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Many New Application Areas for Robots 

■ Self-driving cars 

■ Logistics 

■ Agriculture, mining 

■ Collaborative automation 

■ Personal assistance 

■ Space, search & rescue 

■ Healthcare 

■ Toys 
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Need more cognitive abilities! 
 



Sub-problems 

■ Environment perception 

■ Behavior planning  

■ Action generation 

Environment 

Agent 

Sensors Actuators Control 



Some of our Cognitive Robots 
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Soccer Domestic service Mobile manipulation 

■ Equipped with numerous sensors and actuators 

■ Complex demonstration scenarios 

Aerial inspection Bin picking 



Our Domestic Service Robots 
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Dynamaid                                                          Cosero 

 Size: 100-180 cm, weight: 30-35 kg 
 36 articulated joints 
 PC, laser scanners, Kinect, microphone, … 

[Stückler et al.:  
 Frontiers in Robotics  
 and AI 2016] 



Cognitive Service Robot Cosero 
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Mapping the Environment 
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Path Planning 

■ Global planning tries to keep away from obstacles 
■ Obstacle avoidance using two lasers 
■ Robot alignment in narrow passages  
■ Plan revision when path blocked 
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Object Perception and Grasp Planning 

■ Detection of clusters above horizontal plane 

■ Two grasps 
(top, side) 
 
 
 
 

■ Flexible grasping 
of many unknown 
objects 
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[Stückler et al, Robotics and Autonomous Systems, 2013] 



3D-Mapping with Surfels 
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3D-Mapping with Surfels 



3D-Mapping and Localization 

■ Registration of 3D laser scans 

■ Representation of point distributions in voxels 

■ Drivability assessment through region growing 

■ Robust localization using 2D laser scans 

12 [Kläß, Stückler, Behnke: Robotik 2012] 



3D Mapping by RGB-D SLAM 

■ Modelling of shape and color distributions in voxels 

■ Local multiresolution 

■ Efficient registration  
of views on CPU 

■ Global  
optimization 
 

 

 

■ Multi-camera SLAM 

 13 

[Stückler, Behnke:  

Journal of Visual Communication  

and Image Representation 2013] 

2,5cm 

[Stoucken] 

5cm 



Learning and Tracking Object Models 

■ Modeling of objects by RGB-D-SLAM 

 

 

 

 

■ Real-time registration with current RGB-D frame 
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Deformable RGB-D-Registration 

■ Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010] 

■ Multiresolution Surfel Map allows real-time registration 
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Transformation of Poses on Object 

■ Derived from the deformation field 
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[Stückler, Behnke, ICRA2014] 



Grasp & Motion Skill Transfer 
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[Stückler,  
 Behnke, 
 ICRA2014] 



Tool use: Bottle Opener  

■ Tool tip perception 
 
 
 
 
 

■ Extension of arm kinematics 

■ Perception of crown cap 

■ Motion adaptation 
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[Stückler, Behnke, Humanoids 2014] 



Picking Sausage, Bimanual Transport 

■ Perception of tool tip 
and sausage 
 

■ Alignment with main 
axis of sausage 
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 Our team NimbRo won the 
RoboCup@Home League in three 
consecutive years 



■ Known objects in  
transport box 

■ Matching of graphs of 2D and 3D shape primitives 

 

 

■ Grasp and motion planning  

Bin Picking 
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3D            2D 

Offline                      Online 

[Nieuwenhuisen et al.: ICRA 2013] 



Hierarchical Object Discovery trough Motion Segmentation 

■ Simultaneous object modeling and motion segmentation 

 
 
 

 

■ Inference of a 
segment 
hierarchy 
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[Stückler, Behnke: IJCAI 2013] 



Semantic Mapping 

■ Pixel-wise classification of RGB-D images 
by random forests 

■ Compare color / depth of regions 

■ Size normalization 

■ 3D fusion through RGB-D SLAM 

■ Evaluation on NYU depth v2 
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Accuracy in % Ø Classes Ø Pixels 

Silberman et al. 2012 59,6 58,6 

Couprie et al. 2013 63,5 64,5 

Random forest 65,0 68,1 

3D-Fusion 66,8 

[Stückler,  

 Biresev,  

 Behnke:  

 IROS 2012] 

Ground truth 

 

 

 

Segmentation 



Deep Learning  

■ Learning 
layered 
represen- 
tations 

23 

[Schulz; 
 Behnke,  
 KI 2012] 



Neural Abstraction Pyramid  
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- Grouping  - Competition  - Completion 

- Data-driven 
- Analysis 
- Feature extraction 

- Model-driven 
- Synthesis 
- Feature expansion 

Signals 

Abstract features 

[Behnke, Rojas, IJCNN 1998] 
[Behnke, LNCS 2766, 2003] 
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Iterative Image Interpretation 

■ Interpret most obvious parts first 

■ Use partial interpretation as context to resolve local ambiguities 
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Neural Abstraction Pyramid for  
RGB-D Video Object-class Segmentation 

■ Recursive computation is efficient for temporal integration 
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Neural Abstraction Pyramid 

[Pavel, Schulz, Behnke, Neural Networks 2017] 



Geometric and Semantic Features for RGB-D Object-class 
Segmentation 

■ New geometric feature:  
distance from wall 

■ Semantic features pretrained 
from ImageNet  

■ Both help significantly 
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[Husain et al. RA-L 2017] RGB        Truth       DistWall   OutWO   OutWithDistWall 



RGB-D Object Recognition and Pose Estimation 
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[Schwarz, Schulz, Behnke, ICRA2015] 



Canonical View, Colorization 

■ Objects viewed from different elevation 

■ Render canonical view 
 
 
 

■ Colorization based on distance from center vertical 

29 [Schwarz, Schulz, Behnke, ICRA2015] 



Pretrained Features Disentangle Data 

■ t-SNE 
embedding 
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[Schwarz, Schulz,  
 Behnke ICRA2015] 



Recognition Accuracy 

■ Improved both category and instance recognition 
 

 
 
 
 

■ Confusion:  
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1:    pitcher     /    coffe mug                2:    peach      /   sponge  

[Schwarz, Schulz,  
 Behnke, ICRA2015] 



Mobile Manipulation  
Robot Momaro 

■ Four compliant legs ending in 
pairs of steerable wheels 

■ Anthropomorphic upper body 

■ Sensor head 

● 3D laser scanner 

● IMU, cameras 
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[Schwarz et al. Journal of  Field Robotics 2017] 



DRIVING A VEHICLE 

Sven Behnke: Semantic Environment Perception 33 

 



EGRESS 

Sven Behnke: Semantic Environment Perception 34 

 



Manipulation Operator Interface 

■ 3D head-mounted 
display 

■ 3D environment  
model  
+ 
images 

■ 6D magnetic tracker 
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[Rodehutskors et al., Humanoids 2015] 



OPENING A DOOR 

Sven Behnke: Semantic Environment Perception 36 

 



Local Multiresolution Surfel Map 

■ Registration and 
aggregation of 3D laser 
scans 

■ Local multi-resolution grid 

■ Surfel in grid cells 
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3D scan                  Aggregated scans 

Multiresolution grid      Surfels 

[Droeschel et al., Robotics and  

  Autonomous Systems 2017] 



Filtering Dynamic  
Objects 

■ Maintain occupancy in each 
cell 

■ Remove measurements of 
empty cells 

 

38 



Allocentric 3D Mapping 

■ Registration of egocentric maps 
by graph optimization 
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[Droeschel et al., Robotics and  

  Autonomous Systems 2017] 



Valve Turning Interface 

■ Align wheel model with 3D points 
using interactive marker 

40 
[Schwarz et al. Journal of Field Robotics 2017] 



TURNING A VALVE 

Sven Behnke: Semantic Environment Perception 41 

 



OPERATING A SWITCH 

Sven Behnke: Semantic Environment Perception 42 

 



PLUG TASK 

Sven Behnke: Semantic Environment Perception 43 

 



Debris Tasks 
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DRIVE THROUGH DEBRIS 

Sven Behnke: Semantic Environment Perception 45 

 



CUTTING DRYWALL 

Sven Behnke: Semantic Environment Perception 46 

 



 Team NimbRo Rescue 
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Best European Team (4th place overall), 
solved seven of eight tasks in 34 minutes  



DLR SpaceBot Cup 2015 

■ Mobile manipulation in rough terrain 
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[Schwarz et al., Frontiers on   

 Robotics and AI 2016] 



DLR SPACEBOT CAMP 2015 

Sven Behnke: Semantic Environment Perception 49 

 



Autonomous Mission Execution 

■ 3D mapping,  
localization, 
mission and 
navigation 
planning 

50 

 

[Schwarz et al. Frontiers 2016] 

■3D object 
perception 
and grasping 



Navigation 
Planning 

■ Costs from local height 
differences 

■ A* path planning 
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[Schwarz et al., Frontiers 

in Robotics and AI 2016] 



3D Map 
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Improved Sensor Head 

■ Continuously rotating Velodyne Puck 
VLP-16 

● 300,000 3D points/s 

● 100 m range 

● Spherical field of view 

■ Three wide-angle color cameras (total 
FoV 210×103°) 

■ Kinect V2 RGB-D camera on pan-tilt 
unit 
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3D Map of Indoor+Outdoor Scene 
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[Droeschel et al., Robotics and Autonomous Systems 2017] 



Considering Robot  
Footprint 

■ Costs for individual wheel pairs 
from height differences 

■ Base costs 

■ Non-linear combination yields  
3D (x, y, θ) cost map 
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Scene                                 Wheel costs 

Base costs                           Combined [Klamt and Behnke, IROS 2017] 



3D Driving Planning (x, y, θ): A* 

■ 16 driving directions 

 

 

 
■ Orientation changes 

 

 
 
=> Obstacle between wheels 
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Costs 

Height 

[Klamt and Behnke, IROS 2017] 



Making Steps 

■ If not drivable obstacle in front of 
a wheel 

■ Step landing must be drivable 

■ Support leg positions must be 
drivable 
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[Klamt and Behnke: IROS 2017] 



Sven Behnke: Semantic Environment Perception 58 

 

[Klamt and Behnke: IROS 2017] 



Centauro Robot 
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[Tsagarakis et al., IIT 2017] 

 Serial elastic actuators 

 42 main DoFs 

 Schunk hand 

 3D laser 

 RGB-D camera 

 Color cameras 

 Two GPU PCs 



Main Operator Telepresence Interface 

60 [Frisoli et al., SSSA 2017] 

■ Tendon-driven  
dual-arm  
exoskeleton 

■ Active wrist with  
differential tendon  
transmission 

■ Underactuated hand 
exoskeleton 

■ Head-mounted display 

■ Foot pedals 

 



Main Operator Control 

61 



Turning a Valve 

62 



Connecting a Plug 

63 



3D Mapping and Localization 

64 



Walking over a Step Field 

65 



Terrain Classification 
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[Schilling et al., IROS 2017] 



Hybrid Driving-Stepping Locomotion Planning: Abstraction 
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[Klamt and Behnke,  
 IROS 2017, ICRA 2018] 



Deep Learning Object Detection 
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[Johnson et al. 2015] 



CENTAURO Workspace Perception Data Set 
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https://www.centauro-project.eu/data_multimedia/tools_data 



Tool Detection Results  
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[Schwarz et al. IJRR 2017] 



Tools Detection Examples 

 

71 

[Schwarz et al. IJRR 2017] 



Semantic Segmentation 

■ Deep CNN 
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[Husain et al. RA-L 
2016] 

Pixel-wise accuracy: 

[Husain et al. RA-L 2016] 



RefineNet for Semantic Segmentation 
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■ Scene represented as 
feature hierarchy 

■ Corse-to-fine semantic 
segmentation 

■ Combine higher-level 
features with missing 
details 

 

[Lin et al. CVPR 2017] 



The Data Problem 

■ Deep Learning in robotics (still) suffers from shortage of available examples 

■ We address this problem in two ways: 

1. Generating data: 
Automatic data capture,  
online mesh databases,  
scene synthesis 
 

2. Improving generalization: 
Object-centered models, 
deformable registration, 
transfer learning,  
semi-supervised learning 
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Object Capture and Scene Rendering 
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■ Turntable + DLSR camera  

[Schwarz et al. ICRA 2018] 

■ Rendered scenes 



Semantic Segmentation Example 

76 [Schwarz et al. ICRA 2018] 



Object Pose Estimation 

■ Cut out individual 
segments 

■ Use upper layer of 
RefineNet as input 

■ Predict pose 
coordinates 
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Input 

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018] 

Predicted pose 



From Turntable Captures to Textured Meshes 

78 
Fused & textured result 



Transfer of Manipulation Skills 

■ Objects belonging to the same category can be handled in a very similar manner. 

 

79 



Transfer of Manipulation Skills 
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Knowledge 
Transfer 



Learning a Latent Shape Space 

■ Non-rigid registration of instances and canonical model 

■ Principal component analysis of deformations  
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Interpolation in Shape Space 

82 [Rodriguez and Behnke ICRA 2018] 



Shape-aware Non-rigid Registration 
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■ Partial view of novel instance 
■ Deformed canonical model 

[Rodriguez and Behnke ICRA 2018] 



Shape-aware Registration for Grasp Transfer 
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■ Full point cloud 

 

■ Partial view  

 



Grasping an Unknown Power Drill 
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Fastening a Screw 

86 



Bimanual Fastening Task  
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Bimanual Grasping 

88 



Bimanual Drilling 
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4x 



Opening a Door with a Key 
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Closing a Shackle 
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Bimanual Plug Tasks 

92 



Step Field with Debris 
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Autonomous Navigation 
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Autonomous Flight Near Obstacles 

Multimodal obstacle detection 
■ 3D laser scanner 

 
 

 

■ Stereo cameras 
 
 
 

 

■ Ultrasound 
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[Droeschel et al.: Journal of  Field Robotics, 2015] 



Egocentric Laser-based 3D Mapping 

■ Motion compensation 

 

 
 

■ Local multiresolution surfel maps 
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Distorted                                                                       Undistrorted 



Allocentric 3D Map 

■ Registration of egocentric maps 

■ Global optimization of registration error by GraphSLAM 
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[Droeschel et al. JFR 2016] 



Hierarchical Navigation 

 

98 

Obstacle avoidance 

Egocentric planning 

Allocentric planning 

Mission plan 

Request 

Speed 

Trajectory 

Semantic 
map 

Allocentric 
map 

Egocentric 
map 

User 

Mission planning 

Allocentric planning 

Egocentric planning 

Copter 

Obstacle 
map 

Onboard computer 

Operator station 

20 Hz 

2 Hz 

0.2 Hz 

<0.02 Hz 

Obstacle avoidance 

Allocentr. plan 

Observation poses 
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EUROC CHALLENGE 3: CHIMNEYSPECTOR 

Sven Behnke: Semantic Environment Perception 100 



DJI Matrice 600 with Velodyne Puck & Cameras 
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InventAIRy: Autonomous Navigation in a Warehouse 
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InventAIRy: Detected Tags in Shelf 
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Navigation Planning with Visibility Constraints 

■ Velodyne Puck has limited vertical field-of-view (30°) 

■ Must be considered in navigation planning 

■ Only fly in directions that can be measured 
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Lidar field-of-view Fastest path Safe path 

[Nieuwenhuisen and Behnke, ICRA 2019] 



Navigation Planning with Visibility Constraints 
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Lidar-based SLAM from MAV 

 

106 
[Droeschel & Behnke, ICRA 2018] 



Supporting Fire Fighters (A-DRZ) 

■ Added thermal camera 

■ Flight at Brandhaus Dortmund 
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Mesh-based 3D Modeling + Textures 

■ Model 3D geometry with mesh 

■ Appearance and temperature as high-resolution texture 

 

 

 

 

■ Mapping from 3D mesh to 2D texture 

 

108 

Mesh geometry Thermal texture RGB texture 

Texture mapping 



Modeling the Brandhaus Dortmund 

 

109 



3D Semantic Mapping 

■ Image-based semantic categorization, trained with Mapillary data set  

■ 3D fusion in semantic texture 

■ Backprojection of labels to other views 

110 
[Rosu et al., under review] 



3D Semantic Mapping 
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[Rosu et al., under review] 



3D Semantic Map 

 

112 
[Rosu et al., under review] 



Reconstruction of Plant Roots from MRI 

■ DFG project with Andrea Schnepf (FZJ) 
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Measurements                             Segmentation                           Structural Modeling                         RWU Modeling  



Learning Root vs. Soil Segmentation and Superresolution 

■ Input: MRI, manual root structure reconstructions 

■ Desired output: Increased MRI contrast & resolution 

■ Issues: Few data, reconstructions not well aligned   

■ Generate synthetic MRI training data 

● Geometric transformations 

● Various noise 

■ Learn segmentation & superresolution with Deep NN 

■ Apply to real MRI  
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Real MRI slice               Real MRI 3D             Structure 

Synthetic MRI slices 

Output for synthetic MRI 

Output for real MRI [Uzman et al. ESANN 2019] 

 



Using Learned Model for Root Structure Reconstruction 
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■ DAP17 

 

 

 
 

■ DAP24 

MRI                                                        Model output                  Manual reconstruction   

MRI                                                        Model output                  Manual reconstruction   



Conclusions 

■ Developed capable robotic systems for challenging scenarios 
● Domestic service 
● Disaster response 
● Aerial inspection 

■ Autonomy for navigation and manipulation tasks 

● 3D semantic mapping 

● Navigation and manipulation planning 

■ Use as a tool in PhenoRob, e.g. in 

● CP1: 4D phenotyping of individual plants 

● CP4: Intervention 

■ Challenges include 
● Correspondences despite growth & deformations  
● Small and big data 
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