera on pan-tilt unit

3D Map of Indoor+Outdoor Scene

[Droeschel et al., Robotics and Autonomous Systems 2017]

Navigation in allocentric laser map (colored points)

Using a Wrench to Turn a Valve

MBZIRC Challenge 2

Mario Robot Manipulator

- 6DoF arm (UR5)
- Stereo cameras (Pointgray)
- ToF camera (PMD picoflexx)
- Two-finger gripper

Wrench Selection: Detection of Tool Ends

Valve Stem Registration

- Picoflexx depth
- Euclidean clustering
- Rotating calipers for estimating valve stem angle and size

MBZIRC Challenge 1
Landing Pattern Detection

Line-based detection in two cameras

Camera image

Generate hypothesis

Region with sufficient resolution

Presegment via gradient symmetry

Undistortion / homography

Searching

[Beul et al. ECMR 2017]

Picking Copter DJI Matrice 100

- Wide-angle downward looking color camera
- Electromagnetic gripper
- Laser-distance sensor to ground
- Dual-core PC

[Nieuwenhuisen et al. ECMR 2017]

7:13 MBZIRC Challenge 3

Pickable Object and Drop-box Detection

- Probabilistic color segmentation
- RANSAC-like drop-box detection

Drop box

Color segmentation

_ .

[Nieuwenhuisen et al. ECMR 2017]

Raw image

MBZIRC Team NimbRo

H2020 Project CENTAL

Robust Mobility and Dexterous Manipulation in Disaster Response by Fullbody Telepresence in a Centaur-like Robot

CENTAURO Objective

Development of a Human-robot system where a human operator is telepresent with its whole body

in a Centaur-like robot, which is capable of robust locomotion and dexterous manipulation in the rough terrain and austere conditions characteristic of disasters

CENTAURO Approach

Centauro Robot Upper Body

Strong

• Fast

[Giusti et al. ICRA 2017] 82 Sven Behnke: Perception and Planning for Autonomous Mobile Robots

Centauro Robot Upper Body

• Serial-elastic actuators (SEA) => Compliant & adaptive

[Giusti et al. ICRA 2017] 83 Sven Behnke: Perception and Planning for Autonomous Mobile Robots

Centauro Upper Body: Resilient

[Giusti et al. ICRA 2017]

Centauro Robot

- Some unpublished material on the Centauro robot has been removed from this version of the slides.
- Please check <u>https://www.centauro-project.eu</u> for updates.

Main Operator Telepresence Interface

- Tendon-driven dual-arm exoskeleton
- Active wrist with differential tendon transmission
- Underactuated hand exoskeleton
- Head-mounted display
- Foot pedals
- 86 Sven Behnke: Perception and Planning...

[Frisoli et al., SSSA 2017]

Centauro Upper Body Bi-manual Teleoperation

[Tsagarakis et al. (IIT) + Frisoli et al. (SSSA), 2016]

Locomotion Planning Considering Robot Footprint

- Costs for individual wheel pairs from height differences
- Base costs
- Non-linear combination yields
 3D (x, y, θ) cost map

[Klamt and Behnke, IROS 2017]

universität**bonn**

3D Driving Planning (x, y, \theta): A*

• 16 driving directions

Orientation changes

=> Obstacle between wheels

Costs

Height

89

Making Steps

- If not drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable

[Klamt and Behnke: IROS 2017]

Expanding Abstract Steps to Detailed Motion Sequences

[Klamt and Behnke: IROS 2017]

Planning for Challenging Scenarios

[Klamt and Behnke: IROS 2017]

CENTAURO Workspace Perception Data Set

129 frames, 6 object classes

https://www.centauro-project.eu/data_multimedia/tools_data

Deep Learning Object Detection

Tool Detection Results

[Schwarz et al. IJRR 2017]

Resolution	Clamp	Door handle	Driller	Extension	Stapler	Wrench	Mean
	AP / F1						
720×507	0.881/0.783	0.522/0.554	0.986/0.875	1.000/0.938	0.960/0.814	0.656/0.661	0.834/0.771
1080×760	0.926/0.829	0.867/0.632	0.972/0.893	1.000/0.950	0.992/0.892	0.927/0.848	0.947/0.841
1470 imes 1035	0.913/0.814	0.974/0.745	1.000/0.915	1.000/0.952	0.999/0.909	0.949/0.860	0.973/0.866

Tools Detection Examples

[Schwarz et al. IJRR 2017] 96 Sven Behnke: Perception and Planning for Autonomous Mobile Robots

Semantic Segmentation

• Deep CNN

[Husain et al. RA-L 2016]

Pixel-wise accuracy:

Clamp	Door handle	Driller	Extension	$\operatorname{Stapler}$	Wrench	Background	Mean
0.727	0.751	0.769	0.889	0.775	0.734	0.992	0.805

3D Object Modeling and 6D Pose Estimation

- Build 3D model on turn table
- Generate proposals
- Register to test image

[Aldoma et al., ICRA 2013]

98 Sven Behnke: Learning Semantic Perception

Schunk Five-finger Hand SVH

• Anthropomorphic hand

• 9 DoF

Rviz Interface with Interactive Markers

Grasping the Drill and Switching it On

Transfer of Manipulation Skills

• Objects belonging to the same **category** can be handled in a very similar manner.

Transfer of Manipulation Skills

universität**bonn**

ais

Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations

universität**bonn**

Interpolation in Shape Space

Interpolation in Shape Space

Shape-aware Non-rigid Registration

Partial view of novel instanceDeformed canonical model

Transference of Grasping Skills

Warp grasping information

Manipulation Trajectory Optimization

- Extended stochastic trajectory optimization (STOMP), 8 DoF
- Weighting multiple objectives, e.g. speed, obstacles, torque, ...

[Pavlichenko and Behnke, IROS 2017] 109 Sven Behnke: Perception and Planning for Autonomous Mobile Robots

Momaro Reaching for an Object

Shelf Experiment

- Four configurations
 - 12 planning tasks
 - 100 executions for each task
- 3 difficulty levels:
 - Easy
 - Hard (gripper deeper)
 - Hard constrained (endeffector orient.)

[Pavlichenko and Behnke, IROS 2017]

	Difficulty level						
	Easy		Hard		Hard constrained		
Algorithm	success rate	runtime [s]	success rate	runtime [s]	success rate	runtime [s]	
LBKPIECE	0.94	2.47 ± 1.08	0.93	2.46 ± 0.85	-	-	
STOMP-Industrial	0.87	0.87 ± 0.86	0.76	$1.47 \pm 1{,}01$	-	-	
RRTConnect	0.97	0.29 ± 0.18	0.96	0.85 ± 0.58	0.97	1.22 ± 1.04	
STOMP-New	1.0	0.09 ± 0.02	1.0	0.18 ± 0.11	0.99	0.28 ± 0.21	

Corridor Experiment

- Two difficulty levels:
 - Easy
 - Hard
- 100 trials each

Difficulty level

		Easy	Hard		
Algorithm	success	runtime [s]	success	runtime [s]	
ngontinn	rate	runnine [5]	rate	runnine [5]	
LBKPIECE	0.65	6.97 ± 2.58	0.50	7.82 ± 2.58	
RRTConnect	0.08	9.64 ± 1.27	0.06	9.71 ± 1.56	
STOMP-Industrial	0.00	2.82 ± 0.07	0.00	2.85 ± 0.08	
STOMP-New	0.78	1.89 ± 1.44	0.18	3.64 ± 1.29	

Velocity Profiles

- Start pose can have velocity
- Continuous replanning possible

RefineNet

[Lin et al. CVPR 2017]

- Increase resolution by using features from the higher resolution
- Corse-to-fine semantic segmentation

ARC 2017 Perception Example

bronze_wire_cup conf: 0.749401 irish_spring_soap conf: 0.811500⁻ playing_cards conf: 0.813761 w_aquarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467 paper_towels conf: 0.903645 white_facecloth conf: 0.895212 hand_weight conf: 0.928119 robots_everywhere

robots_everywhere conf: 0.930464

mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015

fiskars_scissors /conf: 0.831069

ice_cube_tray /conf: 0.976856

Object Capture and Scene Rendering

• Turn table + DLSR

Rendered scenes

Amazon Robotics Challenge 2017

- Quick learning of novel objects
- Training with rendered scenes

117 • Sven Behnke: Learning Semantic Perception for Cognitive Robots

Object Pose Estimation

- Use upper layer of RefineNet as input
- Predict pose coordinates for one segment

Conclusions

- Developed high-performance platforms for challenging scenarios
 - Mobile manipulation robots
 - Micro aerial vehicles
- Teleoperation is flexible, but demanding and error-prone
- Autonomy for common navigation and manipulation tasks needed, challenges include
 - 3D mapping
 - Semantic perception
 - High-dimensional motion planning
- 120 Sven Behnke: Perception and Planning for Autonomous Mobile Robots

We are Hiring!

PhD students and postdocs

ais.uni-bonn.de/jobs.html

