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Communication Robot 

3 
[Nieuwenhuisen  and Behnke, SORO 2013] 
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Domestic Service Robots 

4 

 
 

      Dynamaid                                      Cosero 

 

[Stückler et al.: Frontiers in AI and Robotics 2016] 
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Search and Rescue, Space 
Exploration Robots 
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[Schwarz et al.: Frontiers in Robotics and AI 2016, JFR 2017]  

Sven Behnke: Deep Learning of Semantic Perception for Robots 



Soccer Robots 
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[Allgeuer et al.: Humanoids 2015, 2016] 
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Micro Aerial Vehicles 
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[Nieuwenhuisen et al.: JINT 2015, Droeschel et al: JFR 2016] 
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Bin Picking Robots 
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ActReMa 

EuRoC 
C1 

STAMINA 

EuRoC 
C2 

Amazon 
Picking 
Challenge 



Self-driving Car 
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Team Berlin at DARPA Urban Challenge 
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Sensors for Autonomy 
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Ultrassonic 

[Intel] 

Short dist.  
radar 

Cameras 

Laser 
scanner 

Radar 
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Google Self-driving Car 
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[Waymo] 
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Environment Perception 
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[Google] 
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An Image Says More than a 
Thousand Words 

13 
[Vinyals et al. 2014] 
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Motivation from Visual 
Perception 

 Visual perception important for 
humans and computers 

 Image interpretation is non-trivial 
 Occlusions 

 3D reconstruction 

 Ambiguities 

 Impressive performance of the human 
visual system 
 Fast 

 Robust 
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Performance of the Human 
Visual System 
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Psychophysics 

 Gestalt principles 
 
 
 
 
 

 Heuristics 
 

 Context 
 
 

 Attention 
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Visual Illusions 

Kanizsa 

Figures 

 
 

Müller-Lyer 
 

horizontal/ 

vertical 
 

Ebbinghaus- 

Titchener 

 

Munker-White 
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Computer Vision 
 Data driven 

 
 
 
 

 Model driven 
 
 
 
 
 
 
 
  

 Interface problem 

Vectorization Structural analysis Structural match Classification 

Image sequence: 

World model 

Position estimate 

Parameterized models: 

18 Sven Behnke: Deep Learning of Semantic Perception for Robots 



Observations 

In the world around us it mostly holds 
that: 

 Neighboring things have something to 
do with each other 

 Spatially 

 Temporally 

 There is hierarchical structure 

 Objects consist of parts 

 Parts are composed of components, … 
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Spatial Arrangement of Facial Parts 

 

[Perona] 
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Face Perception 
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Horizontal and Vertical 
Dependencies 
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Multi-Scale Representation 

 Image pyramids are not expressive enough 
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Increasing Number of Features 
with Decreasing Resolution 

 Rich representations also in the higher layers 
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Modeling Horizontal 
Dependencies 

 1D: HMM, Kalman Filter, Particle Filter 
 2D: Markov Random Fields 
 Decision for level of description problematic  
 Ignores vertical dependencies, flat models do not scale 
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Modeling Vertical Dependencies 

 Structure graphs, etc. 
 Ignores horizontal dependencies 
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Horizontal and vertical 
Dependencies 

 Problem: Cycles make exact inference impossible 
 Idea: Use approximate inference 
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Ventral 
path 

Dorsal 
path 

Human Visual System 
Dorsal 

(parietal) 

path Ventral 

(temporal) 

path 

What? 

Where? 

LGN 

V1 

Orientation column 

Ocular dominance stripes 

Blob 
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[Kandel et al. 2000] 
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Visual Processing Hierarchy 

 Represented 
features 

29 

 Visual  
areas 

[Felleman  
 and Van Essen] [Wiskott] 
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Visual Processing Hierarchy 
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[Krüger et al., TPAMI 2013] 

 Increasing complexity 

 Increasing invariance  

 All connections bidirectional 

 More feedback than feed forward 

 Lateral connections important  
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Visual 
Processing 
Hierarchy 

 Increasing 
receptive field 
size 

 Increasing 
feature 
complexity 
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Trend since 2006: Deep Learning 

[Google Trends] 
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Strong Interest of Industry 

 Google  
 DNNresearch  

(Geoffrey Hinton) 

 DeepMind  
(Demis Hassabis) 

 Baidu  
 Andrew Ng 

 Facebook 
 Yann LeCun 

 Microsoft  

 Li Deng 
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Deep Learning Definition 

 Deep learning is a set of algorithms in 
machine learning that attempt to learn 
layered models of inputs, commonly 
neural networks.  

 The layers in such models correspond to 
distinct levels of concepts, where  

 higher-level concepts are defined from lower-
level ones, and  

 the same lower-level concepts can help to 
define many higher-level concepts. 
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[Bengio 2009] 
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Layered Representations 
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[Schulz and Behnke, KI 2012] 



Representations Matter 

 Cartesian coordinates 

36 

 Polar coordinates 

[Goodfellow] 
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 Traditional computer vision 

 

 

 

 

 

 Deep learning 

From Hand-crafted Features to 
Feature Learning 
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„C
a
t“

 

Simple 
classifier 

Hand-crafted features 

„C
a
t“

 

C
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s
s
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r Learned features 
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From Feature Engineering to 
Model Engineering 

 Structure of the model matters 

38 

[von Veen] 
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Perceptron 

 Feature extraction 

 Pattern recognition 
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[Rosenblatt 1958] 

∑ 

Input matrix 

Binary features 

Weighted sum 
Threshold function 

Output 
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Supervised Training of Neural 
Networks 

 Goal: A function y=f(x), which is given by 

examples, shall be approximated by the neural 
network. Choose the weights wij to minimize a 

loss function which measures the 
approximation error. 

 

 Set of training examples {(x1,t1), …, (xp,tp)} 

 The networks maps input xi to output yi  

 Example loss: Quadratic error 

 

𝐸 𝑤 = 1/2 (𝑦𝑖−𝑡𝑖)
2

𝑝

𝑖=1
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Learning = Generalization 

H. Simon -  

“Learning denotes changes in the system 
that are adaptive in the sense that they 
enable the system to do the task or tasks 
drawn from the same population more 
efficiently and more effectively the next 
time.” 

 
  

 

 The ability to perform a task in a 
situation which has never been  
encountered before 

41 
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Generalization 

Probably bad 

x1 

x2 
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Generalization 

Probably good 

x1 

x2 
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Stochastic View of Supervised 
Learning 

 Only noisy examples of function available 
 

 Two types of learning problems:  
 
    Regression                                 
 
 
 
 
 
 
 
 

 
 Learner must find a mathematical model 

Classification 
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 Training linear neural networks with quadratic 
loss is linear regression 

 

 1D case: 
 

 

 

 

 

 

 General: 

 

 

 

 

 

Example: Linear Regression 

 baxt in

Output variables 

 („target“) 
Input variables 

Noise 

 0win
Wxt

 How to find weights and biases that make 
the error minimal? 
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Multi-Layer Perzeptron 

 Non-linear separation of input space 

 Backpropagation algorithm 
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[Rumelhart et al. 1986] 

[TensorFlow Playground] 
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Flat vs. Deep Networks 

 A neural network with a single  
hidden layer that is wide enough  
can compute any function  
(Cybenko, 1989) 

 Certain functions, like parity, may require 
exponentially many hidden units (in the  
number of inputs) 

 Compare to conjunctive / disjunctive normal  
form of Boolean function 

 Deep networks (with multiple hidden 
layers) may be exponentially more efficient  

 Parity example:  

• As many hidden layers as inputs 

• Compute carry bit sequentially  
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Convolutional Neural Networks 
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Convolution 

Pooling 

Input Feature 

Lower- 
resolution 
Feature 

[Bishop] 
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2D Convolution 

 

49 

[Goodfellow] 

Input 
Kernel 

Output 
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Convolution Example 
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Sparse Local Connectivity 

 1D convolution 

 

 

 

 Fully connected 
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[Goodfellow] 
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Sparse Local Connectivity 

 1D convolution 

 

 

 

 Fully connected 
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[Goodfellow] 
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Growing Receptive Fields 
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[Goodfellow] 
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Parameter Sharing 

 Same weight 
used at all 
spatial 
locations 

 
 No weight 

sharing 
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[Goodfellow] 
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Edge Detection by Convolution 
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Input 

Kernel 

Output 

[Goodfellow] 
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Stride 

 Strided convolution 

 

 

 

 

 Convolution followed 
by subsampling 
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[Goodfellow] 
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Border Padding 

 Valid 
convolutions 
reduce image 
size 

 

 

 Border padding 
maintains 
image size 

 Zero padding 

 Mirroring 

 Copying 
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[Goodfellow] 
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Convolutional Models 

 Neocognitron: Fukushima 1980 

 

 

 

 

 

 Supervised training of convolutional networks: LeCun 1989 
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LeNet Character Recognition 
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[LeCun] 
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 o’i,j = max(o2i,2j, o2i+1,2j, o2i,2j+1, o2i+1,2j+1)  
 
 
 
 
 
 
 
 

 
 

 Creates invariance  
to local shifts 
 

 

Max Pooling 

Visible nodes (binary or real) 

Wk 

Feature detection layer 

Reduced resolution layer 

Filter response 

“Filter” weights (shared) 

‘’max-pooling’’ node  

Input or lower-level layer 
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Cross-Channel Pooling 

 Creates invariance to learned transformations 

61 

Pooling unit 

Detectors 

Input 
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HMAX Model 
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[Riesenhuber and Poggio 1999] [Serre] 
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Feed-forward Models Cannot 
Explain Human Performance 

 Performance increases with observation 
time 

 

HMAX 
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Bottom-up, Lateral, and Top-
down Processing 
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[Lee et al. 1998] 



65 

Feed Forward 

 Connectivity without cycles 

 Composition of simple functions 

 A node can only by computed 
if its inputs are available 

 Reuse of partial results 

 Order of computation  
determined by directed 
connectivity 

 

 Connectivity with cycles 

 Explicit modeling of 
computation  
time necessary 

 Computation needs one unit of 
time 

 Input at time t yields output  
at time t+1 

 Order of computation not any 
longer determined by 
connectivity 

vs. Recurrent 
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Neural Abstraction Pyramid 

- Grouping  - Competition  - Completion 

- Data-driven 

- Analysis 

- Feature extraction 

- Model-driven 

- Synthesis 

- Feature expansion 

Signals 

Abstract features 

[Behnke, LNCS 2766, 2003] 
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Iterative Interpretation 

 Interpret most obvious parts first 
 
 
 
 
 
 
 
 

 Use partial interpretation as context to resolve 
local ambiguities 

67 

[Behnke, LNCS 2766, 2003] 

Sven Behnke: Deep Learning of Semantic Perception for Robots 



Local Recurrent Connectivity 

68 

Less abstract Projections 

Output 

Processor element 

Layer 

Layer 

 Layer 

Forward projection 

Lateral projection Backward projection 
Hyper column 

Cell 
Feature map 

More abstract 

Hyper neighborhood 

[Behnke, LNCS 2766, 2003] 
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Unsupervised Learning of a 
Feature Hierarchy 

Step edges 

16x16 x 8 32x32 x 4 8x8 x 16 

Lines 

4x4 x 32 

Curves 

1x1 x 128 

Digits 

2x2 x 64 

Parts 

[Behnke, IJCNN’99] 
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Backpropagation Through Time (BPTT) 

 Unfolding along time axis -> deep network 

 Weight-sharing -> Average updates 
 
 
 
 
 
 
 

  
 

t=1 

t=2 

t=4 

t=3 
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Superresolution 

Output 

64x64 Input 

16x16 

Input Target Output 
Input Output 

[Behnke, IJCAI’01] 
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Digit Reconstruction 

Input 
Output 

Target 

Degradation 

! 

Input 
Output 

Target 

[Behnke, IJCAI’01] 
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Digit Reconstruction 

Degradation 

! 

1           2           4           7         11         16 

Input Output 
Target 

1           2           4           7         11         16 

[Behnke, IJCAI’01] 
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Binarization of Matrix Codes 

Original Degraded 

Target 
! 
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[Behnke, ICANN 2003] 

Output 

Hidden 
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Continous Attractor 

 Local excitation and global inhibition 

 Stable activity blobs can be shifted 
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Face Localization 

 BioID data set:  

 1521 images 

 23 persons 

 

 

 

 Encode eye 

positions with 

blobs 
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Right 

 eye 

Left 

 eye 

48 x 36 

24 x 18 

12 x 9 

384 x 288 

[Behnke, KES’03] 
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Face Localization 

 

Sven Behnke: Deep Learning of Semantic Perception for Robots 77 

Output 

Input 

Left eye 

Right eye 

Output 

[Behnke, KES’03] 



Auto-Encoder 

 Try to push input through 
a bottleneck 
 

 Activities of hidden units 
form an efficient code 

 There is no space for 
redundancy in the 
bottleneck 
 

 Extracts frequently 
independent features 
(factorial code) 
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Input vector 

Output vector 

Code 

Desired Output = Input 
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Deep Autoencoders 
(Hinton & Salakhutdinov, 2006) 

 Multi-layer autoencoders for 
non-linear dimensionality 
reduction 

 Difficult to optimize deep 
autoencoders using 
backpropagation 

 Greedy, layer wise training 

 Unrolling 

 Supervised fine-tuning 
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1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

      1000  neurons 

500 neurons 

500 neurons  

250 neurons  

250 neurons  

30   

1000  neurons 

28x28 

28x28 

linear 

units 



entirely 

unsupervised 

except for the 

colors 

MNIST Digits 
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GPU Implementations (CUDA) 

 Affordable parallel computers 

 General-purpose programming  

 Convolutional 
 
 

 
 
 

 Local connectivity 
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[Scherer & Behnke, 2009] 

[Uetz & Behnke, 2009] 
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GPU vs. CPU Performance 

 GPUs are one order of magnitude faster 
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Tesla Volta V100 

 7.5 TFLOP/s of double precision (FP64)  

 15 TFLOP/s of single precision (FP32)  

 120 Tensor TFLOP/s for deep learning 

 

 

 

 HBM2 memory with up to 900 GB/sec bandwidth 
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Image Categorization: NORB 

 10 categories, jittered-cluttered 

 

 
 

 

 

 Max-Pooling, cross-entropy training 

 

 
 

 Test error: 5,6% (LeNet7: 7.8%) 

 

 

[Scherer, Müller, Behnke, ICANN’10] 
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Image Categorization: LabelMe 

 50,000 color images (256x256) 

 12 classes + clutter (50%) 
 
 
 
 
 
 
 

 Error TRN: 3.77%;  TST: 16.27% 

 Recall: 1,356 images/s 
[Uetz, Behnke, ICIS2009] 
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Multi-Column Deep 
Convolutional Networks 

 Different preprocessings 

 Trained with distortions 

 Bagging deep networks 
 
 
 
 
 
 

 MNIST: 0.23%  

 NORB: 2.7% 

 CIFAR10: 11.2%  

 Traffic signs: 0.54% test error 
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[Ciresan et al. CVPR 2012] 
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ImageNet Challenge 

 1.2 million images  

 1000 categories, no overlap 

 Subset of 11 million images from 15.000+ 
categories 

 Hierarchical category structure (WordNet) 
 
 
 
 
 

 Task: recognize object category 

 Low penalty for extra detections 

 Hierarchical error computation  

 

 

Golf cart (motor vehicle, self-propelled vehicle, wheeled vehicle, …  Egyptian cat (domestic cat, domestic animal, animal) 
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Large Unsupervised Feature Learning 
 9 layer model 

 Locally connected 

 Sparse auto-encoder 

 L2 pooling 

 Local contrast normalization 

 1 billion connections 

 Trained on 10 million images 

 Unsupervised learned detectors 

 

 

 
 Supervised ImageNet 2011 results (14M images, 22K 

categories): 15.8% 
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[Le et al. 2012] 

3x 
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Large Convolutional Network 

 Rectifying transfer functions 

 650,000 neurons 

 60,000,000 parameters 

 630,000,000 connections 

 Trained using dropout and  
data augmentation 

 Testing 10 sub-images 

 ILSVRC-2012: top-5 error 15.3% 

89 

96 learned low-level filters 

[Krizhevsky et al. NIPS 2012] 
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Validation Classification 

 

90 

[Krizhevsky et al. 
  NIPS 2012] 
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Learning of Object Parts 

Faces Cars Elephants Chairs 

 Examples of learned object parts from object 
categories 
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Learned Visual Features 

 Weights with strong 
contribution to activity  
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 Strongly activating 
stimuli 

[Zeiler and Fergus 2014] 



Learned Visual Features 

 Deconvolved features 
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 Strongly activating 
stimuli 

[Zeiler and Fergus 2014] 



Learned Visual Features 

 Deconvolved features 
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 Strongly activating 
stimuli 

[Zeiler and Fergus 2014] 



Learned Visual Features 
 Deconvolved features and activating stimuli 
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[Zeiler and Fergus 2014] 



Dreaming Deep Networks 

96 

[Mordvintsev et al. 2015] 
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Example CNNs Structures of 
ILSVRC winners 

97 

[He CVPR 2016] 

 Revolution of depth 
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Object Recognition 
Performance on ImageNet 
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[He et al. 2015] 

 



Surpassing Human Performance 
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[He et al. 2015] 
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Are Deeper Networks Always 
Better? 
 Plain nets: Stacking 3x3 convolutional layers 

 56-layer network has higher training error and 
test error than 20-layer network 
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[He et al. CVPR 2016] 



Deep Residual Learning  

101 

 Plain network  Residual network 
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[He et al. CVPR 2016] 
 ResNet: Very deep network 

 

 

 Iteratively refining representations [Greff et al. ICLR 2017] 



Local Bottlenecks to make 
Networks Deeper 

 Bottleneck 
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Similar 
complexity 

 All 3×3 conv. 

[He et al. CVPR 2016] 



Limitations of Convolutional 
Processing 
 All image positions processed in the same way 

 No scale invariance 

 No focus of attention 
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Object Detection 

 Image categorization 
What? 
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 Object detection 
What + where? 



Object Detection in Images 

 Bounding box annotation 

 Structured loss that directly maximizes overlap of 
the prediction with ground truth bounding boxes 

 Evaluated on two of the Pascal VOC 2007 classes: 
cows and horses 
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[Schulz, Behnke, ICANN 2014] 



Region-based CNN Pipeline (R-CNN) 

 Generate region proposals 

 Cut out and warp them to constant size 

 Classify warped regions with CNN 
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[Girshick et al. CVPR 2014] 



Fast R-CNN 

 Convolutional 
processing at many 
overlapping regions 
inefficient 
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[Girschik ICCV 2015] 

 Share convolutional 
layers and cut out 
features (Region of 
interest pooling) 



Faster R-CNN 
 Region proposals computed by a CNN 

 Anchor boxes placed for grid of 
locations, sizes, aspect rations 

 For each anchor objectness and  
box coordinates predicted 
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[Ren et al. NIPS 2015] 



Object Detection Pipeline 

 Combine classification and detection models 

 Use pre-trained features 
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[He et al. CVPR 2016] 



Faster R-CNN + ResNet Object 
Detection Result 
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[He et al. CVPR 2016] 



Faster R-CNN + ResNet Object 
Detection Result 
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Faster R-CNN + ResNet Object 
Detection Result 
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Object Detection Performance 

 Deeper networks have 
better performance 
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[He et al. CVPR 2016] 



Faster R-CNN + ResNet Object 
Detection in Video 
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Spatial Transformer Networks 
 Localization network estimates 

transformation parameters θ 

 Grid generator computes sampling locations 

 Sampler cuts out image parts  

Sven Behnke: Deep Learning of Semantic Perception for Robots 115 

[Jaderberg et al.  
  NIPS 2015] 



Spatial Transformer Networks 
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[Jaderberg et al. NIPS 2015] 



Deformable Convolutional 
Networks 

 Similar to spatial 
transformer 
networks, but 
locally within a 
CNN 

 Local distortions 
on multiple levels 

 

 

 

 Flexible receptive 
field 
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Standard conv.                      Deformable conv. 

[Dai et al. 2017] 



Deformable Convolutional Network 
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[Dai et al. 2017] 



Deformable Convolutional 
Networks 

 After convolutions 
to cut out an 
object 

 Part placement is 
adapted to input 
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[Dai et al. 2017] 



Object-class Segmentation 

 Class annotation per pixel 

 
 
 

 Multi-scale input channels 

 
 

 

 Evaluated on MSRC-9/21 

and INRIA Graz-02 data  

sets 
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[Schulz, Behnke 2012] 
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Input     Output    Truth          Input     Output    Truth  



Fully Convolutional Networks for 
Semantic Segmentation 

 Apply classification 
network at all 
image locations 

 Problem:  
coarse output 
resolution 

 Idea: Upsampling, 
use features from 
finer resolutions 
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[Long et al. CVPR 2015] 



SegNet: Encoder-Decoder 

 Use pooling indices for upsampling 
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[Badrinarayanan et al. PAMI 2017] 



RefineNet 

 Increase resolu- 
tion by using  
features from  
the higher  
resolution 

 Corse-to-fine  

 Object parsing and 
semantic segmentation 
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[Lin et al. CVPR 2017] 



RGB-D Object-Class Segmentation 

 Kinect-like sensors provide dense depth  

 Scale input according to depth, compute pixel 
height above floor 

 

124 

[Schulz, Höft, Behnke, ESANN 2015] RGB       Depth     Height     Truth     Output 

NYU Depth V2 
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 Input: RGB-D-Video (NYU Depth V2) 
 
 
 
 
 
 
 
 
 
 

 Recursive computation is efficient for temporal 
integration 
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[Pavel, Schulz, Behnke, Neural Networks 2017] 

Neural Abstraction Pyramid for RGB-D 
Video Object-class Segmentation 

RGB 

Depth 

Neural Abstraction Pyramid 

Output 
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Neural Abstraction Pyramid for RGB-D 
Video Object-class Segmentation 
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[Pavel, Schulz, Behnke,  
Neural Networks 2017] 

RGB                               Depth                         Output                           Truth 
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Geometric and Semantic Features for 
RGB-D Object-class Segmentation 

 New geometric 
feature: distance 
from wall 

 Semantic 
features 
pretrained from 
ImageNet  

 Both help 
significantly 
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[Husain et al. RA-L 2016] 
     RGB        Truth       DistWall       OutWO   OutWithDist 



Semantic Segmentation Priors for  
Object Discovery 

 Combine bottom-
up object 
discovery and 
semantic priors 

 Semantic 
segmentation 
used to classify 
color and depth 
superpixels 

 Higher recall, 
more precise 
object borders 
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[Garcia et al. ICPR 2016] 



RGB-D Object Recognition and 
Pose Estimation 

 Use pretrained features from ImageNet 
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[Schwarz, Schulz, Behnke, ICRA2015] 
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Canonical View, Colorization 

 Objects viewed 
from different 
elevation 

 Render 
canonical 
view 
 

 Colorization 
based on 
distance from 
center vertical 
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[Schwarz, Schulz, Behnke, ICRA2015] 
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Features Disentangle Data 

 t-SNE 
embedding 
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[Schwarz, Schulz,  
 Behnke ICRA2015] 



Recognition Accuracy 

 Improved both category and instance recognition 
 
 

 
 
 

 Confusion  
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1:     pitcher    / coffe mug     2:    peach      /   sponge  

[Schwarz, Schulz, Behnke, ICRA2015] 



Amazon Picking Challenge 2016 
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 Large variety of objects 

 Different properties 

 Transparent 

 Shiny 

 Deformable 

 Heavy 

 Stowing task 

 Picking task 
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System 
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UR 10 Arm (6 DOF) 

Bendable 
suction finger 

Strong vacuum  
cleaner (3100 W) 

2x Intel RealSense SR300 

+ LED light 

Total: 
6+2 DOF 

Suction strength control 

Air velocity sensor 
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[Schwarz et al. ICRA 2017] 



RGB-D Cameras 

 2x Intel RealSense  
SR300 

 Fusion of three depth 
estimates per pixel 
(including RGB stereo) 
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[Schwarz et al. ICRA 2017] 
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Object Detection 
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[Adapted from Johnson et al. CVPR 2016] 

[Schwarz et al. ICRA 2017] 
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Example Detections 
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Glue sticks Gloves Sippy cup 

[Schwarz et al. ICRA 2017] 
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Semantic Segmentation 

 Deep Convolutional Network 
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138 

RGB 

HHA 

Result 

[Husain et al. RA-L 2016] 
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Combined Detection and 
Segmentation 

 Pixel-wise multiplication 
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DenseCap Detection 

CNN Segmentation 

x 

Detection 

Segmentation 
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Grasp Pose Selection 

 Center grasp for 
“standing” objects: 

 Find support area for 
suction close to bounding 
box center 
 

 

 Top grasp for “lying” 
objects: 

 Find support area for 
suction close to horizontal 
bounding box center 
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[Schwarz et al. ICRA 2017] 



Example Stowing Top Grasp 
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[Schwarz et al. ICRA 2017] 



Example Picking Grasps 
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[Schwarz et al. ICRA 2017] 



Workspace Perception Data Set 
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https://www.centauro-project.eu/data_multimedia/tools_data 



Deep Learning Object Detection 

 Adapted DenseCap [Johnson et al. 2015] pipeline 

 

 

 

 

 

 

 

 

 

 Transfer learning needs only few annotated images 
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[Schwarz et al. IJRR 2017] 



Tool Detection Results  
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[Schwarz et al. IJRR 2017] 

 



Tool Detection Examples 
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Semantic Segmentation 

 Deep CNN 
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[Husain et al. RA-L 2016] 

Pixel-wise accuracy: 



MBZIRC Challenge 2 
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Wrench Perception 

 DenseCap Object detection of mouth and ring 

 Training set: 100 Stereo image pairs 
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EuRoC Challenge 1: Robolink Feeder 

 

150 

Cable-driven 6DOF 
igus-robolink® 

manipulator 

SR300 RGB-D wrist 
camera 

Energy chain part 
feeder 

Place for regrasping 
Pile of the chain 

parts 

ASUS Xtion RGB-D 
workspace camera 

[Koo et al. CASE 2017] 
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Robolink Feeder: Bin Picking 
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[Koo et al. CASE 2017] 
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Part Pose Estimation 
 Two convolutional neural networks 

 

 

 

 

 
 

 Training with synthetic depth images 
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SymNet 
PoseNet 

[Koo et al. CASE 2017] 
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Robolink Feeder: Regrasping and Placing 
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[Koo et al. CASE 2017] 
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Amazon Robotics Challenge 2017 

 Quick learning of novel objects 

 Training with  
rendered scenes 

 

154 Sven Behnke: Deep Learning of Semantic Perception for Robots 



Amazon Robotics Challenge 2017 Final 
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NimbRo Picking 2017 Team 
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Conclusion 

 Flat models do not suffice 

 Jump from signal to symbols too large 

 Deep learning helps here:  
 Hierarchical, locally connected models 

 Non-linear feature extraction 

 Structure of learning machine does matter 

 Proposed architectures map well to GPUs 

 Iterative interpretation uses partial results as 
context to resolve ambiguities 

 Many open questions, e.g. 

 Object-centered representations 

 Full scene parsing / vision as inverse graphics 

157 Sven Behnke: Deep Learning of Semantic Perception for Robots 


