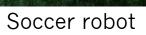
Learning Semantic Environment Perception for Cognitive Robots

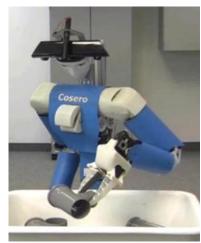
Sven Behnke

University of Bonn, Germany Computer Science Institute VI

Some of Our Cognitive Robots

- Equipped with many sensors and DoFs
- Demonstration in complex scenarios





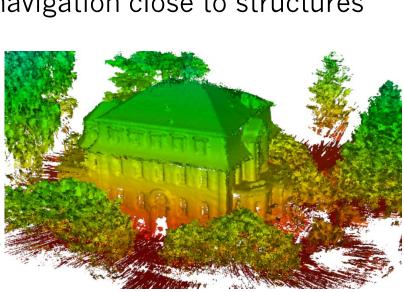
Service robot

Picking robot

MAV

3D Environment Perception

- 3D laser scanner, dual wide-angle stereo cameras, ultrasound, Quad Core i7
- Autonomous navigation close to structures
- 3D mapping

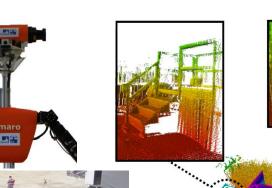


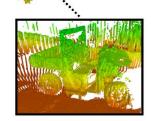
[Droeschel et al. JFR 2016]

universitätbonni ais

3D Mapping

 Registering 3D laser scans



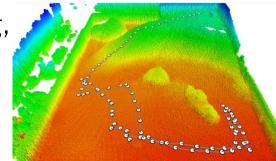


[Droeschel et al. 2016]

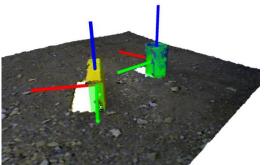
Mobile Manipulation in Mars-like Environment

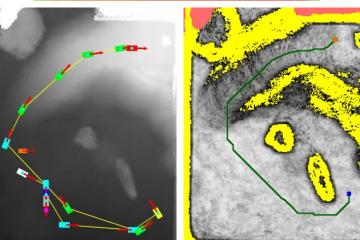
Autonomous Mission Execution

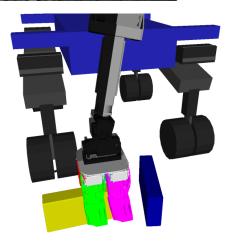
 3D mapping, localization, mission and navigation planning



 3D object perception and grasping







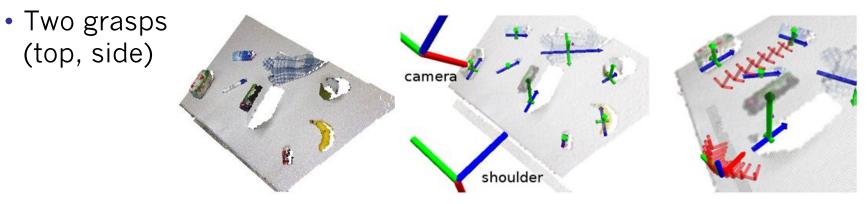
6 Sven Behnke: Semantic Environment Perception

[Schwarz et al. Frontiers 2016]

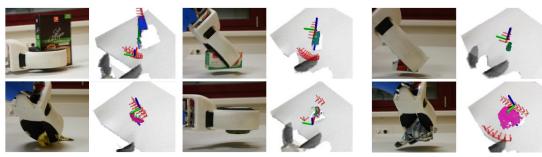
Cognitive Service Robot Cosero

Table-top Analysis and Grasp Planning

• Detection of clusters above horizontal plane



 Flexible grasping of many unknown objects



universität**bonn**

[Stückler et al, Robotics and Autonomous Systems, 2013]

3D Mapping by RGB-D SLAM

[Stückler, Behnke: Journal of Visual Communication and Image Representation 2013]

[Stoucken]

universität**bonn**

5cm

2,5cm

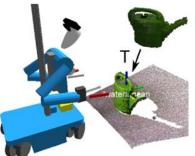
- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU
- Global optimization

- Multi-camera SLAM
- 9 Sven Behnke: Semantic Environment Perception

Learning and Tracking Object Models

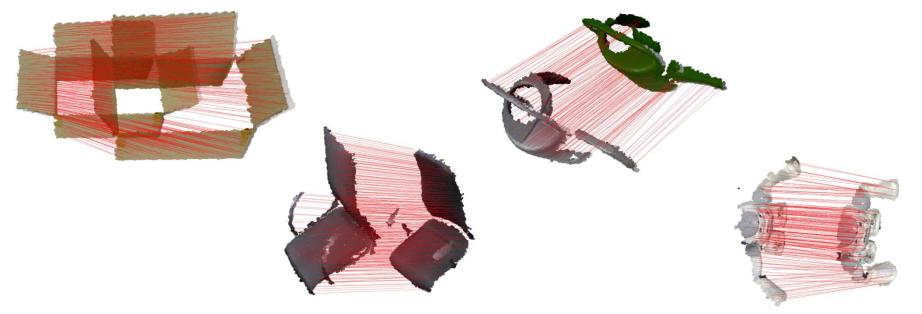
Modeling of objects by RGB-D-SLAM

Real-time registration with current RGB-D frame



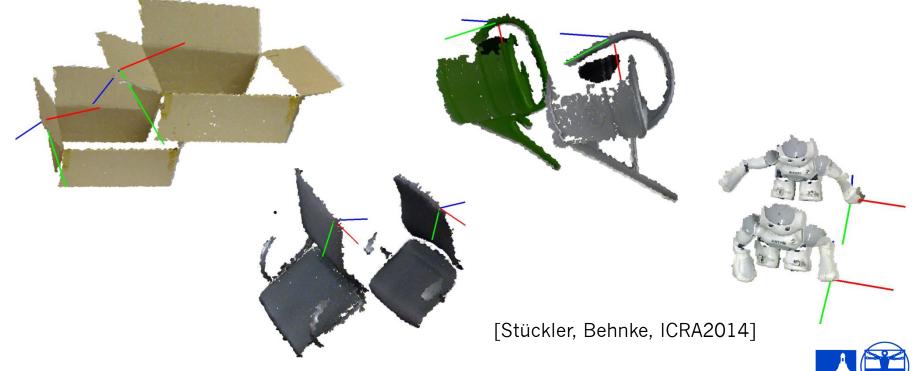
Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration



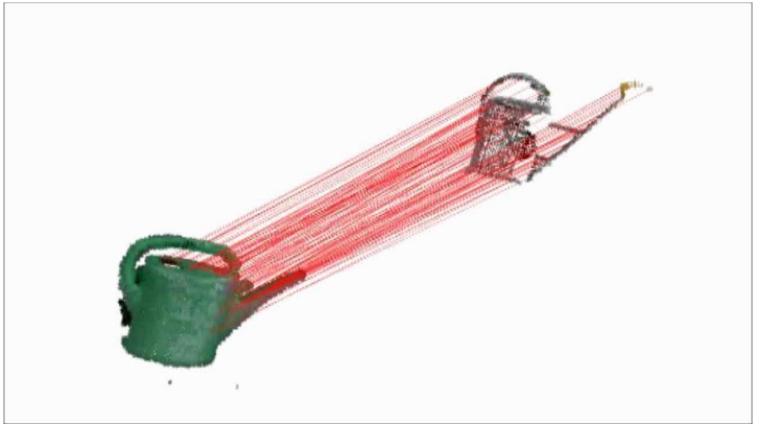
Transformation of Poses on Object

• Derived from the deformation field



universität**bonn**

Grasp & Motion Skill Transfer



13 Sven Behnke: Semantic Environment Perception

[Stückler, Behnke, ICRA2014]

ais

universitätbonn

Tool use: Bottle Opener

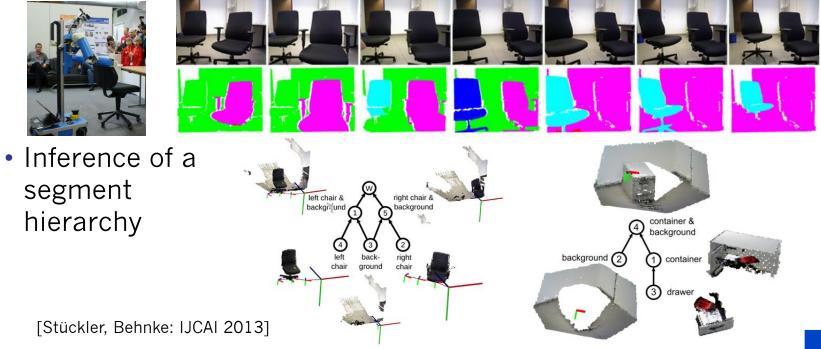
Tool tip perception

- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation

[Stückler, Behnke, Humanoids 2014]

Hierarchical Object Discovery trough Motion Segmentation

• Simultaneous object modeling and motion segmentation



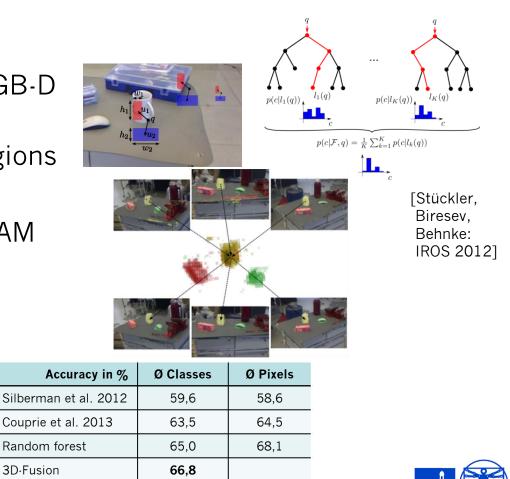
universität**bonn**

Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Compare color / depth of regions
- Size normalization
- 3D fusion through RGB-D SLAM
- Evaluation on NYU depth v2

Ground truth

Segmentation

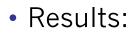


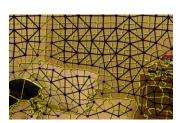
universität**bonn**

Learning Depth-sensitive CRFs

- SLIC+depth super pixels
- Unary features: random forest
- Height feature

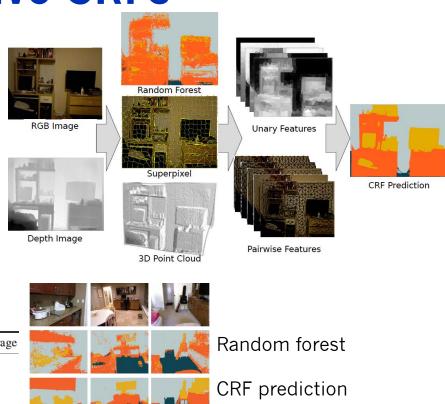
- Pairwise features
 - Color contrast
 - Vertical alignment
 - Depth difference
 - Normal differences

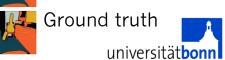




	class average	pixel average		
RF	65.0	68.3		
RF + SP	65.7	70.1		
RF + SP + SVM	70.4	70.3		
RF + SP + CRF	71.9	72.3		
Silberman et al.	59.6	58.6		
Couprie <i>et al.</i>	63.5	64.5		

17 Sven Behnke: Semantic Environment Perception

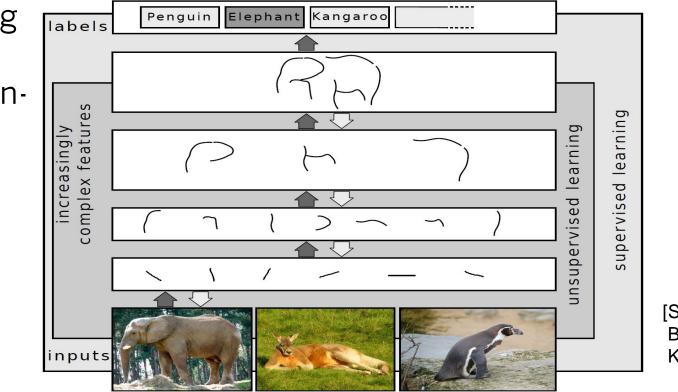




ais

Deep Learning

 Learning layered representations



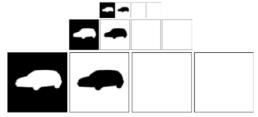
18 Sven Behnke: Semantic Environment Perception

[Schulz; Behnke, KI 2012]

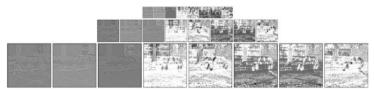
Object-class Segmentation

[Schulz, Behnke, ESANN 2012]

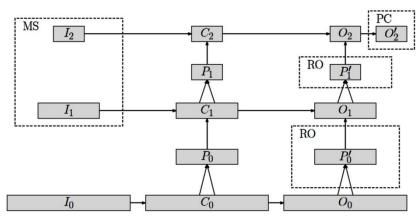
Class annotation per pixel



Multi-scale input channels

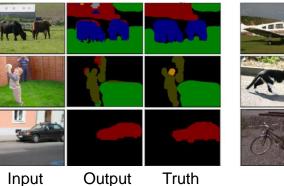


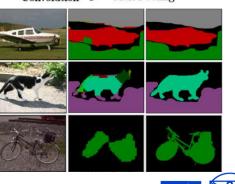
 Evaluated on MSRC-9/21 and INRIA Graz-02 data sets



O. Output Layer Input Layer

 \rightarrow Convolution \rightarrow Max-Pooling

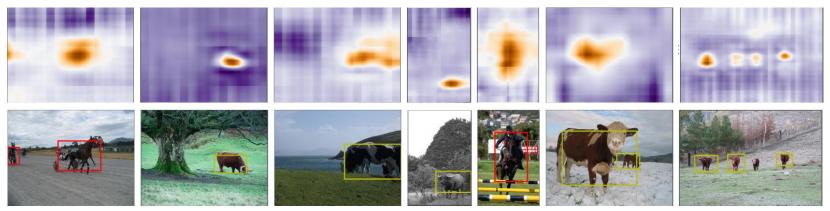




universität**bonn**

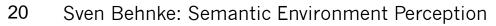
Object Detection in Natural Images

- Bounding box annotation
- Structured loss that directly maximizes overlap of the prediction with ground truth bounding boxes
- Evaluated on two of the Pascal VOC 2007 classes



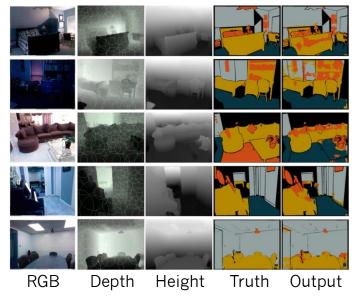
[Schulz, Behnke, ICANN 2014]

universität**bonn**



RGB-D Object-Class Segmentation

- Covering windows segmented with CNN
- Scale input according to depth, compute pixel hight

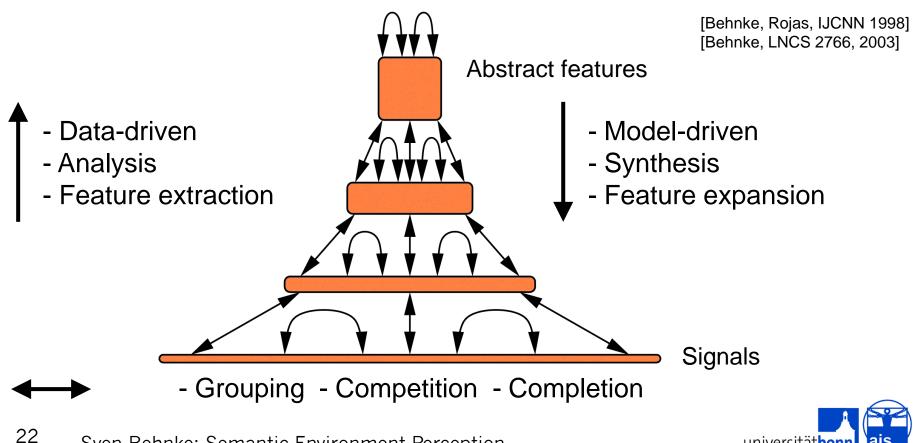


Method	floor	struct	furnit	prop	Class Avg.	Pixel Acc.
CW	84.6	70.3	58.7	52.9	66.6	65.4
CW+DN	87.7	70.8	57.0	53.6	67.3	65.5
CW+H	78.4	74.5	55.6	62.7	67.8	66.5
CW+DN+H	93.7	72.5	61.7	55.5	70.9	70.5
CW+DN+H+SP	91.8	74.1	59.4	63.4	72.2	71.9
CW+DN+H+CRF	93.5	80.2	66.4	54.9	73.7	73.4
Müller et al.[8]	94.9	78.9	71.1	42.7	71.9	72.3
Random Forest [8]	90.8	81.6	67.9	19.9	65.1	68.3
Couprie et al.[9]	87.3	86.1	45.3	35.5	63.6	64.5
Höft et al.[10]	77.9	65.4	55.9	49.9	62.3	62.0
Silberman [12]	68	59	70	42	59.7	58.6

CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP is averaged within superpixels and SVM-reweighted. CRF is a conditional random field over superpixels [8]. Structure class numbers are optimized for class accuracy.

[Schulz, Höft, Behnke, ESANN 2015]

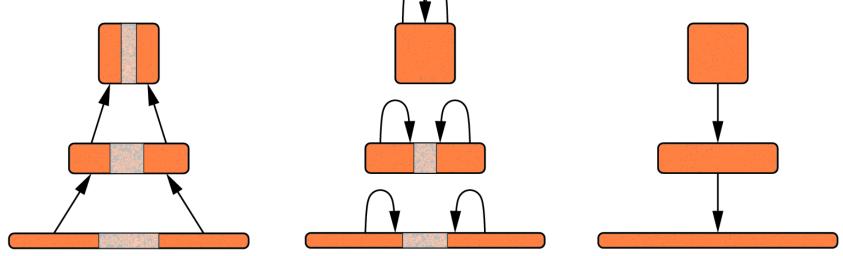
Neural Abstraction Pyramid



universitätbo

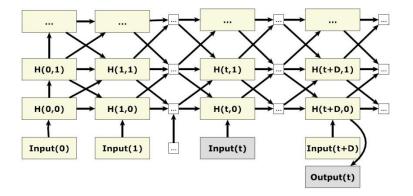
Iterative Image Interpretation

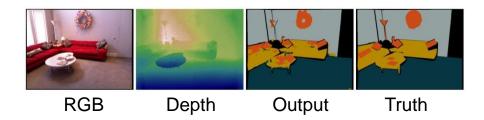
- Interpret most obvious parts first
- Use partial interpretation as context to resolve local ambiguities \bigcirc



Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

- NYU Depth V2 contains RGB-D video sequences
- Recursive computation is efficient for temporal integration



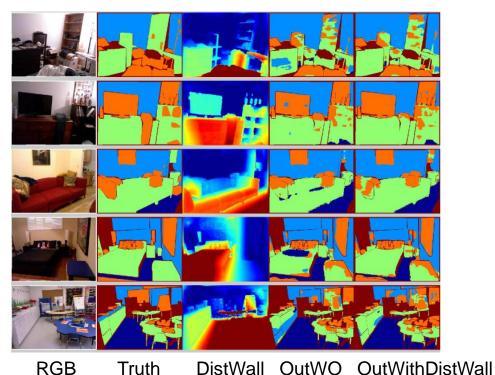


	Class Accuracies (%)				Average (%)	
Method	ground	struct	furnit	prop	Class	Pixel
Höft et al. [19]	77.9	65.4	55.9	49.9	62.0	61.1
Unidirectional + MS	73.4	66.8	60.3	49.2	62.4	63.1
Schulz et al. [20] (no height)	87.7	70.8	57.0	53.6	67.3	65.5
Unidirectional + SW	90.0	76.3	52.1	61.2	69.9	67.5

[Pavel, Schulz, Behnke, IJCNN 2015]

Geometric and Semantic Features for RGB-D Object-class Segmentation

- New **geometric** feature: distance from wall
- **Semantic** features pretrained from ImageNet
- Both help significantly



[Husain et al. RA-L 2016]

universität**bonn**ais

Semantic SegmentationPriors forObject DiscoverySemantic
segmentsClass-specific
superpixels

- Combine bottom-up object discovery and semantic priors
- Semantic segmentation used to classify color and depth superpixels
- Higher recall, more precise object borders

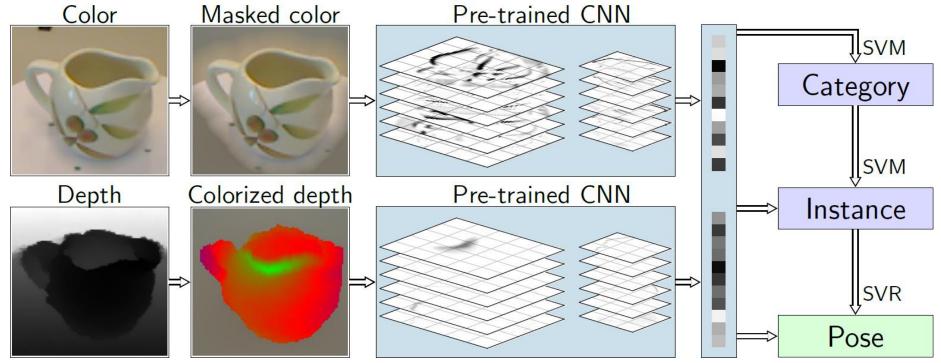
RGB Depth

Object

Superpixels

[Garcia et al. under review]

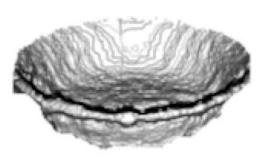
RGB-D Object Recognition and Pose Estimation

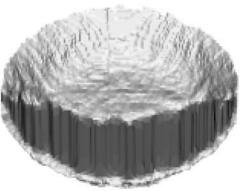


[Schwarz, Schulz, Behnke, ICRA2015]

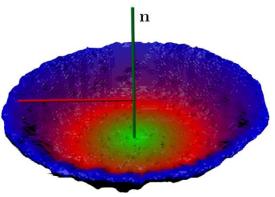
Canonical View, Colorization

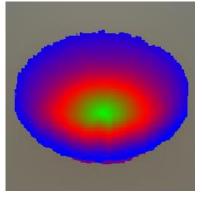
- Objects viewed from different elevation
- Render canonical view





 Colorization based on distance from center vertical



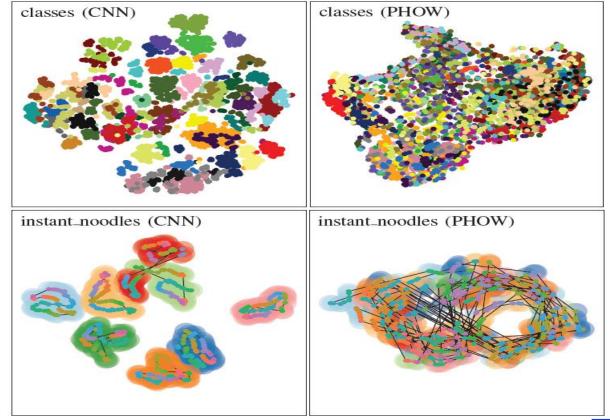


[Schwarz, Schulz, Behnke, ICRA2015]

Pretrained Features Disentangle Data

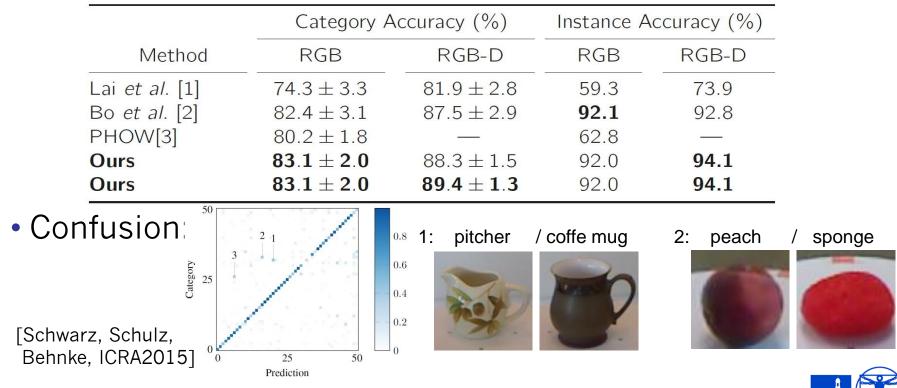
 t-SNE embedding

[Schwarz, Schulz, Behnke ICRA2015]



Recognition Accuracy

Improved both category and instance recognition



universitätbonn

ais

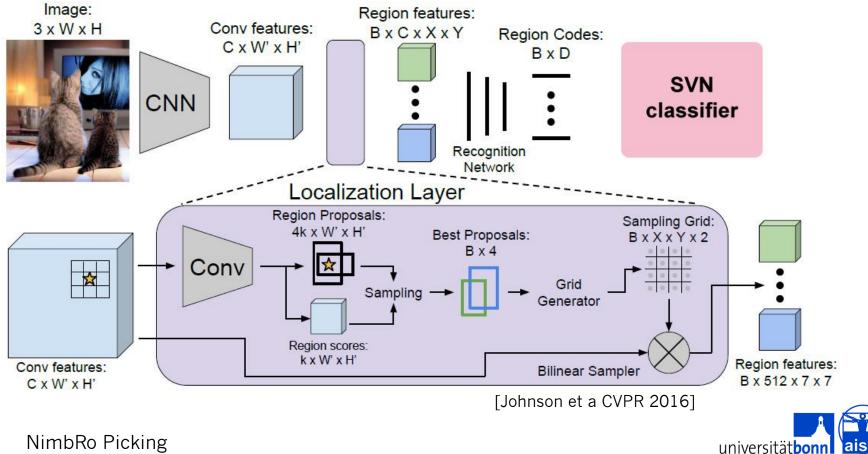
Amazon Picking Challenge

- Large variety of objects
- Unordered in shelf or tote
- Picking and stowing tasks

Deep Learning Semantic Segmentation

• Adapted from our segmentation of indoor scenes [Husain et al. RA-L 2016]

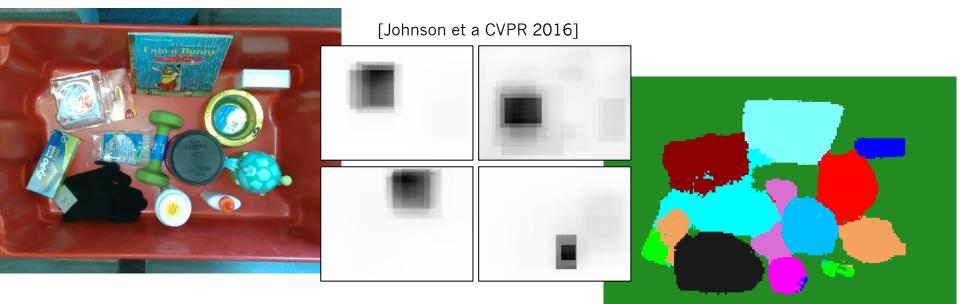
DenseCap Object Detection + SVM



33 NimbRo Picking

Combined with Object Detections

• DenseCap features and SVM classifier



Challenge Will Start Tomorrow



Post Scriptum: NimbRo Picking Results

- 2nd Place
 Stowing
 (186 points)
- 3rd Place
 Picking
 (97 points)

Conclusions

- Semantic perception is challenging
- Simple methods rely on strong assumptions
- Depth helps with segmentation, allows for size normalization, geometric features, shape descriptors
- Deep learning methods work well
- Transfer of features from large data sets
- Many open problems, e.g. total scene understanding, incorporating physics, ...

