Learning Semantic Environment Perception for Cognitive Robots

Sven Behnke

University of Bonn, Germany

Computer Science Institute VI

Autonomous Intelligent Systems

Some of Our Cognitive Robots

- Equipped with many sensors and DoFs
- Demonstration in complex scenarios

MAV

Soccer robot

Service robot

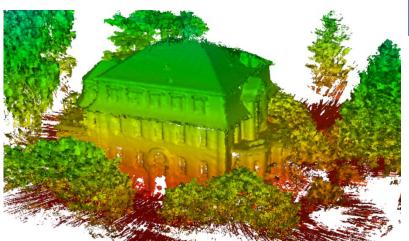
Exploration robot

Picking robot

3D Environment Perception

- 3D laser scanner, dual wide-angle stereo cameras, ultrasound, Quad Core i7
- Autonomous navigation close to structures

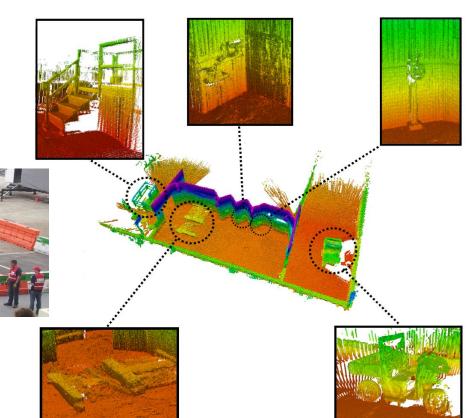
• 3D mapping

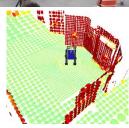


[Droeschel et al. JFR 2016]

3D Mapping

 Registering 3D laser scans



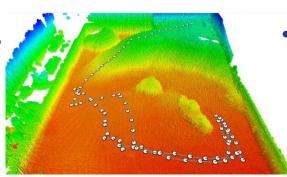


[Droeschel et al. 2016]

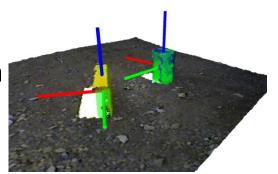
Mobile Manipulation in Mars-like Environment

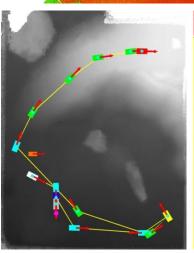
Autonomous Mission Execution

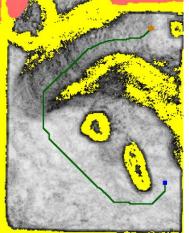
 3D mapping, localization, mission and navigation planning

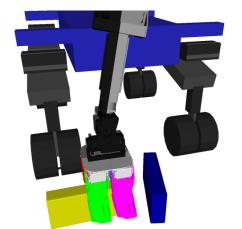


 3D object perception and grasping







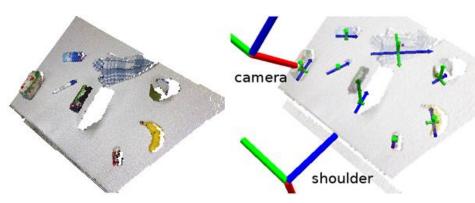


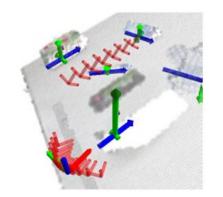
Cognitive Service Robot Cosero

Table-top Analysis and Grasp Planning

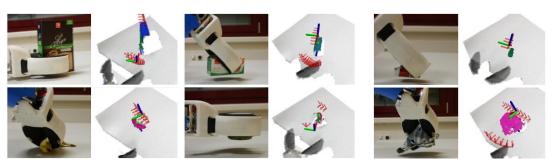
Detection of clusters above horizontal plane

 Two grasps (top, side)





 Flexible grasping of many unknown objects



[Stückler et al, Robotics and Autonomous Systems, 2013]

3D Mapping by RGB-D SLAM

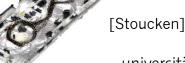
[Stückler, Behnke: Journal of Visual Communication and Image Representation 2013]

Modelling of shape and color distributions in voxels

Local multiresolution

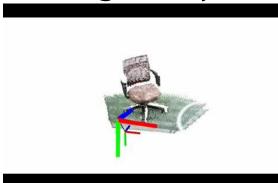
 Efficient registration of views on CPU

Global optimization



Learning and Tracking Object Models

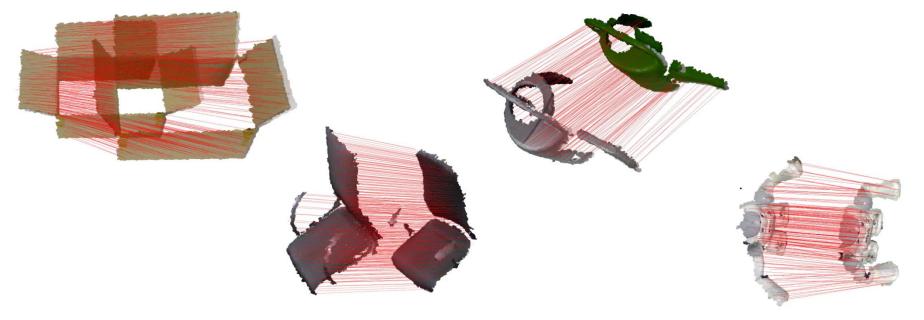
Modeling of objects by RGB-D-SLAM



Real-time registration with current RGB-D frame

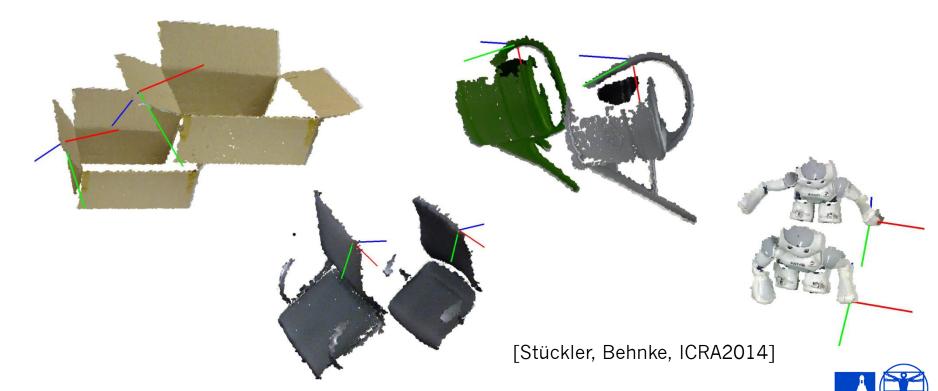
Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration



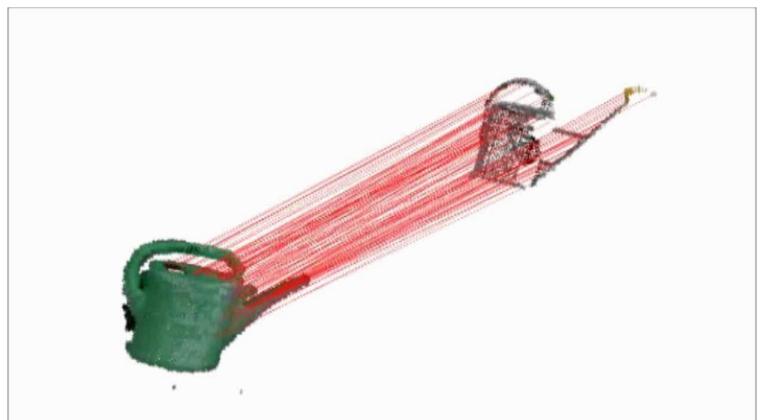
Transformation of Poses on Object

Derived from the deformation field



universität**bonn**

Grasp & Motion Skill Transfer

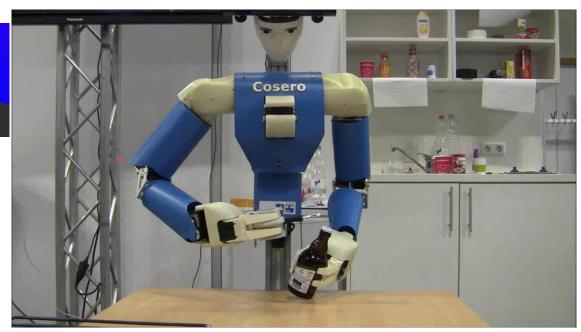


[Stückler, Behnke, ICRA2014]

Tool use: Bottle Opener

Tool tip perception

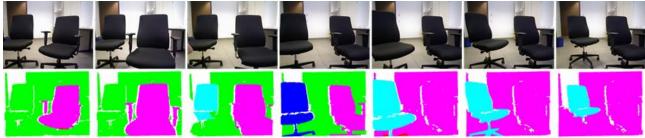
- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation



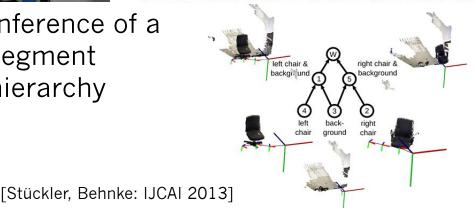
[Stückler, Behnke, Humanoids 2014]

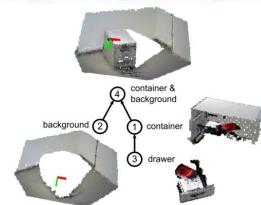
Hierarchical Object Discovery trough Motion Segmentation

Simultaneous object modeling and motion segmentation



 Inference of a segment hierarchy



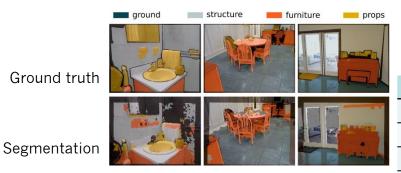


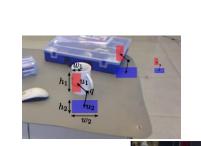
universität**bonn**

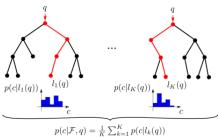
Sven Behnke: Semantic Environment Perception

Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Compare color / depth of regions
- Size normalization
- 3D fusion through RGB-D SLAM
- Evaluation on NYU depth v2





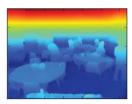


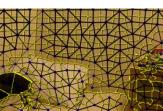
[Stückler, Biresev, Behnke: IROS 2012]

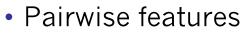
Accuracy in %	Ø Classes	Ø Pixels
Silberman et al. 2012	59,6	58,6
Couprie et al. 2013	63,5	64,5
Random forest	65,0	68,1
3D-Fusion	66,8	

Learning Depth-sensitive CRFs

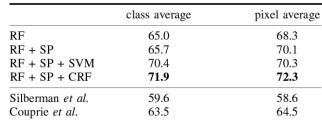
- SLIC+depth super pixels
- Unary features: random forest
- Height feature

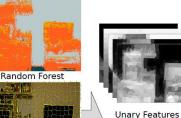


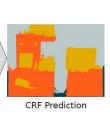




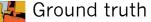
- Color contrast
- Vertical alignment
- Depth difference
- Normal differences





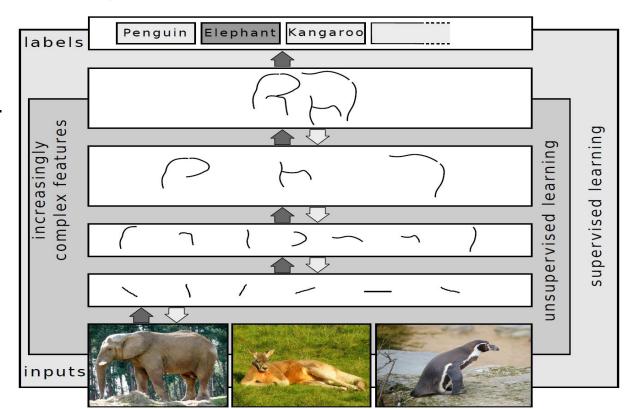


Depth Image



Deep Learning

Learning layered representations



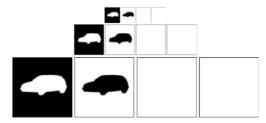
[Schulz; Behnke, KI 2012]

Object-class Segmentation

[Schulz, Behnke, ESANN 2012]

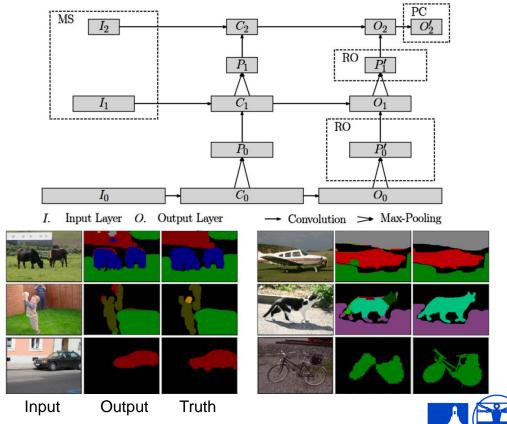
universität**bonn**

Class annotation per pixel



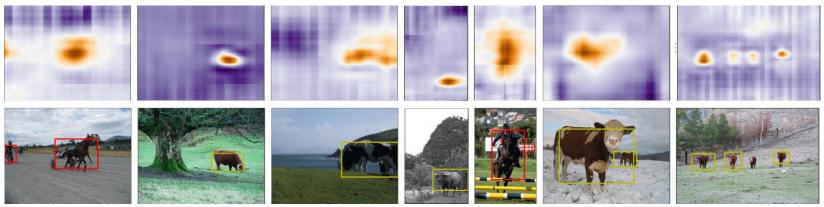
Multi-scale input channels

 Evaluated on MSRC-9/21 and INRIA Graz-02 data sets



Object Detection in Natural Images

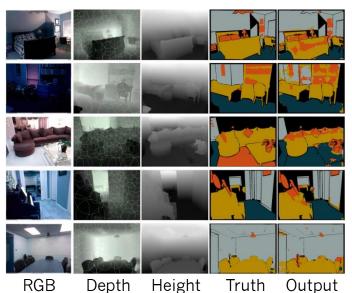
- Bounding box annotation
- Structured loss that directly maximizes overlap of the prediction with ground truth bounding boxes
- Evaluated on two of the Pascal VOC 2007 classes



[Schulz, Behnke, ICANN 2014]

RGB-D Object-Class Segmentation

- Covering windows segmented with CNN
- Scale input according to depth, compute pixel hight

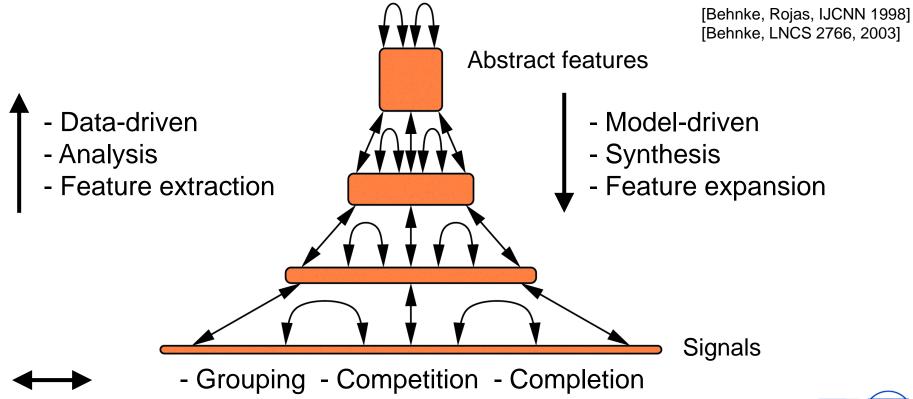


Method	floor	struct	furnit	prop	Class Avg.	Pixel Acc.
CW	84.6	70.3	58.7	52.9	66.6	65.4
CW+DN	87.7	70.8	57.0	53.6	67.3	65.5
CW+H	78.4	74.5	55.6	62.7	67.8	66.5
CW+DN+H	93.7	72.5	61.7	55.5	70.9	70.5
CW+DN+H+SP	91.8	74.1	59.4	63.4	72.2	71.9
CW+DN+H+CRF	93.5	80.2	66.4	54.9	73.7	73.4
Müller et al.[8]	94.9	78.9	71.1	42.7	71.9	72.3
Random Forest [8]	90.8	81.6	67.9	19.9	65.1	68.3
Couprie et al.[9]	87.3	86.1	45.3	35.5	63.6	64.5
Höft et al.[10]	77.9	65.4	55.9	49.9	62.3	62.0
Silberman [12]	68	59	70	42	59.7	58.6

CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP is averaged within superpixels and SVM-reweighted. CRF is a conditional random field over superpixels [8]. Structure class numbers are optimized for class accuracy.

[Schulz, Höft, Behnke, ESANN 2015]

Neural Abstraction Pyramid

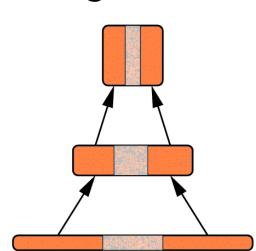


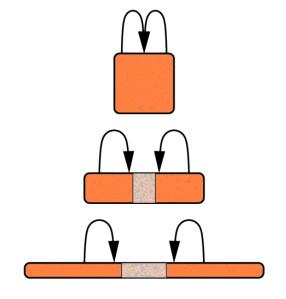
Iterative Image Interpretation

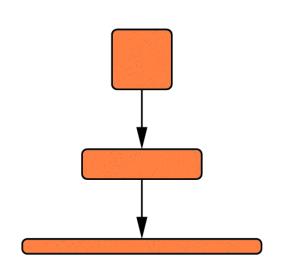
Interpret most obvious parts first

Use partial interpretation as context to resolve local

ambiguities

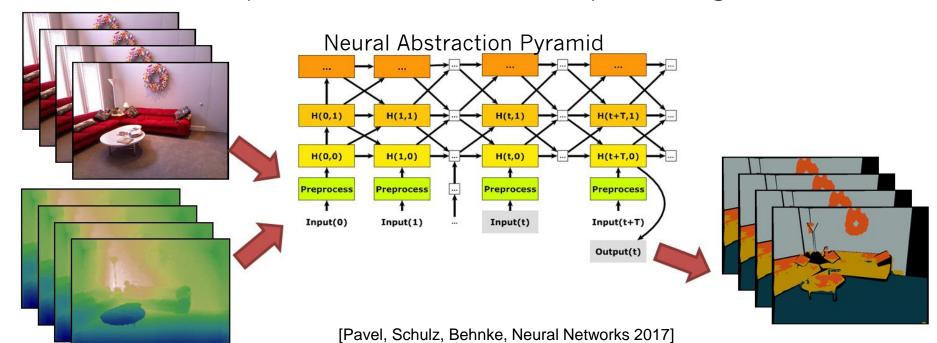






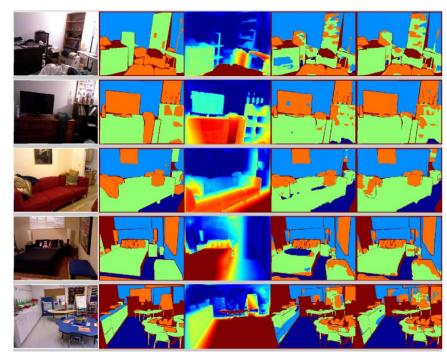
Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

Recursive computation is efficient for temporal integration



Geometric and Semantic Features for RGB-D Object-class Segmentation

- New geometric feature: distance from wall
- Semantic features pretrained from ImageNet
- Both help significantly



[Husain et al. RA-L 2016]

RGB

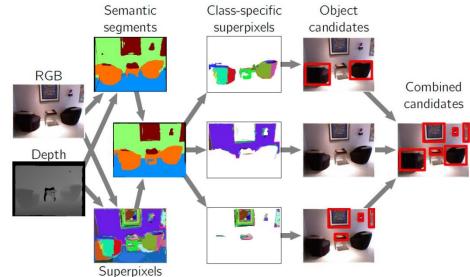
Truth

DistWall OutWO

OutWithDistWall

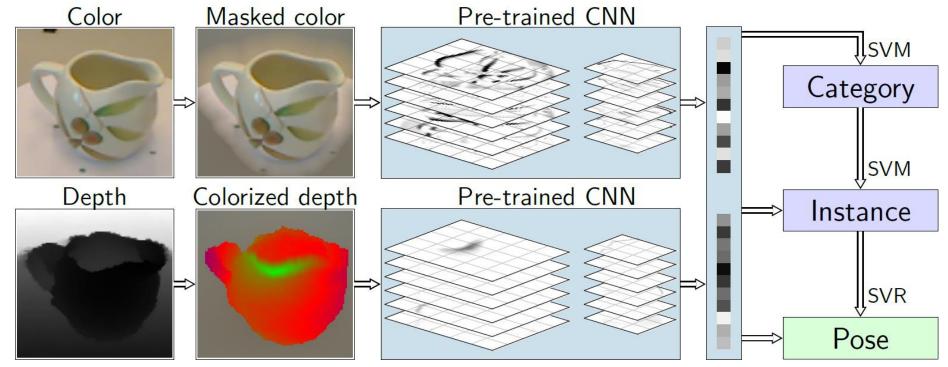
Semantic Segmentation Priors for Object Discovery Semantic Segmentation Priors for Class-specific superpixels

- Combine bottom-up object discovery and semantic priors
- Semantic segmentation used to classify color and depth superpixels
- Higher recall, more precise object borders



[Garcia et al. ICPR 2016]

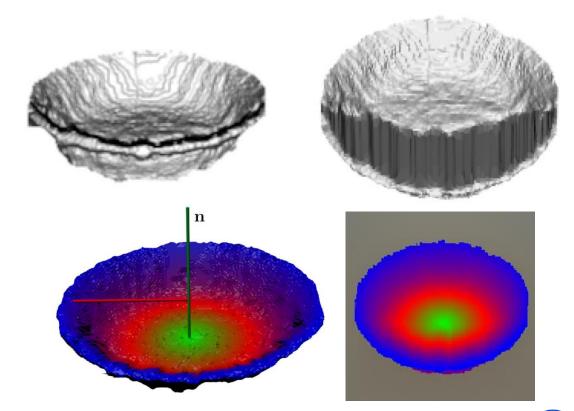
RGB-D Object Recognition and Pose Estimation



[Schwarz, Schulz, Behnke, ICRA2015]

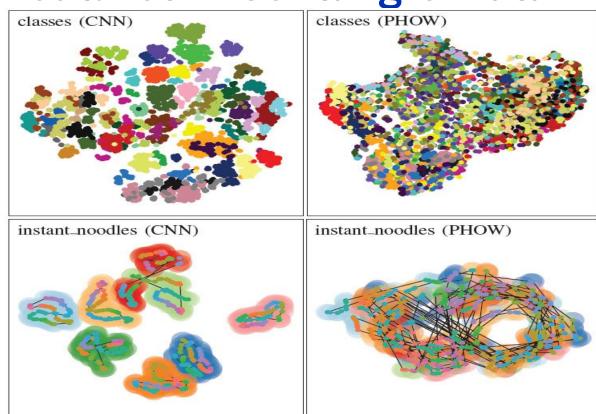
Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view
- Colorization based on distance from center vertical



Pretrained Features Disentangle Data

 t-SNE embedding

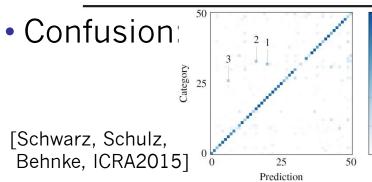


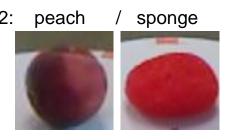
[Schwarz, Schulz, Behnke ICRA2015]

Recognition Accuracy

Improved both category and instance recognition

	Category Accuracy (%)		Instance Accuracy (%)		
Method	RGB	RGB-D	RGB	RGB-D	
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9	
Bo et al. [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8	
PHOW[3]	80.2 ± 1.8	(<u> </u>	62.8		
Ours	$\textbf{83.1} \pm \textbf{2.0}$	88.3 ± 1.5	92.0	94.1	
Ours	$\textbf{83.1} \pm \textbf{2.0}$	89.4 ± 1.3	92.0	94.1	





Amazon Picking Challenge

- Large variety of objects
- Unordered in shelf or tote
- Picking and stowing tasks

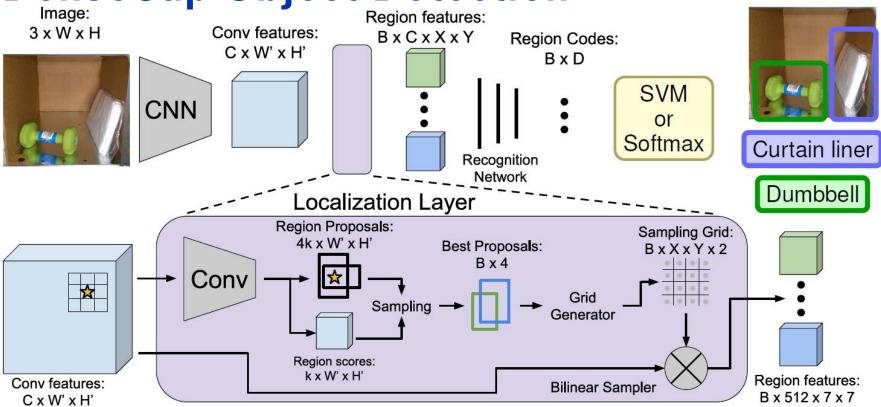
[Schwarz et al. ICRA 2017]

Deep Learning Semantic Segmentation

Adapted from our segmentation of indoor scenes [Husain et al. RA-L 2016]

[Schwarz et al. ICRA 2017]

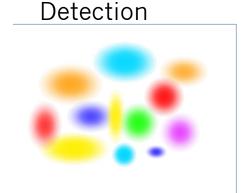
DenseCap Object Detection

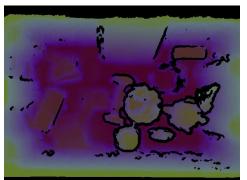


[Schwarz et al. ICRA 2017]

[Johnson et a CVPR 2016]

Combined Detection and Segmentation





[Schwarz et al. IJRR 2017]

Stowing

Picking

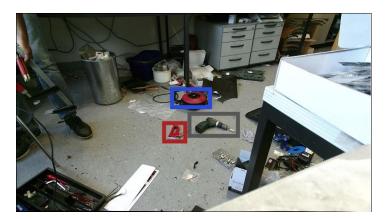
NimbRo Picking APC 2016 Results

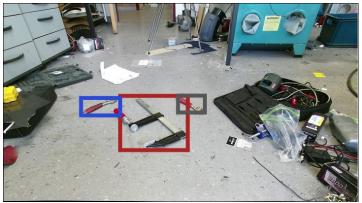
amazon picking challenge

- 2nd Place Stowing (186 points)
- 3rd Place Picking (97 points)

[Schwarz et al. IJRR 2017]

Detection of Tools





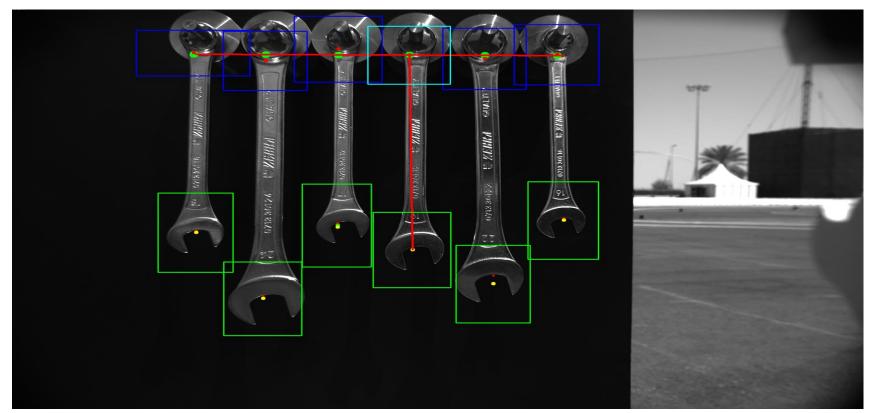
universität**bonn** ais

MBZIRC Challenge 2



universität**bonn**

Wrench Selection: Detection of Tool Ends



Amazon Robotics Challenge 2017

 Training with rendered scenes

universität**bonn** ais

Conclusions

- Semantic perception is challenging
- Simple methods rely on strong assumptions
- Depth helps with segmentation, allows for size normalization, geometric features, shape descriptors
- Deep learning methods work well
- Transfer of features from large data sets
- Synthetic training
- Many open problems, e.g. total scene understanding, incorporating physics, ...

Questions?

