Perception and Planning for Autonomous Mobile Robots

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

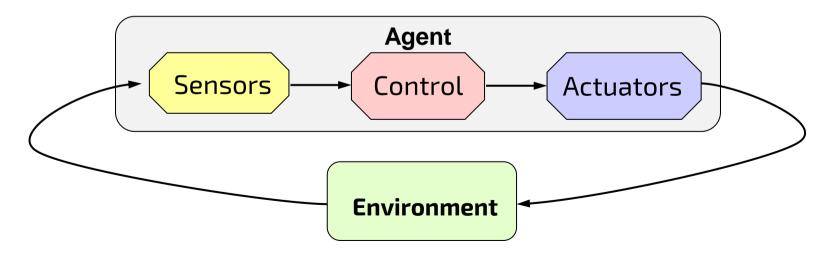
Many New Application Areas for Robots

- Self-driving cars
- Logistics
- Agriculture, mining
- Collaborative automation
- Personal assistance
- Space, search & rescue
- Healthcare
- Toys

Need more cognitive abilities!

Sub-problems

- Environment perception
- Behavior planning
- Action generation



Some of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Soccer

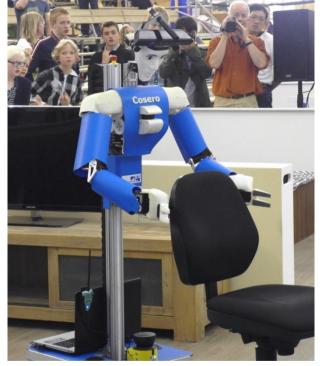
Domestic service

Mobile manipulation

Bin picking

Aerial inspection

Our Domestic Service Robots



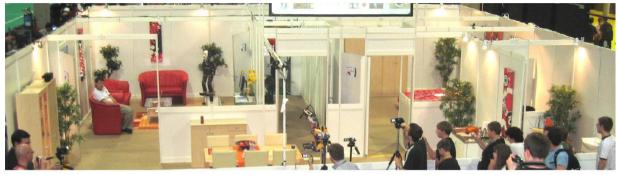
Dynamaid

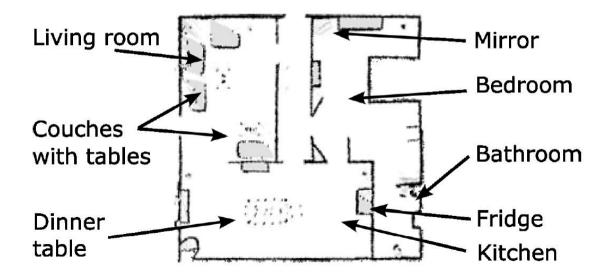
- Cosero
- [Stückler et al.: Frontiers in Robotics and AI 2016]

- Size: 100-180 cm, weight: 30-35 kg
- 36 articulated joints
- PC, laser scanners, Kinect, microphone, ...
- 5

Cognitive Service Robot Cosero

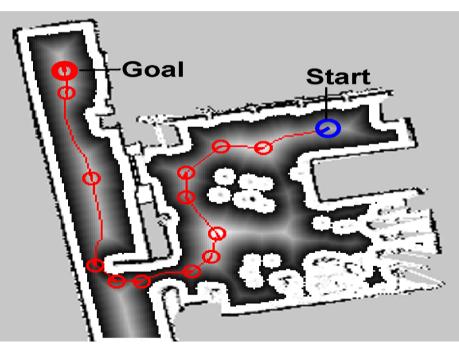
Mapping the Environment





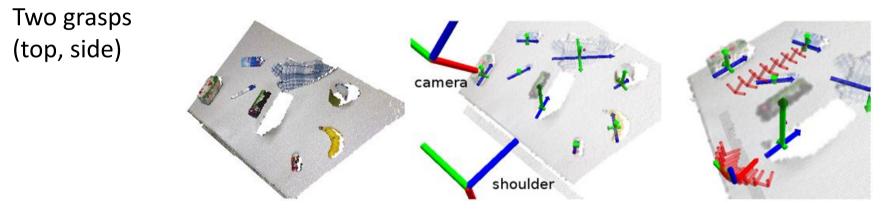
Path Planning

- Global planning tries to keep away from obstacles
- Obstacle avoidance using two lasers
- Robot alignment in narrow passages
- Plan revision when path blocked



Object Perception and Grasp Planning

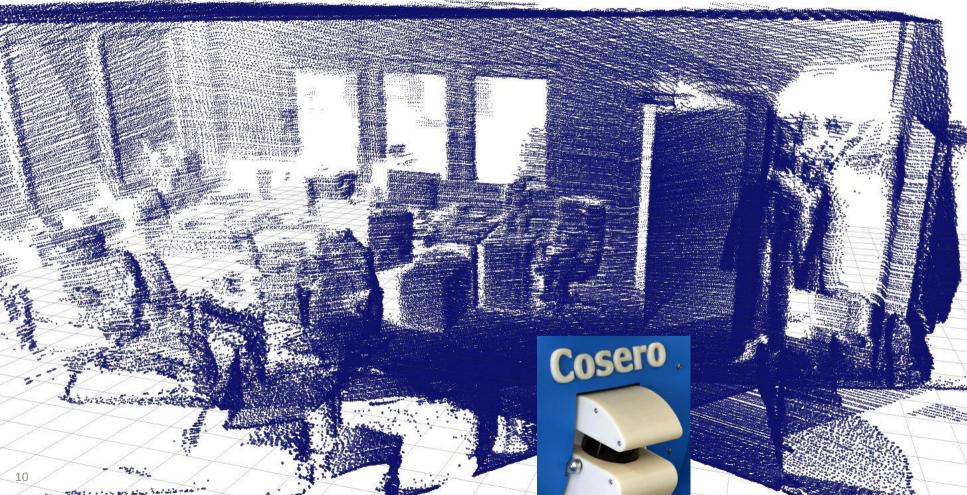
Detection of clusters above horizontal plane



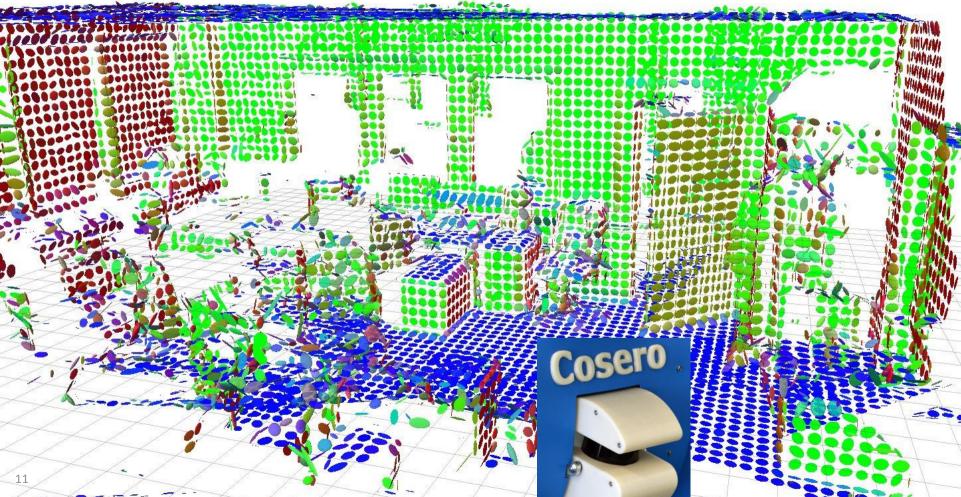
 Flexible grasping of many unknown objects

[Stückler et al, Robotics and Autonomous Systems, 2013]

3D-Mapping with Surfels

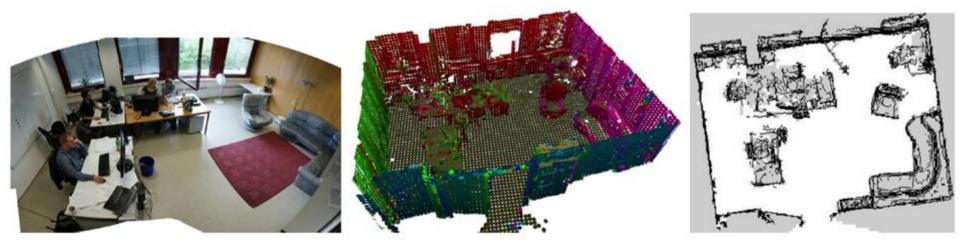


3D-Mapping with Surfels



3D-Mapping and Localization

- Registration of 3D laser scans
- Representation of point distributions in voxels
- Drivability assessment through region growing
- Robust localization using 2D laser scans



[Kläß, Stückler, Behnke: Robotik 2012]

3D Mapping by RGB-D SLAM

- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU

 Global optimization

Multi-camera SLAM

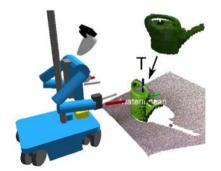
5cm

2,5cm

Learning and Tracking Object Models

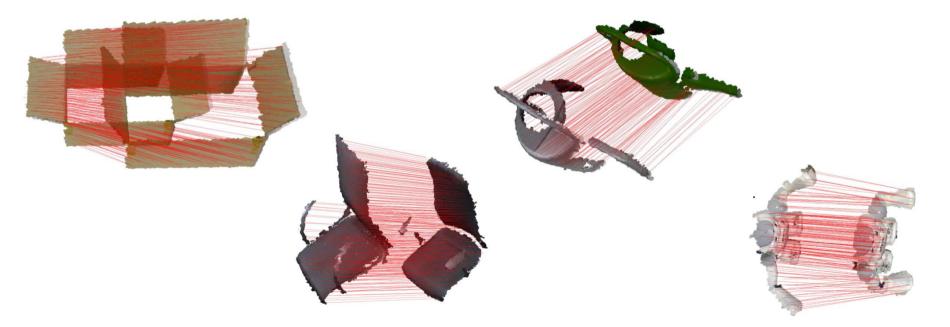
Modeling of objects by RGB-D-SLAM

Real-time registration with current RGB-D frame



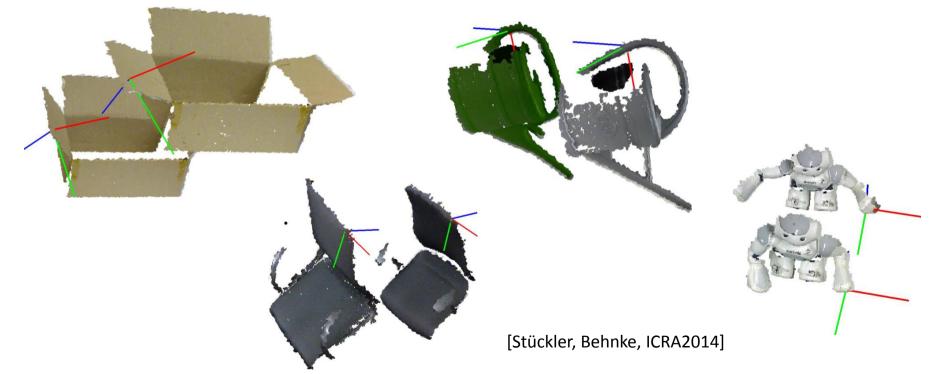
Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration

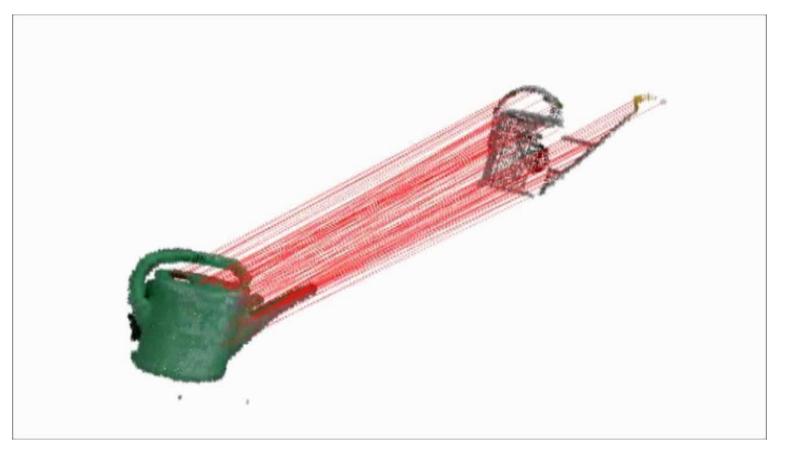


Transformation of Poses on Object

Derived from the deformation field



Grasp & Motion Skill Transfer



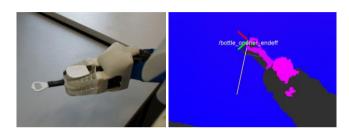
ICRA2014]

UNIVERSITÄT

[Stückler, Behnke,

Tool use: Bottle Opener

Tool tip perception



- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation



[Stückler, Behnke, Humanoids 2014]

Picking Sausage, Bimanual Transport

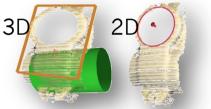
- Perception of tool tip and sausage
- Alignment with main axis of sausage

 Our team NimbRo won the RoboCup@Home League in three consecutive years

Bin Picking

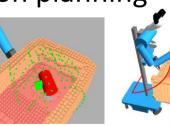
Known objects in transport box

Matching of graphs of 2D and 3D shape primitives

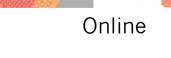




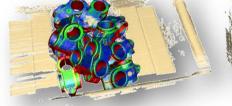
Grasp and motion planning

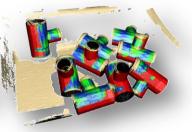


Offline



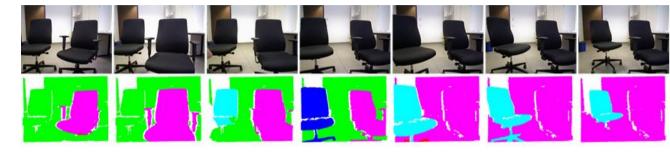
[Nieuwenhuisen et al.: ICRA 2013]



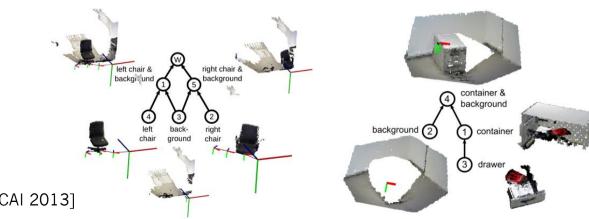


Hierarchical Object Discovery trough Motion Segmentation

Simultaneous object modeling and motion segmentation



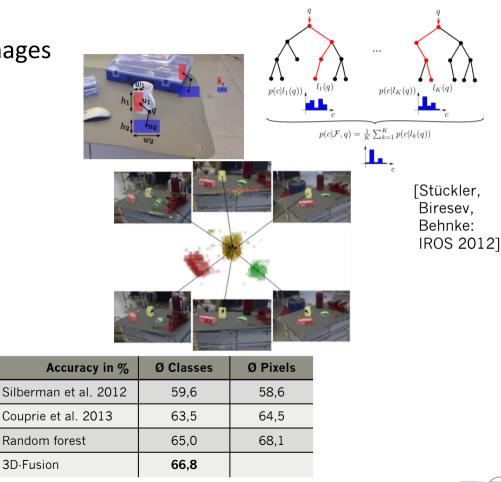
 Inference of a segment hierarchy



[Stückler, Behnke: IJCAI 2013]

Semantic Mapping

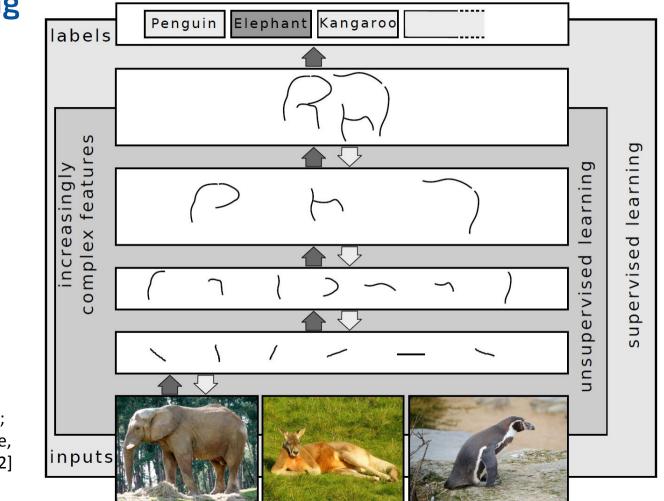
- Pixel-wise classification of RGB-D images by random forests
- Compare color / depth of regions
- Size normalization
- 3D fusion through RGB-D SLAM
- Evaluation on NYU depth v2



UNIVERSITÄT

Deep Learning

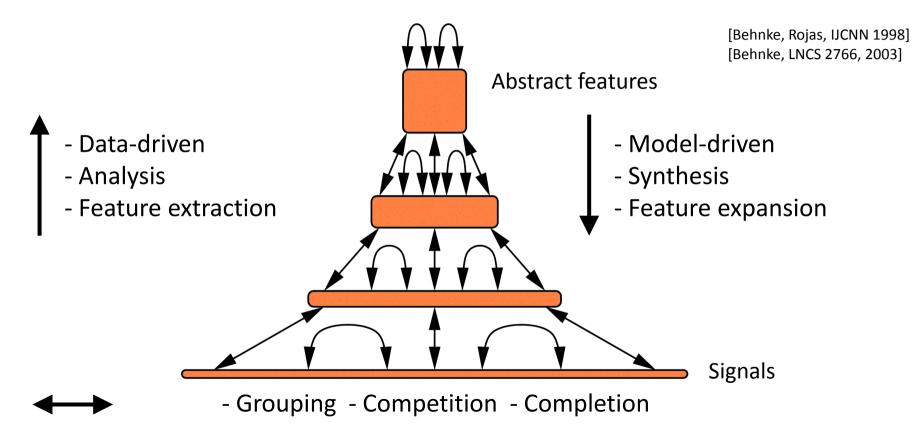
 Learning layered representations



UNIVERSITÄT BO

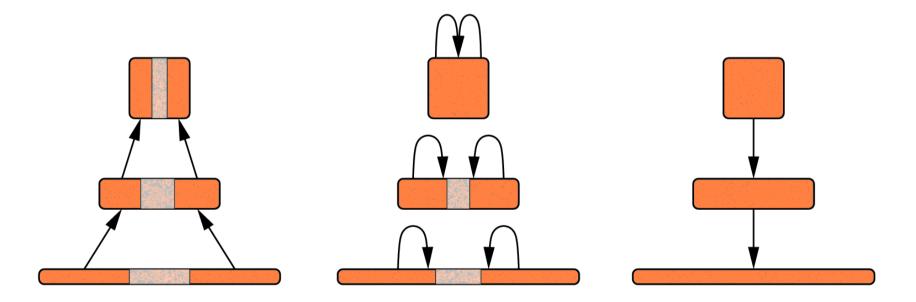
[Schulz; Behnke, KI 2012]

Neural Abstraction Pyramid



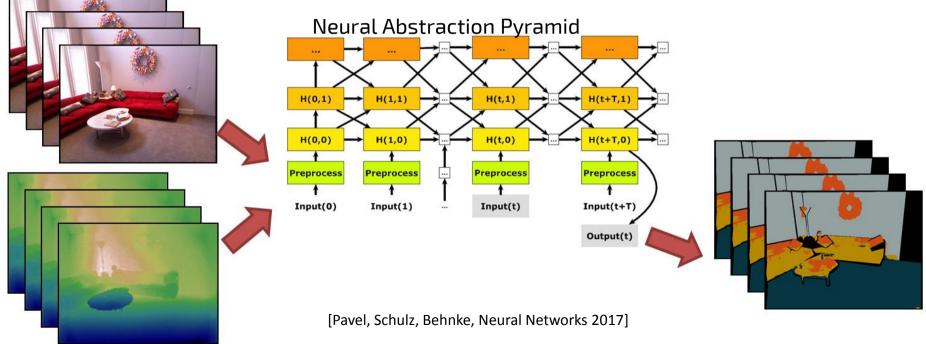
Iterative Image Interpretation

- Interpret most obvious parts first
- Use partial interpretation as context to resolve local ambiguities



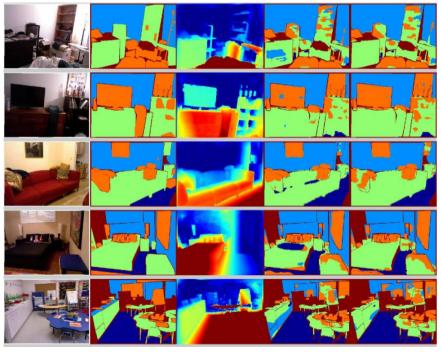
Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

Recursive computation is efficient for temporal integration



Geometric and Semantic Features for RGB-D Object-class Segmentation

- New geometric feature: distance from wall
- Semantic features pretrained from ImageNet
- Both help significantly



RGB Truth DistWall OutWO OutWithDistWall

[Husain et al. RA-L 2017]

RGB-D Object Recognition and Pose Estimation

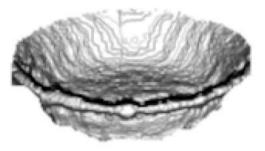


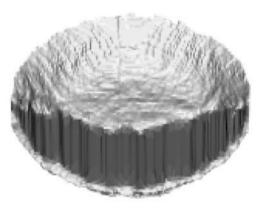
[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

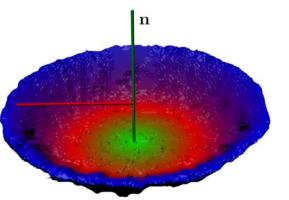
Objects viewed from different elevation

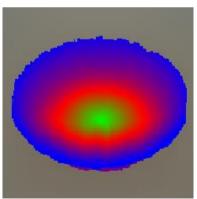
Render canonical view





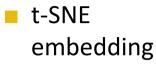
Colorization based on distance from center vertical

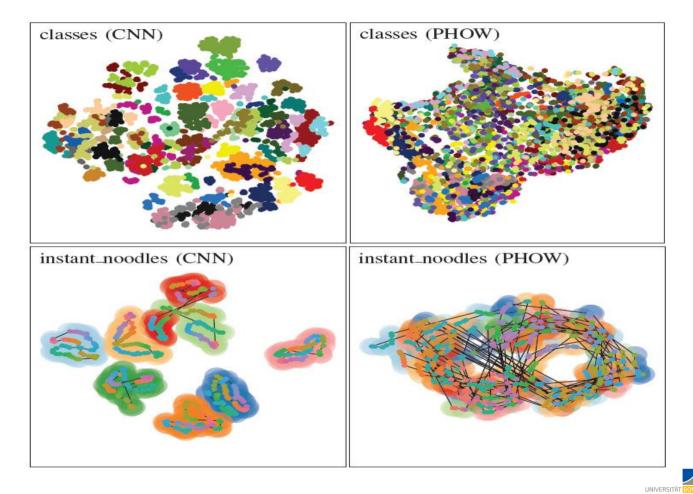




[Schwarz, Schulz, Behnke, ICRA2015]

Pretrained Features Disentangle Data





[Schwarz, Schulz, Behnke ICRA2015]

Recognition Accuracy

Improved both category and instance recognition

	Category Accuracy (%)		Instance Accuracy (%)	
Method	RGB	RGB-D	RGB	RGB-D
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9
Bo et al. [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8
PHOW[3]	80.2 ± 1.8		62.8	
Ours	83.1 ± 2.0	88.3 ± 1.5	92.0	94.1
Ours	83.1 ± 2.0	89.4 ± 1.3	92.0	94.1

0.8

0.6

0.4

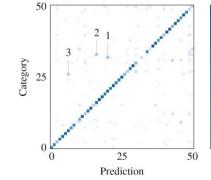
0.2

0

Confusion:

[Schwarz, Schulz,

Behnke, ICRA2015]

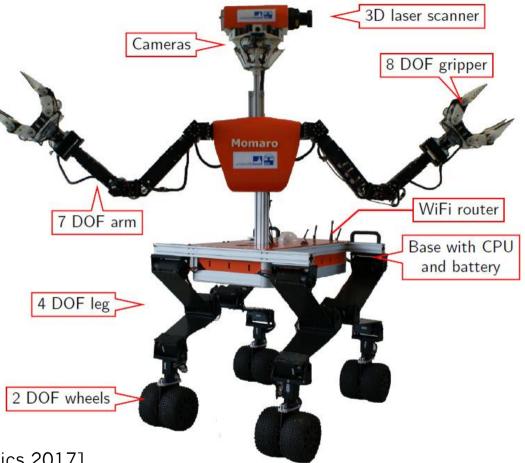


1: pitcher / coffe mug

2: peach / sponge

Mobile Manipulation Robot Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

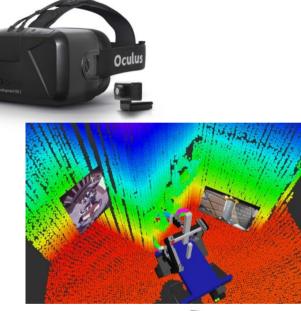


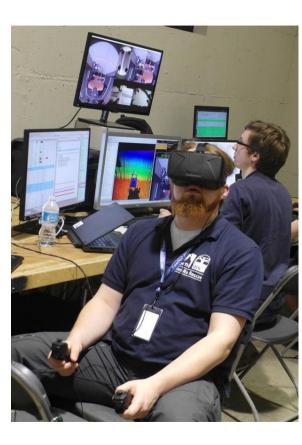
[Schwarz et al. Journal of Field Robotics 2017]

Manipulation Operator Interface

- 3D head-mounted display
- 3D environment model
 +
 images

6D magnetic tracker

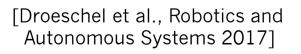


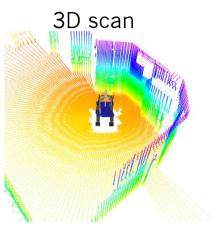


[Rodehutskors et al., Humanoids 2015]

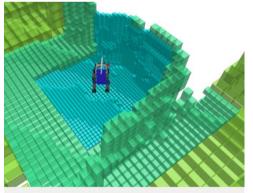
Local Multiresolution Surfel Map

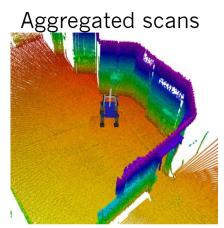
- Registration and aggregation of 3D laser scans
- Local multi-resolution grid
- Surfel in grid cells

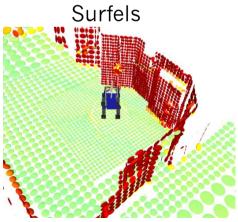




Multiresolution grid

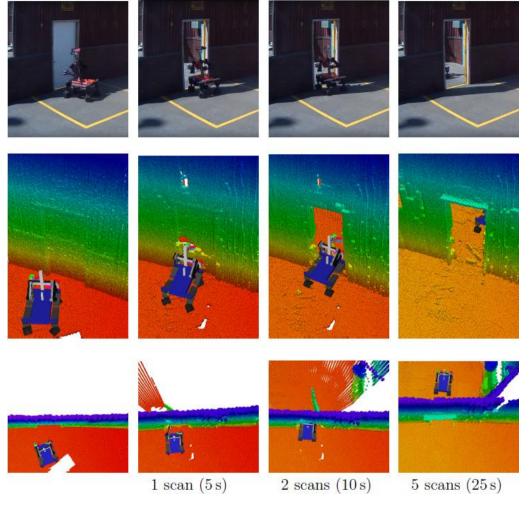






Filtering Dynamic Objects

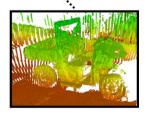
- Maintain occupancy in each cell
- Remove measurements of empty cells



Allocentric 3D Mapping

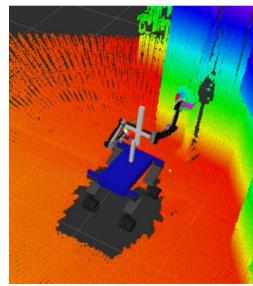
 Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]



Valve Turning Interface

 Align wheel model with 3D points using interactive marker



[Schwarz et al. Journal of Field Robotics 2017]

23:25:56 05/06/2015 UTC

H

4x

23:28:21 05/06/2015 UTC

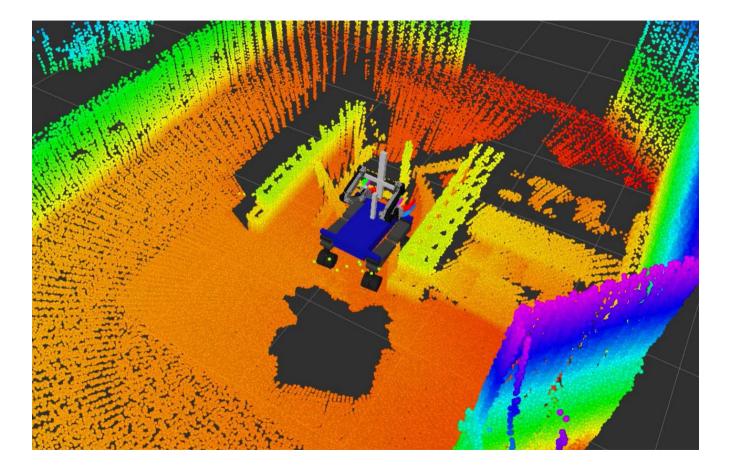
4x

02:23:20 07/06/2015 UTC

O

4X

Debris Tasks



23:36:46 05/06/2015 UTC

16h

2

VALLENGE

C

-6

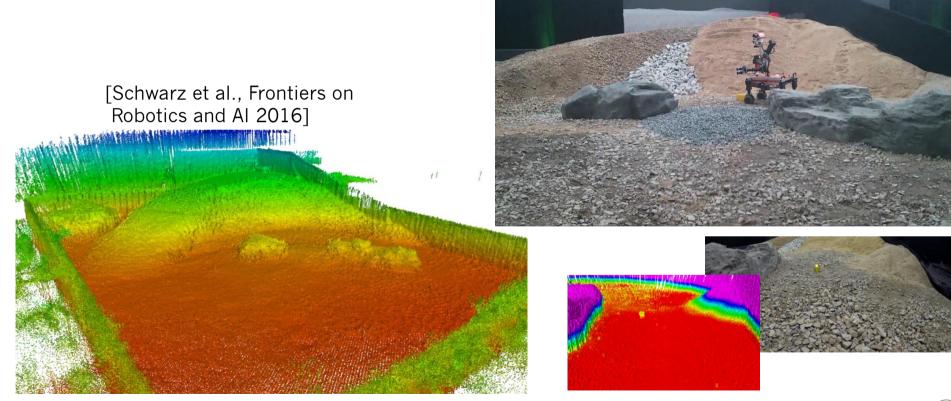
Team NimbRo Rescue

KEEP OUT

Best European Team (4th place overall), solved seven of eight tasks in 34 minutes

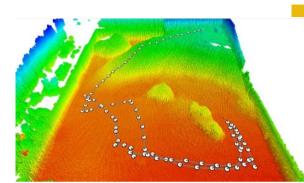
DLR SpaceBot Cup 2015

Mobile manipulation in rough terrain

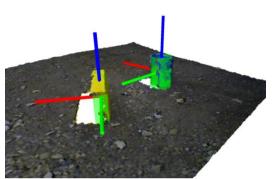


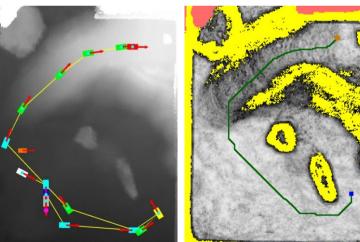
Autonomous Mission Execution

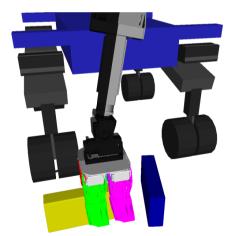
 3D mapping, localization, mission and navigation planning



3D object perception and grasping







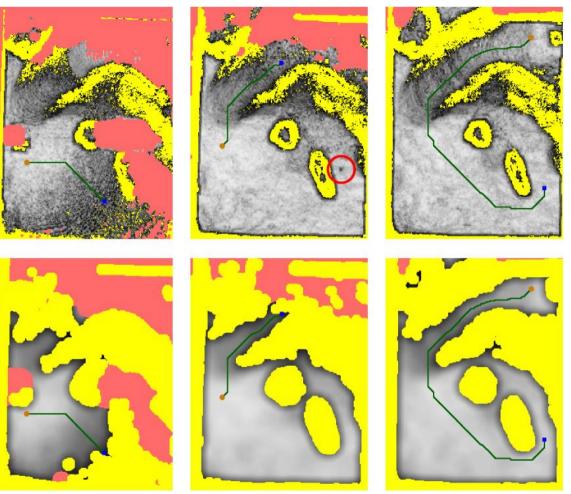
UNIVERSITÄT

[Schwarz et al. Frontiers 2016]

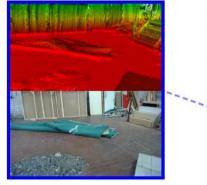
Navigation Planning

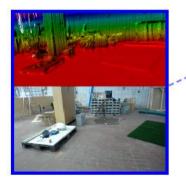
- Costs from local height differences
- A* path planning

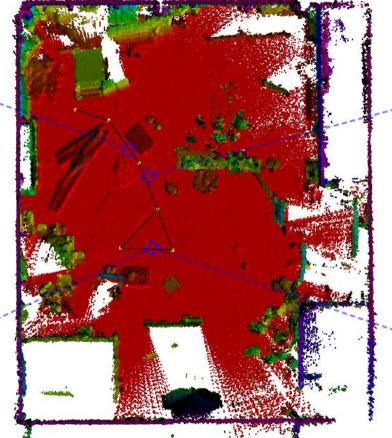
[Schwarz et al., Frontiers in Robotics and Al 2016]

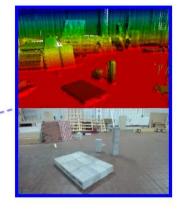


3D Map









Improved Sensor Head

- Continuously rotating Velodyne Puck VLP-16
 - 300,000 3D points/s
 - 100 m range
 - Spherical field of view
- Three wide-angle color cameras (total FoV 210×103°)
- Kinect V2 RGB-D camera on pan-tilt unit

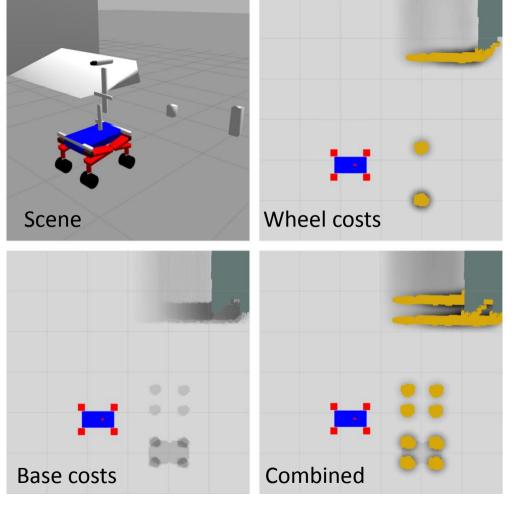
3D Map of Indoor+Outdoor Scene



[Droeschel et al., Robotics and Autonomous Systems 2017]

Considering Robot Footprint

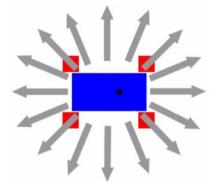
- Costs for individual wheel pairs from height differences
- Base costs
- Non-linear combination yields
 3D (x, y, θ) cost map



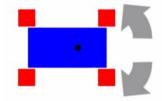
[Klamt and Behnke, IROS 2017]

3D Driving Planning (x, y, \theta): A*

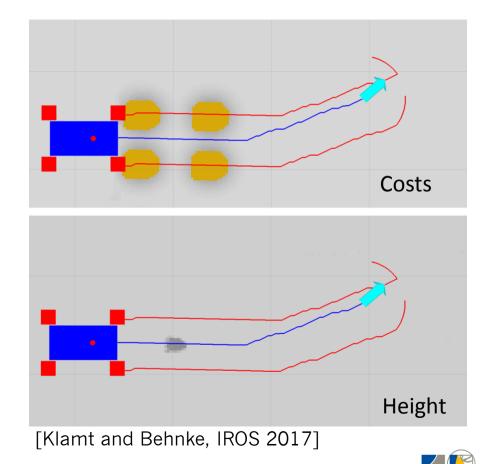
16 driving directions



Orientation changes



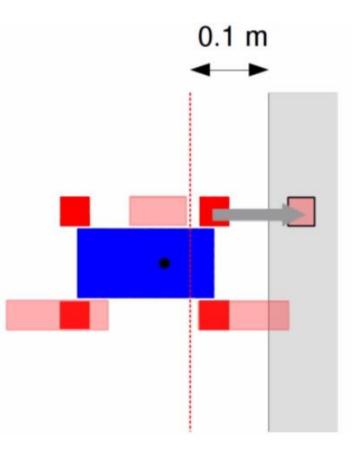
=> Obstacle between wheels



UNIVERSITÄ

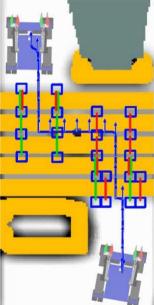
Making Steps

- If not drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable



[Klamt and Behnke: IROS 2017]

Planning for Challenging Scenarios



[Klamt and Behnke: IROS 2017]

Centauro Robot

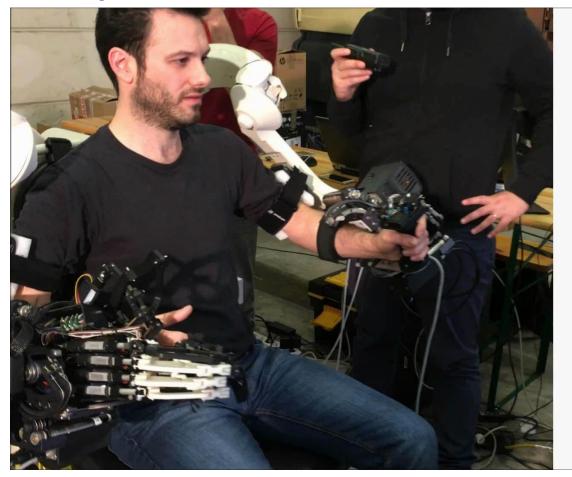
- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

Main Operator Telepresence Interface

- Tendon-driven dual-arm exoskeleton
- Active wrist with differential tendon transmission
- Underactuated hand exoskeleton
- Head-mounted display
- Foot pedals

Main Operator Control

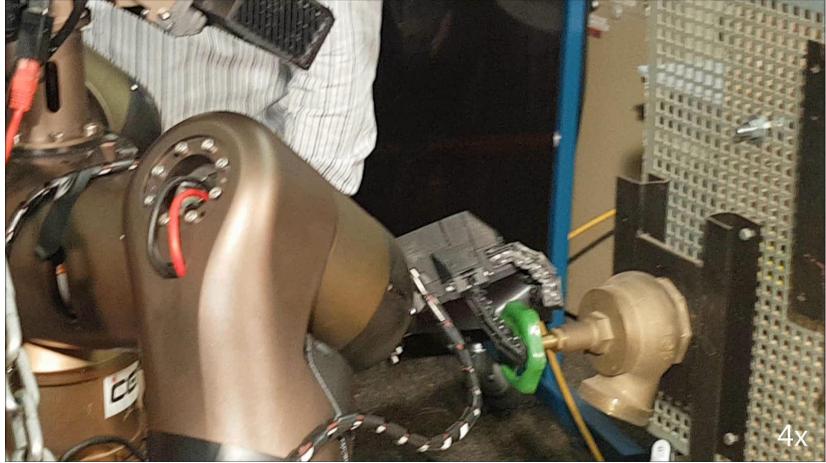


Manipulation Tasks

- Surface
- Valve (lever)
- Valve (gate)
- Snap hook
- Fire hose
- 230V connector
- Cutting tool
- Driller
- Screw driver
- Grasping

Used control interfaces

Turning a Valve

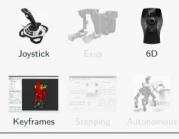


Connecting a Plug

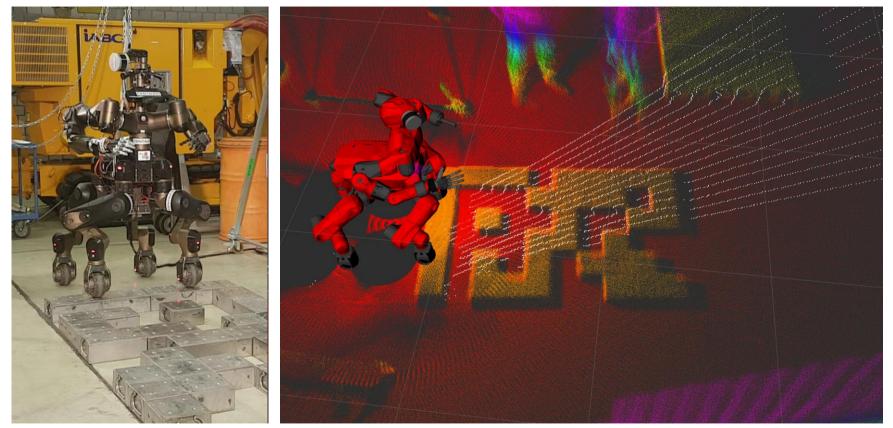
Manipulation Tasks

- Surface
- Valve (lever)
- Valve (gate)
- Snap hook
- Fire hose
- 230V connector
- Cutting tool
- Driller
- Screw driver
- Grasping

Used control interfaces

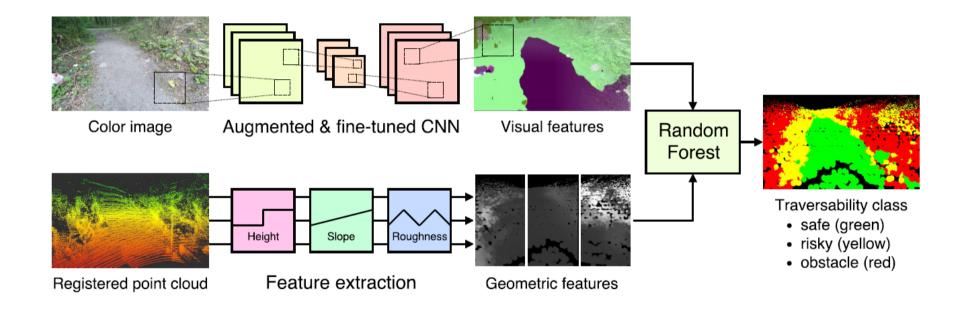


3D Mapping and Localization



Walking over a Step Field

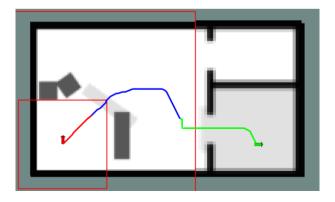
Terrain Classification

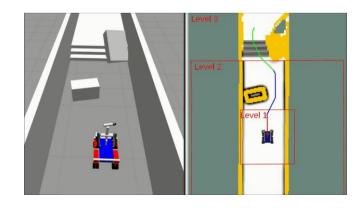


[Schilling et al., IROS 2017]

Hybrid Driving-Stepping Locomotion Planning: Abstraction

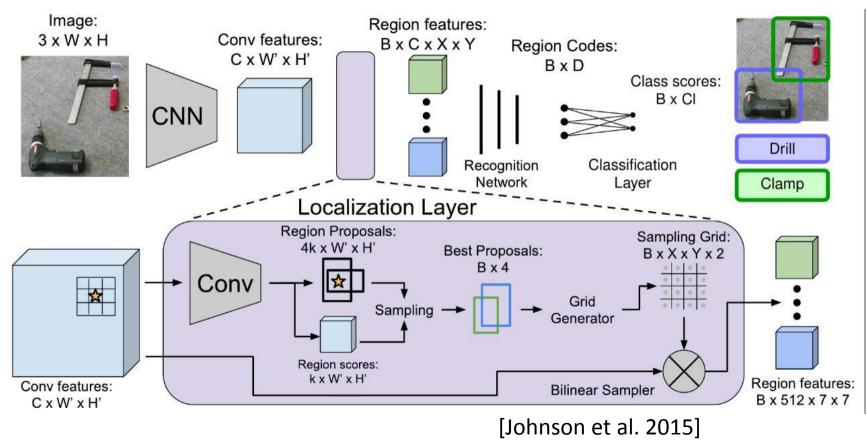
Level	Map Resolution		Map Features		Robot Representation			Action Semantics		
1		• 2.5 cm • 64 orient.	\land	● Height					\bigwedge	 Individual Foot Actions
2		• 5.0 cm • 32 orient.		HeightHeight Difference						• Foot Pair Actions
3		10 cm16 orient.		HeightHeight DifferenceTerrain Class		\bigvee				• Whole Robot Actions



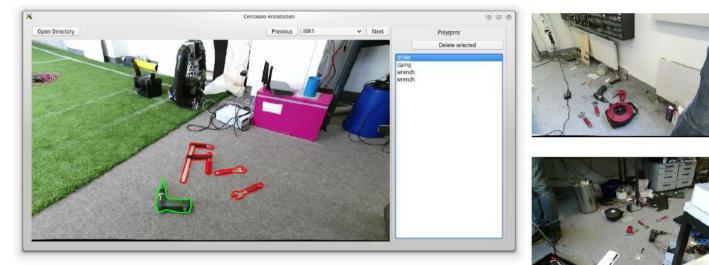


[Klamt and Behnke, IROS 2017, ICRA 2018]

Deep Learning Object Detection



CENTAURO Workspace Perception Data Set



129 frames, 6 object classes

https://www.centauro-project.eu/data_multimedia/tools_data

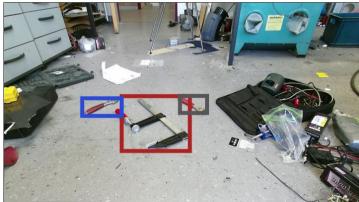
Tool Detection Results

[Schwarz et al. IJRR 2017]

extension_box stapler driller clamp [background]

Resolution	Clamp	Door handle	Driller	Extension	Stapler	Wrench	Mean
	AP / F1						
720×507	0.881/0.783	0.522/0.554	0.986/0.875	1.000/0.938	0.960/0.814	0.656/0.661	0.834/0.771
1080×760 1470×1035	0.926/0.829 0.913/0.814	0.867/0.632 0.974/0.745	0.972/0.893 1.000/0.915	1.000/0.950 1.000/0.952	0.992/0.892 0.999/0.909	0.927/0.848 0.949/0.860	0.947/0.841 0.973/0.866

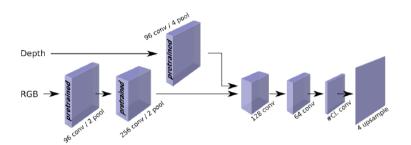
Tools Detection Examples



[Schwarz et al. IJRR 2017]

Semantic Segmentation

Deep CNN



[Husain et al. RA-L 2016]

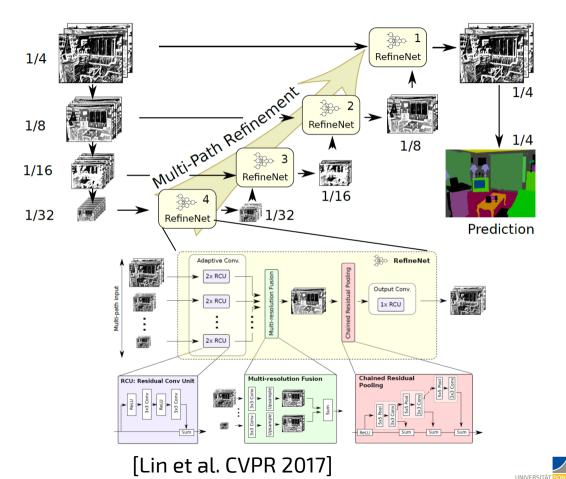


Pixel-wise accuracy:

Clamp	Door handle	Driller	Extension	$\operatorname{Stapler}$	Wrench	Background	Mean
0.727	0.751	0.769	0.889	0.775	0.734	0.992	0.805

RefineNet for Semantic Segmentation

- Scene represented as feature hierarchy
- Corse-to-fine semantic segmentation
- Combine higher-level features with missing details



The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in two ways:

Generating data:

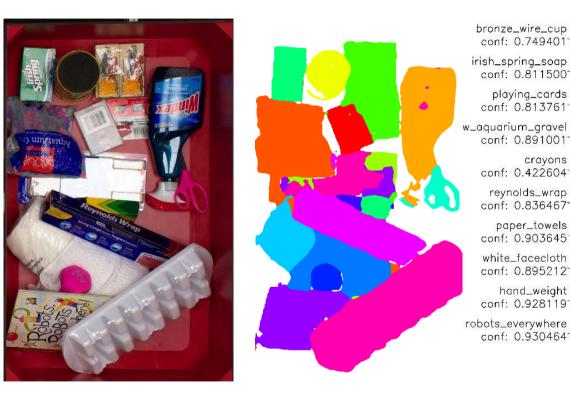
Automatic data capture, online mesh databases, scene synthesis

2. Improving generalization: Object-centered models, deformable registration, transfer learning, semi-supervised learning

Object Capture and Scene Rendering

[Schwarz et al. ICRA 2018]

Semantic Segmentation Example



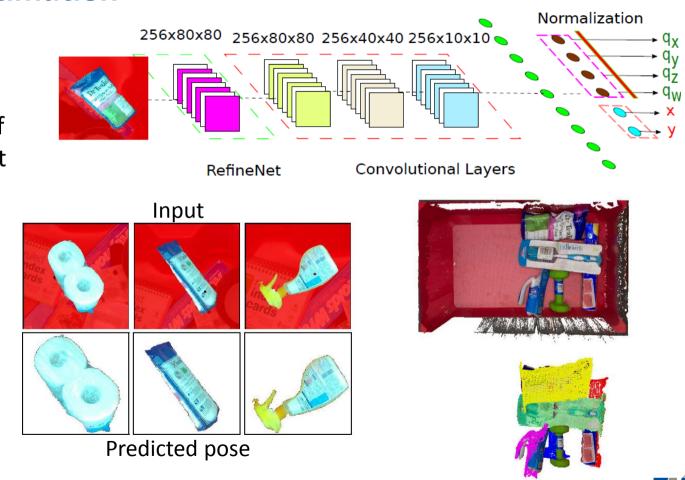
mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015

fiskars_scissors conf: 0.831069 ice_cube_tray conf: 0.976856

76

Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates



UNIVERSITÄT

From Turntable Captures to Textured Meshes

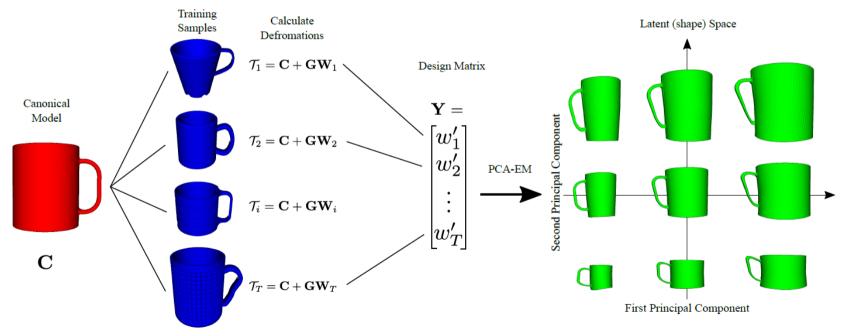
Transfer of Manipulation Skills

Objects belonging to the same category can be handled in a very similar manner.

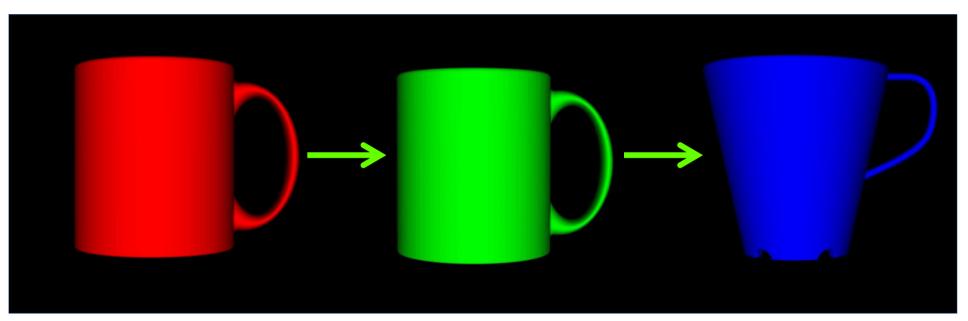
Transfer of Manipulation Skills

Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations

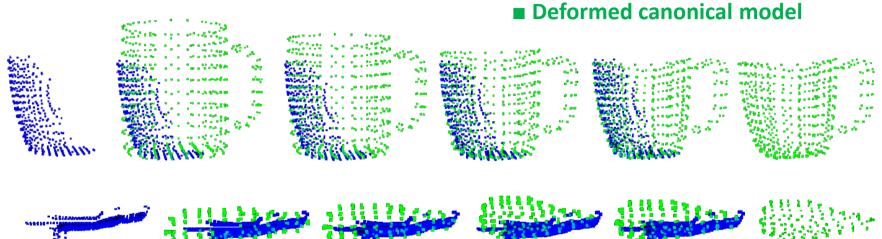


Interpolation in Shape Space

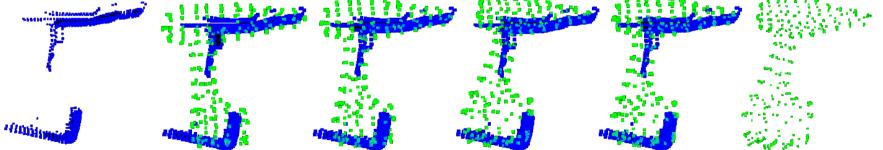


[Rodriguez and Behnke ICRA 2018]

Shape-aware Non-rigid Registration

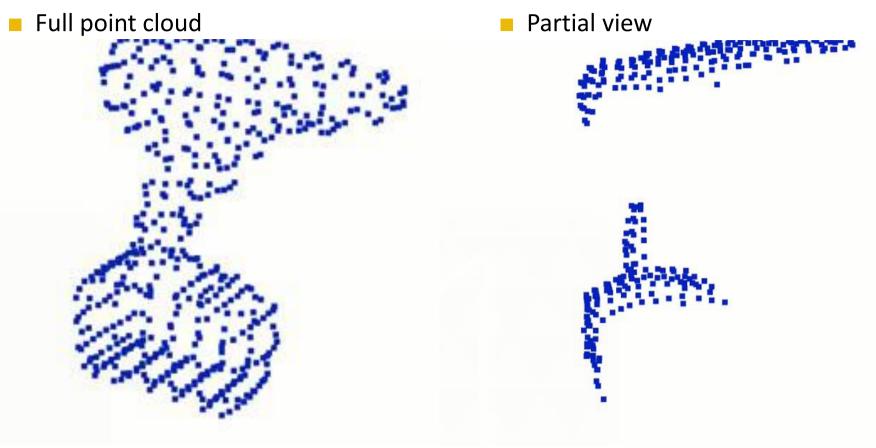


Partial view of novel instance



[Rodriguez and Behnke ICRA 2018]

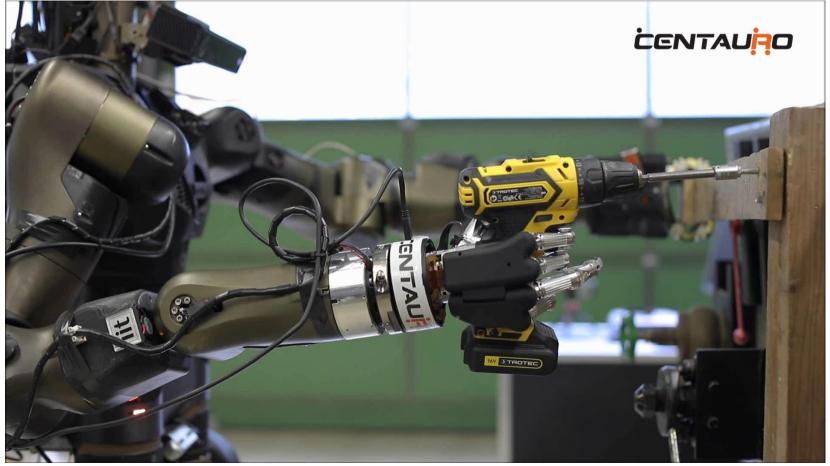
Shape-aware Registration for Grasp Transfer



Grasping an Unknown Power Drill

Fastening a Screw

Bimanual Fastening Task



Bimanual Grasping

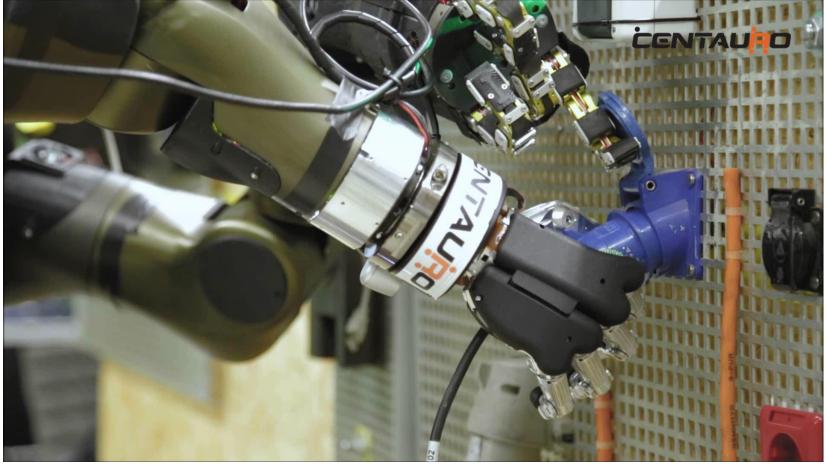
Bimanual Drilling



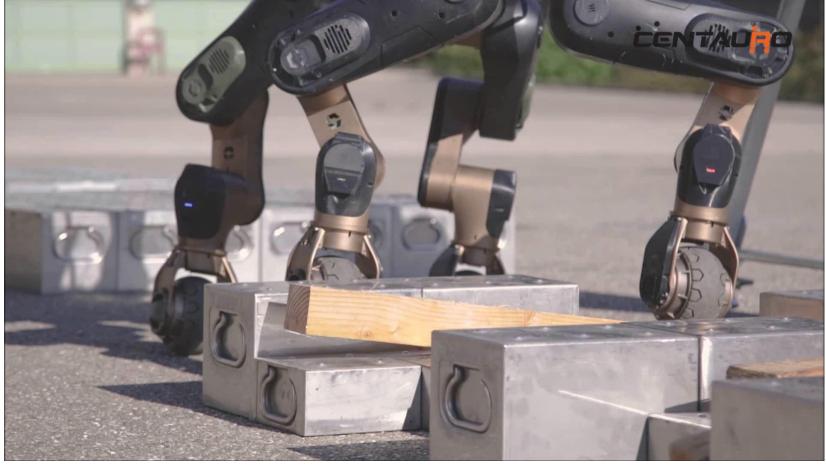
Opening a Door with a Key

Closing a Shackle

Bimanual Plug Tasks



Step Field with Debris

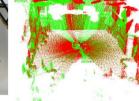


Autonomous Navigation

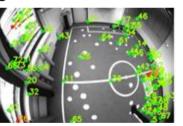
Autonomous Flight Near Obstacles

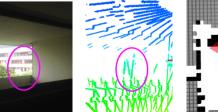
Multimodal obstacle detection

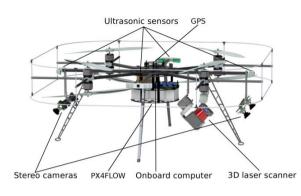
3D laser scanner

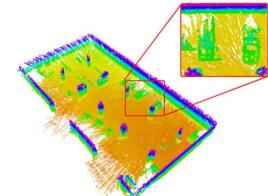


Stereo cameras





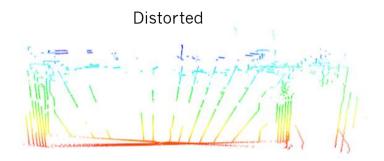




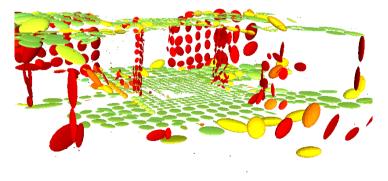
[Droeschel et al.: Journal of Field Robotics, 2015]

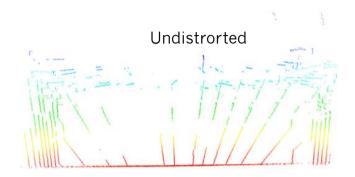
Egocentric Laser-based 3D Mapping

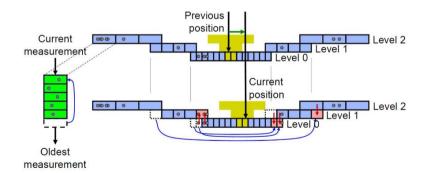
Motion compensation



Local multiresolution surfel maps

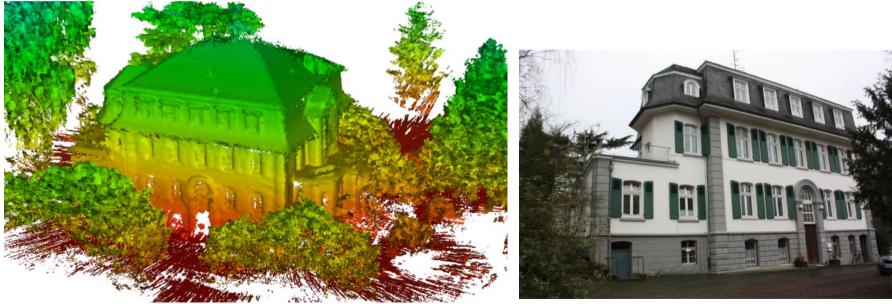






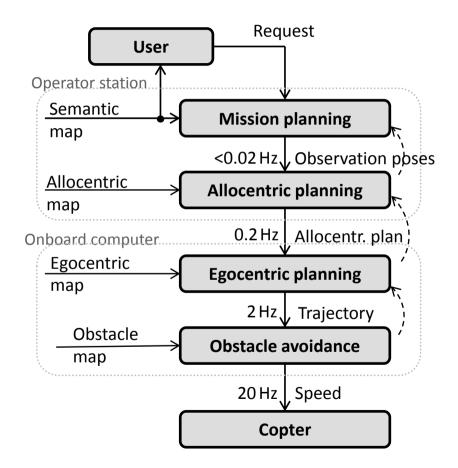
Allocentric 3D Map

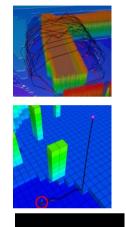
- Registration of egocentric maps
- Global optimization of registration error by GraphSLAM



[Droeschel et al. JFR 2016]

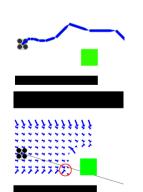
Hierarchical Navigation





Mission plan

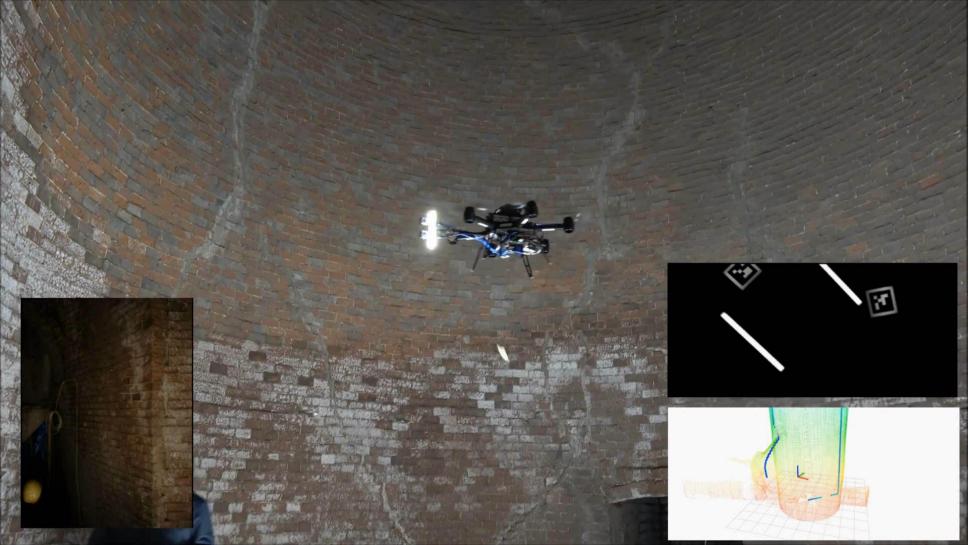
Allocentric planning



Egocentric planning

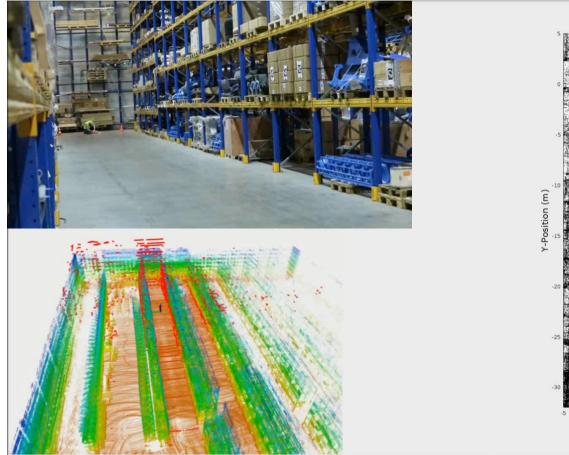
Obstacle avoidance

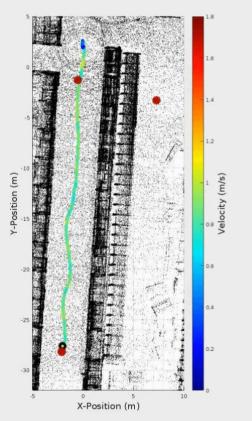
Mapping on Demand Autonomous Flight to Planned View Poses



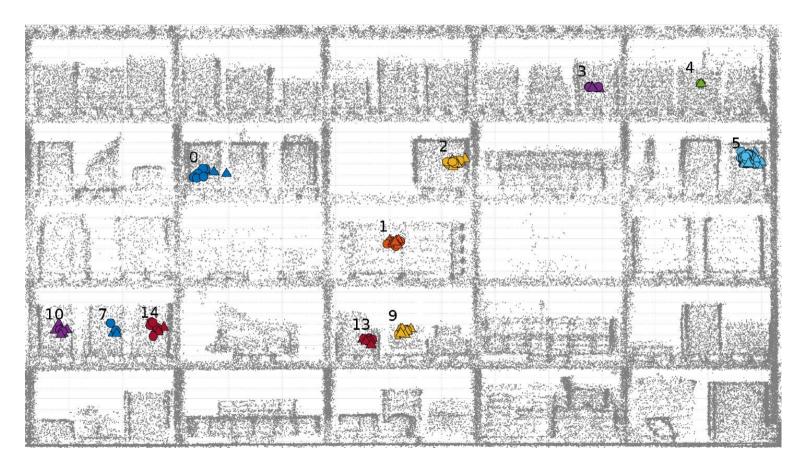
DJI Matrice 600 with Velodyne Puck & Cameras

InventAIRy: Autonomous Navigation in a Warehouse



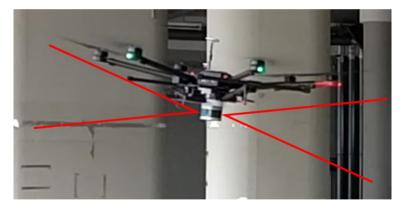


InventAIRy: Detected Tags in Shelf

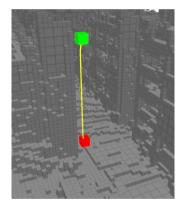


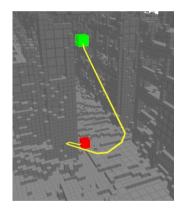
Navigation Planning with Visibility Constraints

- Velodyne Puck has limited vertical field-of-view (30°)
- Must be considered in navigation planning
- Only fly in directions that can be measured



Lidar field-of-view

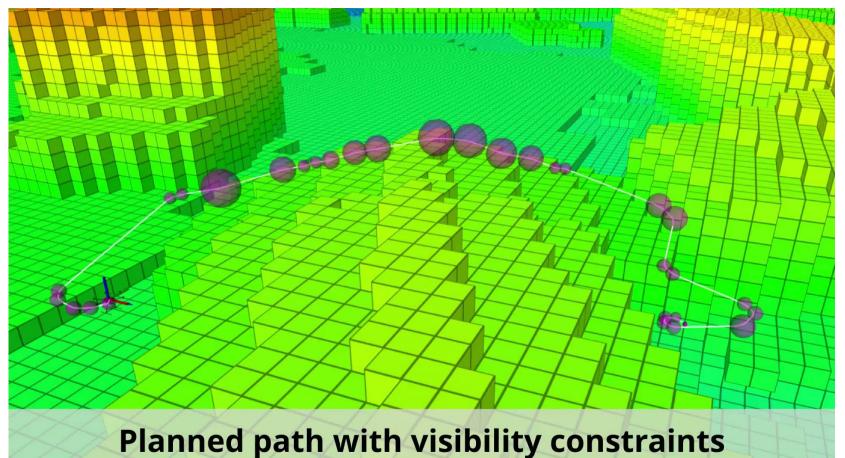




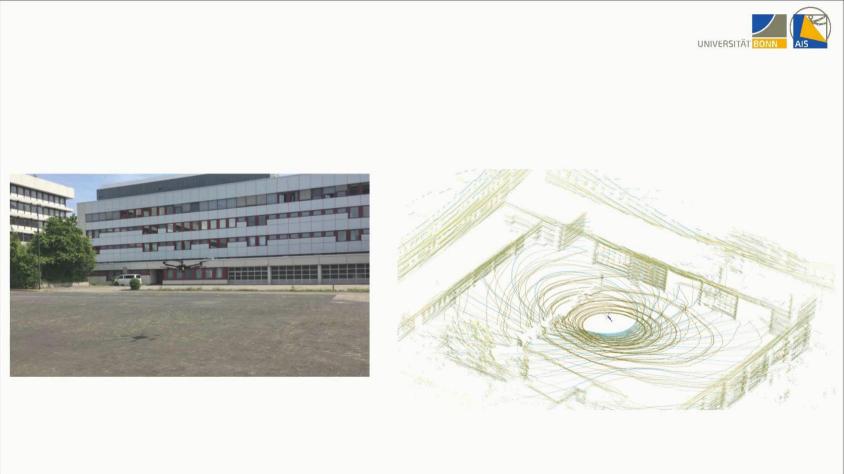
Fastest path

Safe path

Navigation Planning with Visibility Constraints



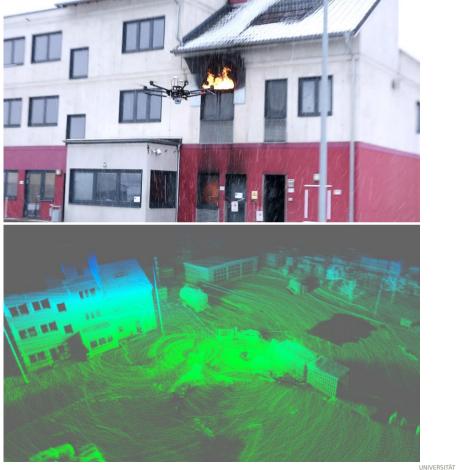
Lidar-based SLAM from MAV



UNIVERSITÄT BOI

Supporting Fire Fighters (A-DRZ)

- Added thermal camera
- Flight at Brandhaus Dortmund



Mesh-based 3D Modeling + Textures

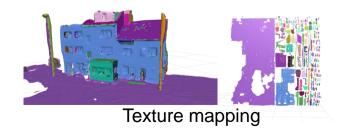
- Model 3D geometry with mesh
- Appearance and temperature as high-resolution texture

Mesh geometry

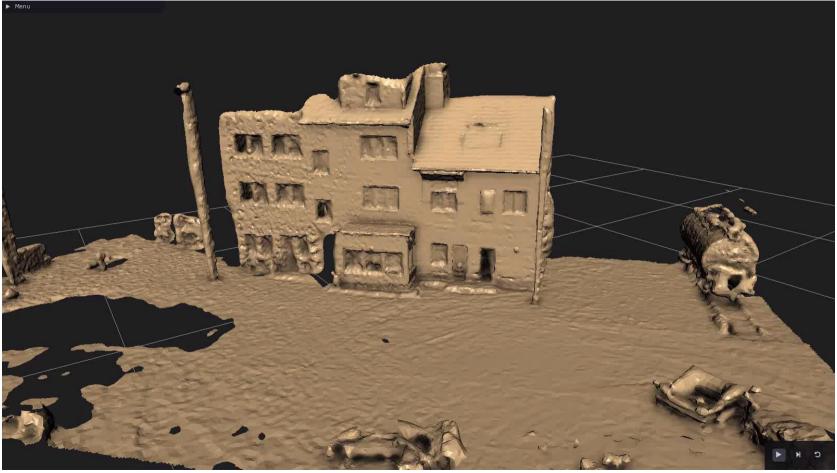
RGB texture

Thermal texture

Mapping from 3D mesh to 2D texture

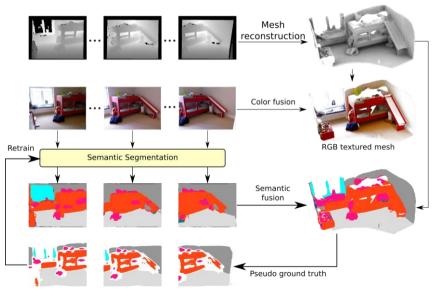


Modeling the Brandhaus Dortmund

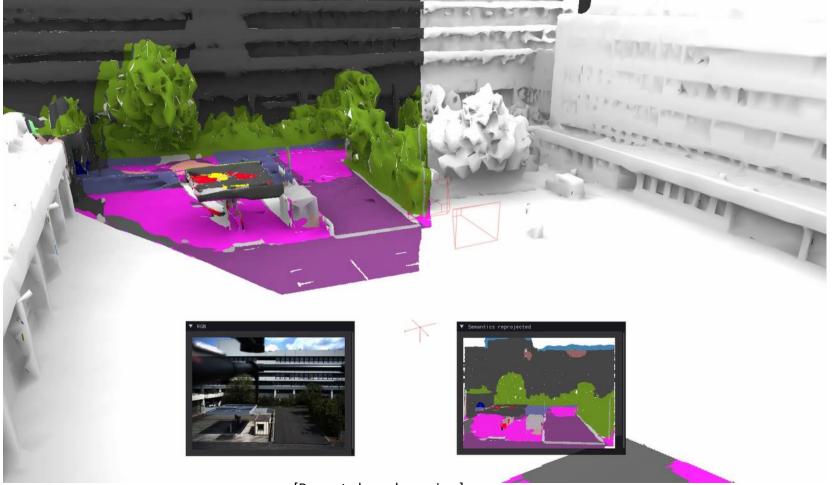


3D Semantic Mapping

- Image-based semantic categorization, trained with Mapillary data set
- 3D fusion in semantic texture
- Backprojection of labels to other views



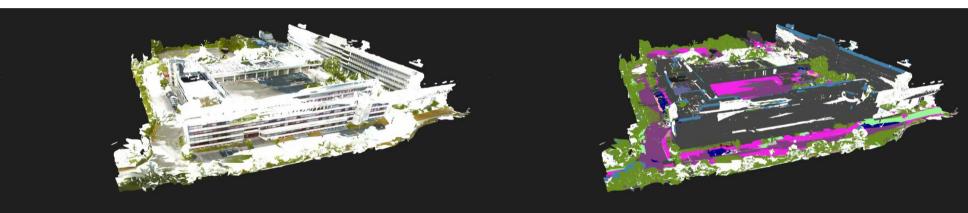
3D Semantic Mapping



[Rosu et al., under review]

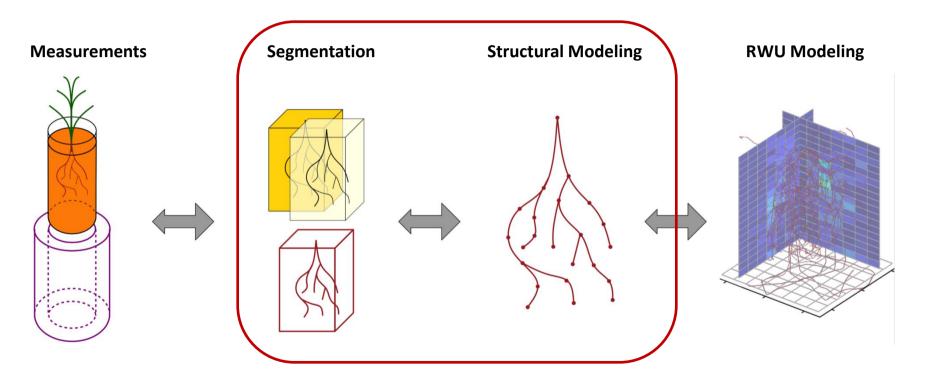
UNIVERSITÄT BONI

3D Semantic Map



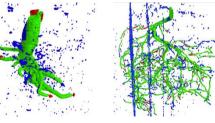
Reconstruction of Plant Roots from MRI

DFG project with Andrea Schnepf (FZJ)

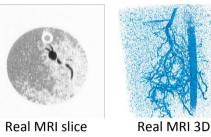


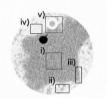
Learning Root vs. Soil Segmentation and Superresolution

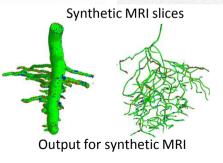
- Input: MRI, manual root structure reconstructions
- Desired output: Increased MRI contrast & resolution
- Issues: Few data, reconstructions not well aligned
- Generate synthetic MRI training data
 - Geometric transformations
 - Various noise
- Learn segmentation & superresolution with Deep NN
- Apply to real MRI



Output for real MRI



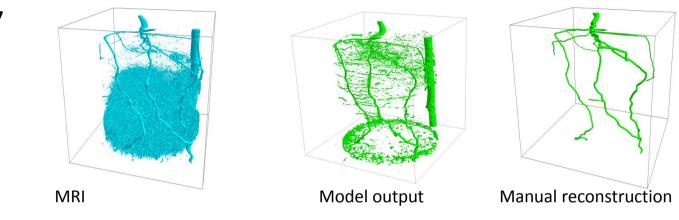




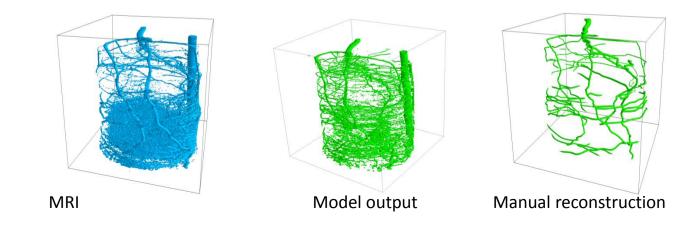
[Uzman et al. ESANN 2019]

Using Learned Model for Root Structure Reconstruction

DAP17



DAP24



Conclusions

- Developed capable robotic systems for challenging scenarios
 - Domestic service
 - Disaster response
 - Aerial inspection
- Autonomy for navigation and manipulation tasks
 - 3D semantic mapping
 - Navigation and manipulation planning
- Use as a tool in PhenoRob, e.g. in
 - CP1: 4D phenotyping of individual plants
 - CP4: Intervention
- Challenges include
 - Correspondences despite growth & deformations
 - Small and big data

