Spatiotemporal Integration in Recurrent Deep Neural Networks

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Performance of the Human Visual System

Psychophysics

Gestalt principles

Visual Illusions

Computer Vision

Data driven

Model driven

Interface problem

Observations

- In the world around us it mostly holds that:
- Neighboring things have something to do with each other
 - Spatially
 - Temporally
- There is hierarchical structure
 - Objects consist of parts
 - Parts are composed of components, ...

Spatial Arrangement of Facial Parts

Face Perception

Horizontal and Vertical Dependencies

Weber, Welling, Perona '00

Fergus, Zisserman, Perona '03

Constellation Model: Fully connected shape model Implicit Shape Model: Star-Model w.r.t. Reference Point

Leibe, Schiele '03 Leibe, Leonardis, Schiele '04

Multi-Scale Representation

Image pyramids are not expressive enough

Increasing Number of Features with Decreasing Resolution

Rich representations also in the higher layers

Modeling Horizontal Dependencies

- 1D: HMM, Kalman Filter, Particle Filter
- 2D: Markov Random Fields
- Decision for level of description problematic
- Ignores vertical dependencies, flat models do not scale

Modeling Vertical Dependencies

- Structure graphs, etc.
- Ignores horizontal dependencies

Horizontal and vertical Dependencies

Problem: Cycles make exact inference impossibleIdea: Use approximate inference

Human Visual System

universität**bonn** ais

Visual Processing Hierarchy

- Increasing complexity
- Increasing invariance
- All connections bidirectional
- More feedback than feed forward
- Lateral connections important

[Krüger et al., TPAMI 2013]

Deep Learning Definition

- Deep learning is a set of algorithms in machine learning that attempt to learn layered models of inputs, commonly neural networks.
- The layers in such models correspond to distinct levels of concepts, where
 - higher-level concepts are defined from lowerlevel ones, and
 - the same lower-level concepts can help to define many higher-level concepts.

[Bengio 2009]

Sven Behnke: Deep Learning for Visual Perception

Layered Representations

Sven Behnke: Deep Learning for Visual Perception

Flat vs. Deep Networks

 A neural network with a single hidden layer that is wide enough can compute any function (Cybenko, 1989)

- Certain functions, like parity, may require exponentially many hidden units (in the number of inputs)
- Compare to conjunctive / disjunctive normal form of Boolean function
- Deep networks (with multiple hidden layers) may be exponentially more efficient
 - Parity example:
 - As many hidden layers as inputs
 - Compute carry bit sequentially

Convolutional Models

Neocognitron: Fukushima 1980

Supervised training of convolutional networks: LeCun 1989

Feed-forward Models Cannot Explain Human Performance

Performance increases with observation time

Feed Forward

vs. Recurrent

- Connectivity without cycles
- Composition of simple functions
- A node can only by computed if its inputs are available
- Reuse of partial results
- Order of computation determined by directed connectivity

- Connectivity with cycles
- Explicit modeling of computation time necessary
- Computation needs one unit of time
- Input at time t yields output at time t+1
- Order of computation not any longer determined by connectivity

Hopfield-Networks

[Hopfield 1982]

- Fully connected binary units
- Symmetric weights
- Non-linear dynamic system minimizes energy

Stored patterns

Iterative denoising

Completion of Patterns

Associative memory

Stored patterns

Pattern completion

Hopfield-Networks with Continous Activation

 $w_{21} = w_{12} = -1$ $w_{11} = w_{22} = 1$

$$\theta_1 = 0.5$$

 $\theta_2 = 0$

Oszillation and Chaos

Iterative Interpretation

[Behnke, LNCS 2766, 2003]

Interpret most obvious parts first

 Use partial interpretation as context to resolve local ambiguities

Local Recurrent Connectivity

Contrast Normalization

Binarization of Handwriting

[IJCNN'98]

Creating Shift Invariance

Learning a Feature Hierarchy

Sven Behnke: Deep Learning for Visual Perception

Backpropagation Through Time (BPTT)

Unfolding along time axis -> deep network
 Weight-sharing -> Average updates

$$o_i(t+1) = f(net_i(t)) = f\left(\sum_j w_{ij}o_j(t) + x_i(t)\right)$$

Superresolution

[Behnke, IJCAI'01]

Digit Reconstruction

[Behnke, IJCAI'01]

Digit Reconstruction

universität**bonn** ais

[Behnke, IJCAI'01]

Sven Behnke: Deep Learning for Visual Perception

Binarization of Matrix Codes

Sven Behnke: Deep Learning for Visual Perception

Continous Attractor

Local excitation and global inhibitionStable activity blobs can be shifted

Face Localization

[Behnke, KES'03]

- BioID data set:
 - 1521 images
 - 23 persons

Encode eye positions with blobs

48 x 36

Face Localization

[Behnke, KES'03]

Auto-Encoder

- Try to push input through a bottleneck
- Activities of hidden units form an efficient code
 - There is no space for redundancy in the bottleneck
- Extracts frequently independent features (factorial code)

Desired Output = Input

Deep Autoencoders (Hinton & Salakhutdinov, 2006)

- Multi-layer autoencoders for non-linear dimensionality reduction
- Difficult to optimize deep autoencoders using backpropagation
- Greedy, layer wise training
- Unrolling
- Supervised fine-tuning

GPU Implementations (CUDA)

- Affordable parallel computers
- General-purpose programming

• Local connectivity [Uetz & Behnke, 2009]

Image Categorization: NORB

10 categories, jittered-cluttered

Max-Pooling, cross-entropy training

Test error: 5,6% (LeNet7: 7.8%)

Sven Behnke: Deep Learning for Visual Perception

[Scherer, Müller, Behnke, ICANN'10]

Image Categorization: LabelMe

50,000 color images (256x256) \blacksquare 12 classes + clutter (50%)

car 1.0

building 1.0

window 1.0 person 1.0 keyboard 1.0

bookshelf 1.0

(none)

car 0.21

person 0.54 window 0.66 building 1.0,

tree 0.03

(none)

(none)

(none)

Error TRN: 3.77%; TST: 16.27% Recall: 1,356 images/s

[Uetz, Behnke, ICIS2009]

Multi-Column Deep Convolutional Networks

- Different preprocessings
- Trained with distortions
- Bagging deep networks

- NORB: 2.7%
- CIFAR10: 11.2%
- Traffic signs: 0.54% test error

16

[Ciresan et al. CVPR 2012]

4 3 5

361

ImageNet Challenge

- 1.2 million images
- 1000 categories, no overlap
- Subset of 11 million images from 15.000+ categories
- Hierarchical category structure (WordNet)

Golf cart (motor vehicle, self-propelled vehicle, wheeled vehicle, ... Egyptian cat (domestic cat, domestic animal, animal)

- Task: recognize object category
- Low penalty for extra detections
- Hierarchical error computation

Large Unsupervised Feature Learning

- 9 layer model
- Locally connected
- Sparse auto-encoder
- L2 pooling
- Local contrast normalization
- 1 billion connections
- Trained on 10 million images
- Unsupervised learned detectors

Supervised ImageNet 2011 results (14M images, 22K categories): 15.8%
[Le et al. 2012]

Large Convolutional Network

- Rectifying transfer functions
- 650,000 neurons
- 60,000,000 parameters
- 630,000,000 connections
- Trained using dropout and data augmentation
- Testing 10 sub-images
- ILSVRC-2012: top-5 error 15.3%

96 learned low-level filters

Validation Classification

leopard	motor scooter	container ship	mite	
leopard	motor scooter	container ship	mite	
jaguar	go-kart	lifeboat	black widow	
cheetah	moped	amphibian	cockroach	
snow leopard	bumper car	fireboat	tick	
Egyptian cat	golfcart	drilling platform	starfish	
			ACCESSION OF THE REAL PROPERTY	

grille	mushroom	cherry	Madagascar cat	
convertible	agaric	dalmatian	squirrel monkey	
grille	mushroom	grape	spider monkey	
pickup	jelly fungus	elderberry	titi	[Krizhovelov of al
beach wagon	gill fungus	ffordshire bullterrier	indri	LKUZUEVSKY EL al.
fire engine	dead-man's-fingers	currant	howler monkey	NIPS 2012]

universitätbonn ais

Sven Behnke: Deep Learning for Visual Perception

Surpassing Human Performance

GT: horse cart 1: horse cart 2: minibus 3: oxcart 4: stretcher 5: half track

GT: birdhouse 1: birdhouse 2: sliding door 3: window screen 4: mailbox 5: pot

GT: forklift <u>1: forklift</u> 2: garbage truck 3: tow truck 4: trailer truck 5: go-kart

GT: letter opener 1: drumstick 2: candle 3: wooden spoon 4: spatula

GT: spotlight 1: grand piano 2: folding chair 3: rocking chair 4: dining table 5: upright piano

GT: coucal 1: coucal 2: indigo bunting 3: lorikeet 4: walking stick 5: custard apple

GT: komondor 1: komondor

2: patio 3: llama 4: mobile home 5: Old English sheepdog

[He et al. 2015]

GT: yellow lady's slipper 1: yellow lady's slipper

2: slug 3: hen-of-the-woods 4: stinkhorn 5: coral fungus

Object-class Segmentation

 Evaluated on MSRC-9/21 and INRIA Graz-02 data sets

Object Detection in Images

- Bounding box annotation
- Structured loss that directly maximizes overlap of the prediction with ground truth bounding boxes
- Evaluated on two of the Pascal VOC 2007 classes

[Schulz, Behnke, ICANN 2014]

RGB-D Object-Class Segmentation

- Kinect-like sensors provide dense depth
- Scale input according to depth, compute pixel height

NYU Depth V2

Method	floor	struct	furnit	prop	Class Avg.	Pixel Acc.
CW	84.6	70.3	58.7	52.9	66.6	65.4
CW+DN	87.7	70.8	57.0	53.6	67.3	65.5
CW+H	78.4	74.5	55.6	62.7	67.8	66.5
CW+DN+H	93.7	72.5	61.7	55.5	70.9	70.5
CW+DN+H+SP	91.8	74.1	59.4	63.4	72.2	71.9
CW+DN+H+CRF	93.5	80.2	66.4	54.9	73.7	73.4
Müller et al.[8]	94.9	78.9	71.1	42.7	71.9	72.3
Random Forest [8]	90.8	81.6	67.9	19.9	65.1	68.3
Couprie et al.[9]	87.3	86.1	45.3	35.5	63.6	64.5
Höft et al.[10]	77.9	65.4	55.9	49.9	62.3	62.0
Silberman [12]	68	59	70	42	59.7	58.6

CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP is averaged within superpixels and SVM-reweighted. CRF is a conditional random field over superpixels [8]. Structure class numbers are optimized for class accuracy.

[Schulz, Höft, Behnke, ESANN 2015]

Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

- NYU Depth V2 contains RGB-D video sequences
- Recursive computation is efficient for temporal integration

					Class Accuracies (%)				Average (%)	
				Method	ground	struct	furnit	prop	Class	Pixel
CHE COL				ours (CW, RGB-D only)	78.6	49.2	48.7	48.3	56.2	52.0
		The second secon		ours (CW)	95.8	74.6	54.2	64.0	72.1	68.6
		1 All	~~	ours (WI+CW)	94.9	76.8	65.5	60.8	74.5	73.1
				ours (WI)	94.3	83.7	72.0	54.9	76.2	76.4
	the second s			ours (WI+CW+CRF)	95.4	78.9	67.3	60.8	75.6	74.6
				ours (WI+CRF)	94.2	83.9	72.0	56.3	76.6	77.2
RGB	Depth	Output	Truth	all-frames	97.2	70.0	51.1	56.0	68.6	64.6
	•	1		Schulz et al. (2015a) (CNN+CRF)	93.6	80.2	66.4	54.9	73.7	73.4
				Müller and Behnke (2014)	94.9	78.9	71.1	42.7	71.9	72.3
				(RF+CRF)						
				Stückler et al. (2013) (RF+SLAM)	90.8	81.6	67.9	19.9	65.0	68.3
[5			1 20173	Couprie et al. (2013) (CNN)	87.3	86.1	45.3	35.5	63.5	64.5
[Pa	avel, Schulz, Ber	inke, Neural Net	works 2017]	Silberman et al. (2012) (RF)	68.0	59.0	70.0	42.0	59.6	58.6

Geometric and Semantic Features for RGB-D Object-class Segmentation

 New geometric feature: distance from wall

Semantic

features pretrained from ImageNet

 Both help significantly

[Husain et al. RA-L 2016]

Semantic Segmentation Priors for Object Discovery

- Combine bottomup object discovery and semantic priors
- Semantic segmentation used to classify color and depth superpixels
- Higher recall, more precise object borders

[Garcia et al. ICPR 2016]

RGB-D Object Recognition and Pose Estimation

Use pretrained features from ImageNet

[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view

Colorization
based on
distance from
center vertical

[Schwarz, Schulz, Behnke, ICRA2015]

Features Disentangle Data

[Schwarz, Schulz, Behnke ICRA2015]

Sven Behnke: Deep Learning for Visual Perception

Recognition Accuracy

Improved both category and instance recognition

	Category A	ccuracy (%)	Instance A	ccuracy (%)
Method	RGB	RGB-D	RGB	RGB-D
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9
Bo <i>et al.</i> [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8
PHOW[3]	80.2 ± 1.8		62.8	
Ours	83.1 ± 2.0	88.3 ± 1.5	92.0	94.1
Ours	83.1 ± 2.0	89.4 ± 1.3	92.0	94.1

Sven Behnke: Deep Learning for Visual Perception

Amazon Picking Challenge 2016

- Large variety of objects
- Different properties
 - Transparent
 - Shiny
 - Deformable
 - Heavy
- Stowing task
- Picking task

universität**bonn** ais

Bendable suction finger

Total: 6+2 DOF

Suction strength control

universität**bonn** ais

Strong vacuum cleaner (3100 W)

UR 10 Arm (6 DOF)

[Schwarz et al. ICRA 2017]

RGB-D Cameras

- 2x Intel RealSense SR300
- Fusion of three depth estimates per pixel (including RGB stereo)

[Schwarz et al. ICRA 2017]

Object Detection

[Adapted from Johnson et al. CVPR 2016]

[Schwarz et al. ICRA 2017]

Example Detections

universität**bonn** ais

Combined Detection and Segmentation

Pixel-wise multiplication

universitätbonn

ais

Grasp Pose Selection

- Center grasp for "standing" objects:
 - Find support area for suction close to bounding box center

- Top grasp for "lying" objects:
 - Find support area for suction close to horizontal bounding box center

[Schwarz et al. ICRA 2017]

Example Stowing Top Grasp

[Schwarz et al. ICRA 2017]

Example Picking Grasps

[Schwarz et al. ICRA 2017] Sven Behnke: Spatiotemporal Integration in Recurrent Deep Neural Networks

Problems of Supervised Training

- Non-convex optimization (local minima)
- Overfitting => Regularization
- Availability of labels

Given two labeled examples

How to label this point?

Sven Behnke: Spatiotemporal Integration in Recurrent Deep Neural Networks

What if you see all the unlabeled data?

Sven Behnke: Spatiotemporal Integration in Recurrent Deep Neural Networks

Labels homogeneous in densely populated space

Sven Behnke: Spatiotemporal Integration in Recurrent Deep Neural Networks

Labels homogeneous in densely populated space

Sven Behnke: Deep Learning for Visual Perception

Labels homogeneous in densely populated space

Sven Behnke: Deep Learning for Visual Perception

Labels homogeneous in densely populated space

Problems of Supervised Training

- Non-convex optimization (local minima)
- Overfitting => Regularization
- Availability of labels
 - One idea: generate target output without human annotation
 - Vestibulo occular reflex: minimize movement on the retina
 - Predictions: wait a little
 - Reconstruction: degrade the original

Adding Lateral Connections to Autoencoders

 No need to encode low-level features at higher layers

[Rasmus et al. 2015]

Semi-Supervised Learning with Ladder Networks

Lateral connections between encoder and decoderLocal denoising objectives on each layer

Sven Behnke: Spatiotemporal Integration in Recurrent Deep Neural Networks

universitätbonn

Long Short-Term Memory (LSTM)

- Simple recurrent neural networks (SRN) may suffer from vanishing or exploding gradient problem
- LSTM hard-wires a memory cell and controls input, forgetting, and output with gates

[Hochreiter & Schmidhuber 1997, Graves & Schmidhuber 2005, Greff et al. 2015]

Processing of Sequences

 Recurrent neural networks are suitable for processing sequences

Video Ladder Network

 Learning prediction with recurrent and feedforward lateral connections

Moving MNIST Digits

 Two random digits moving in random directions with constant speed, bouncing at border

Tagger: Deep Unsupervised Perceptual Grouping

- Hard-wired groupwise modeling and iterative reconstruction
- Trained on reconstruction (denoising) loss
- Learns unsupervised grouping

[Greff et al. 2016]

Iterative Grouping of Shapes

Grouping of Textured Digits

Backprop Kalman Filter

universitätbonn

ais

End-to-end training learns latent Z_t

Visual State Estimation

Tracking a red disc among distractors

			feedforward
State Estimation Model	# Parameters	RMS test error $\pm \sigma$	10° piecewise LSTM BKF
feedforward model	7394	0.2322 ± 0.1316	ة ₁₀ 1
piecewise KF	7397	0.1160 ± 0.0330	S err
LSTM model (64 units)	33506	0.1407 ± 0.1154	R R
LSTM model (128 units)	92450	0.1423 ± 0.1352	10'2
BKF (ours)	7493	$\textbf{0.0537} \pm \textbf{0.1235}$	
	[Haarn	oja et al. NIPS 2016]	10 ⁻³ 20 40 60 80 # distractors

universitätbonn ais

100

KITTY Visual Odometry

 Feedforward network of four convolutional and two fully connected layers (~500.000 weights) estimates velocities from image pairs

	Test 100			Test 100/200/400/800		
# training trajectories	3	6	10	3	6	10
Translational Error [m/m]						
piecewise KF	0.3257	0.2452	0.2265	0.3277	0.2313	0.2197
LSTM model (128 units)	0.5022	0.3456	0.2769	0.5491	0.4732	0.4352
LSTM model (256 units)	0.5199	0.3172	0.2630	0.5439	0.4506	0.4228
BKF (ours)	0.3089	0.2346	0.2062	0.2982	0.2031	0.1804
Rotational Error [deg/m]						
piecewise KF	0.1408	0.1028	0.0978	0.1069	0.0768	0.0754
LSTM model (128 units)	0.5484	0.3681	0.3767	0.4123	0.3573	0.3530
LSTM model (256 units)	0.4960	0.3391	0.2933	0.3845	0.3566	0.3221
BKF (ours)	0.1207	0.0901	0.0801	0.0888	0.0587	0.0556

[Haarnoja et al. NIPS 2016]

Image and Video Description

Combining CNN feature extraction and LSTM sequence modelling

[Donahue et al. CVPR 2015]

Task-specific Model Variants

 Jointly learning feature extraction and sequential dynamics improves performance

[Donahue et al. CVPR 2015]

Generating Image Captions

 Multimodal recurrent neural network generative model

[Karpathy, Fei-Fei 2015]

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

two young girls are playing with lego toy.

Generating Image Captions

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Describes without errors

A close up of a cat laying

Describes with minor errors

A little girl in a pink hat is

A red motorcycle parked on the

Somewhat related to the image

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Unrelated to the image

[Vinyals et al. 2015]

Dreaming Deep Networks

[Mordvintsev et al 2015]

Painting Style Transfer

van Gogh

Conclusion

- Flat models do not suffice
- Jump from signal to symbols too large
- Deep learning helps here:
 - Hierarchical, locally connected models
 - Non-linear feature extraction
- Structure of learning machine does matter
- Proposed architectures map well to GPUs
- Iterative interpretation uses partial results as context to resolve ambiguities
- Many questions open
 - Graphical models vs. neural networks
 - Structured vs. unstructured modelling
 - Stability of recurrent networks

