Deep Learning for Visual Perception

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Much Interest in Deep Learning

NOVEMBER 25, 2012 IS "DEEP LEARNING" A REVOLUTION IN ARTIFICIAL INTELLIGENCE? POSTED BY GARY MARCUS

693 😏 Tweet 389 🚺 PRINT + MORE 11 COMMENTS

Can a new technique known as deep learning revolutionize artificial intelligence, as vesterday's front-page article at the New York Times suggests? There is good reason to be excited about deep learning, a sophisticated "machine learning" algorithm that far exceeds many of its predecessors in its abilities to recognize syllables and images. But there's also good reason to be skeptical. While the Times reports that "advances in an artificial intelligence technology that can recognize patterns offer the possibility of machines that perform human activities like seeing, listening and thinking," deep learning takes us, at best, only a small step toward the creation learning is important work, with immediate practica breathtaking as the front-page story in the New Yor

The **A** Register[®]

Financial News Small Biz CIO Media

BUSINESS

Baidu muscles in on Google's turf with Silicon Valley deep learning lab

Chinese search giant beds down next to Apple in Cupertino

By Phil Muncaster, 15th April 2013 Follow 3,371 followers

Win a Samsung 40-inch LED HDTV with The Reg and HP

10 BREAKTHROUGH TECHNOLOGIES 2013

Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

Introduction

The 10 Technologies Past Years

Industry Acquisitions and Hirings

Google

- DNNresearch (Geoffrey Hinton)
- DeepMind (Demis Hassabis)
- Baidu
 - Andrew Ng
- Facebook
 - Yann LeCun
- Microsoft
 - Li Deng

WIRED GEAR SCIENCE ENTERTAINMENT BUSINESS SECURITY DESIGN

Google Hires Brains that Helped Supercharge Machine Learning

BY ROBERT MCMILLAN 03.13.13 6:30 AM

Follow @bobmcmillan

Geoffrey Hinton (right) Alex Krizhevsky, and Ilya Sutskever (left) will do machine learning work at Google. Photo: U of T

Special Issues and Meetings

Special issues of many journals (PAMI, NN)

EE TRA PATTE MAC	nsactio CRN A HINE	NS ON NALYS INTEL	SIS AN LIGE	ND YEAR NCE
AUGUST 2013	VOLUME 35	A pub	ITPIDJ	(ISSN 0162-8828
Guest Editors' Intro S. Bengio, L. Deng Representation Lear Y. Bengio, A. Cour Learning to Relate I B. Memisevic	duction: Special Section g. H. Larochelle, H. Lee, an ning: A Review and Nev ville, and P. Vincent mages the Primate Visual Cor	on Learning Deep Archi d R. Salakhutdinov w Perspectives tex: What Can We Learn	for Computer Vision?	179
N. Krüger, P. Jans Invariant Scattering J. Bruna and S. M	sen, S. Kalkan, M. Lappe, J Convolution Networks allat	A. Leonardis, J. Piater, A. Ro	driguez-Sanchez, and L.	Wiskott 184
Deep Learning with B. Chen, G. Polati Scaling Up Spike-an	Hierarchical Convoluti an, G. Sapiro, D. Blei, D. D ud-Slab Models for Unsi	onal Factor Analysis unson, and L. Carin wervised Feature Learnin	0	
LJ. Goodfellow, A. Learning Hierarchic C. Farabet, C. Cou Stacked Autoencode	Courville, and Y. Bengio al Features for Scene La aprie, L. Najman, and Y. Lei rs for Unsupervised Fea	beling sun ture Learning and Multip	8 ole Organ Detection i	
Using 4D Patient D HC. Shin, M.R. C	l <i>ata</i> Orton, D.J. Collins, S.J. Don	an, and M.O. Leach		

Yann LeCun, Yoshua Bengio & Geoffrey Hinton

- Specialized workshops at major machine learning conferences (NIPS, ICLM)
- Representation Learning Conference (ICLR)
- Deep Learning Summits (RE.WORK, NVidia)

Deep Learning Definition

- Deep learning is a set of algorithms in machine learning that attempt to learn layered models of inputs, commonly neural networks.
- The layers in such models correspond to distinct levels of concepts, where
 - higher-level concepts are defined from lowerlevel ones, and
 - the same lower-level concepts can help to define many higher-level concepts.

[Bengio 2009]

Layered Representations

Performance of the Human Visual System

Psychophysics

Gestalt principles

universität**bonn** ais

Visual Illusions

Observations

- In the world around us it mostly holds that:
- Neighboring things have something to do with each other
 - Spatially
 - Temporally
- There is hierarchical structure
 - Objects consist of parts
 - Parts are composed of components, ...

Spatial Arrangement of Facial Parts

Face Perception

Horizontal and Vertical Dependencies

Weber, Welling, Perona '00

Fergus, Zisserman, Perona '03

Constellation Model: Fully connected shape model Implicit Shape Model: Star-Model w.r.t. Reference Point

universitätbonn ais

Multi-Scale Representation

Image pyramids are not expressive enough

Increasing Number of Features with Decreasing Resolution

Rich representations also in the higher layers

Modeling Horizontal Dependencies

- 1D: HMM, Kalman Filter, Particle Filter
- 2D: Markov Random Fields
- Decision for level of description problematic
- Ignores vertical dependencies, flat models do not scale

Modeling Vertical Dependencies

- Structure graphs, etc.
- Ignores horizontal dependencies

Horizontal and vertical Dependencies

Problem: Cycles make exact inference impossibleIdea: Use approximate inference

Human Visual System

universität**bonn** ais

Visual Processing Hierarchy

- Increasing complexity
- Increasing invariance
- All connections bidirectional
- More feedback than feed forward
- Lateral connections important

[Krüger et al., TPAMI 2013]

Feed-Forward Models

Neocognitron: Fukushima 1980

Supervised training of convolutional networks: LeCun 1989

Feed-forward Models Cannot Explain Human Performance

Performance increases with observation time

Iterative Interpretation

[Behnke, LNCS 2766, 2003]

Interpret most obvious parts first

 Use partial interpretation as context to resolve local ambiguities

Local Recurrent Connectivity

Biological vs. Artificial Neurons

Separation of Input Patterns

- Dot product w · x separates the input space into two regions: one with value >=0 and one with value <0</p>
- Separation is a line, defined by the weights and bias ${\mathcal G}$

Generalization

Generalization

XOR Problem

- Boolean XOR function is not linearly separable
- If we could use two hyper planes, we could separate one class from both sides

- This can be accomplished by a Multi-Layer Perceptron
- Problem: How to train multiple layers?

Backpropagation of Error

- Forward propagation of activity
- Backward propagation of error gradient
- Weight update by gradient descent

Flat vs. Deep Networks

- A neural network with a single hidden layer that is wide enough can compute any function (Cybenko, 1989)
 - Certain functions, like parity, may require exponentially many hidden units (in the number of inputs)
- Deep networks (with multiple hidden layers) may be exponentially more efficient
 - Parity example: Compute carry bit sequentially

Learning a Feature Hierarchy

Digit Reconstruction

universität**bonn** ais

[Behnke, IJCAI'01]

Digit Reconstruction

universität**bonn** ais

[Behnke, IJCAI'01]

Binarization of Matrix Codes

Face Localization

[Behnke, KES'03]

- BioID data set:
 - 1521 images
 - 23 persons

 Encode eye positions with blobs

384 x 288

48 x 36

Face Localization

[Behnke, KES'03]

Auto-Encoder

- Try to push input through a bottleneck
- Activities of hidden units form an efficient code
 - There is no space for redundancy in the bottleneck
- Extracts frequently independent features (factorial code)

Desired Output = Input

Deep Autoencoders (Hinton & Salakhutdinov, 2006)

- Multi-layer autoencoders for non-linear dimensionality reduction
- Difficult to optimize deep autoencoders using backpropagation
- Greedy, layer wise training
- Unrolling
- Supervised fine-tuning

40

GPU Implementations (CUDA)

- Affordable parallel computers
- General-purpose programming

• Local connectivity [Uetz & Behnke, 2009]

Image Categorization: NORB

10 categories, jittered-cluttered

Max-Pooling, cross-entropy training

Test error: 5,6% (LeNet7: 7.8%)

Sven Behnke: Deep Learning for Visual Perception

[Scherer, Müller, Behnke, ICANN'10]

Image Categorization: LabelMe

50,000 color images (256x256) \blacksquare 12 classes + clutter (50%)

car 1.0

window 1.0 person 1.0 keyboard 1.0

bookshelf 1.0

(none)

car 0.21

person 0.54 window 0.66 building 1.0,

tree 0.03

(none)

(none)

(none)

Error TRN: 3.77%; TST: 16.27% Recall: 1,356 images/s

[Uetz, Behnke, ICIS2009]

Multi-Column Deep Convolutional Networks

- Different preprocessings
- Trained with distortions
- Bagging deep networks

- NORB: 2.7%
- CIFAR10: 11.2%
- Traffic signs: 0.54% test error

16

universität**bonn** ais

[Ciresan et al. CVPR 2012]

4 3 5

361

ImageNet Challenge

- 1.2 million images
- 1000 categories, no overlap
- Subset of 11 million images from 15.000+ categories
- Hierarchical category structure (WordNet)

Golf cart (motor vehicle, self-propelled vehicle, wheeled vehicle, ... Egyptian cat (domestic cat, domestic animal, animal)

- Task: recognize object category
- Low penalty for extra detections
- Hierarchical error computation

Large Unsupervised Feature Learning

- 9 layer model
- Locally connected
- Sparse auto-encoder
- L2 pooling
- Local contrast normalization
- 1 billion connections
- Trained on 10 million images
- Unsupervised learned detectors

3x

Supervised ImageNet 2011 results (14M images, 22K categories): 15.8%
[Le et al. 2012]

Large Convolutional Network

- Rectifying transfer functions
- 650,000 neurons
- 60,000,000 parameters
- 630,000,000 connections
- Trained using dropout and data augmentation
- Testing 10 sub-images
- ILSVRC-2012: top-5 error 15.3%

96 learned low-level filters

Validation Classification

leopard	motor scooter	container ship	mite	
leopard	motor scooter	container ship	mite	
jaguar	go-kart	lifeboat	black widow	
cheetah	moped	amphibian	cockroach	
snow leopard	bumper car	fireboat	tick	
Egyptian cat	golfcart	drilling platform	starfish	
			A SHOLD THE SECOND SECOND FOR A	

grille	mushroom	cherry	Madagascar cat	
convertible	agaric	dalmatian	squirrel monkey	
grille	mushroom	grape	spider monkey	
pickup	jelly fungus	elderberry	titi	[Krizhovalav at al
beach wagon	gill fungus	ffordshire bullterrier	indri	LKUZUEVSKY EL al.
fire engine	dead-man's-fingers	currant	howler monkey	NIPS 2012]

Surpassing Human Performance

GT: horse cart 1: horse cart 2: minibus 3: oxcart 4: stretcher 5: half track

GT: birdhouse 1: birdhouse 2: sliding door 3: window screen 4: mailbox 5: pot

GT: forklift 1: forklift 2: garbage truck 3: tow truck 4: trailer truck 5: go-kart

GT: letter opener 1: drumstick 2: candle 3: wooden spoon 4: spatula

GT: spotlight 1: grand piano 2: folding chair 3: rocking chair 4: dining table 5: upright piano

GT: coucal 1: coucal 2: indigo bunting 3: lorikeet 4: walking stick 5: custard apple

GT: komondor 1: komondor

2: patio 3: llama 4: mobile home 5: Old English sheepdog

GT: yellow lady's slipper 1: yellow lady's slipper

2: slug 3: hen-of-the-woods 4: stinkhorn 5: coral fungus

[He et al. 2015]

Object-class Segmentation

 Evaluated on MSRC-9/21 and INRIA Graz-02 data sets

Object Detection in Images

- Bounding box annotation
- Structured loss that directly maximizes overlap of the prediction with ground truth bounding boxes
- Evaluated on two of the Pascal VOC 2007 classes

[Schulz, Behnke, ICANN 2014]

RGB-D Object-Class Segmentation

- Kinect-like sensors provide dense depth
- Scale input according to depth, compute pixel height

NYU Depth V2

Method	floor	struct	furnit	prop	Class Avg.	Pixel Acc.
CW	84.6	70.3	58.7	52.9	66.6	65.4
CW+DN	87.7	70.8	57.0	53.6	67.3	65.5
CW+H	78.4	74.5	55.6	62.7	67.8	66.5
CW+DN+H	93.7	72.5	61.7	55.5	70.9	70.5
CW+DN+H+SP	91.8	74.1	59.4	63.4	72.2	71.9
CW+DN+H+CRF	93.5	80.2	66.4	54.9	73.7	73.4
Müller et al.[8]	94.9	78.9	71.1	42.7	71.9	72.3
Random Forest [8]	90.8	81.6	67.9	19.9	65.1	68.3
Couprie et al.[9]	87.3	86.1	45.3	35.5	63.6	64.5
Höft et al.[10]	77.9	65.4	55.9	49.9	62.3	62.0
Silberman [12]	68	59	70	42	59.7	58.6

CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP is averaged within superpixels and SVM-reweighted. CRF is a conditional random field over superpixels [8]. Structure class numbers are optimized for class accuracy.

[Schulz, Höft, Behnke, ESANN 2015]

Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

- NYU Depth V2 contains RGB-D video sequences
- Recursive computation is efficient for temporal integration

	Class Accuracies (%)				Average (%)	
Method	ground	struct	furnit	prop	Class	Pixel
Höft <i>et al.</i> [19] Unidirectional + MS	77.9 73.4	65.4 66.8	55.9 60.3	49.9 49.2	62.0 62.4	61.1 63.1
Schulz et al. [20] (no height)	87.7	70.8	57.0	53.6	67.3	65.5
Unidirectional + SW	90.0	76.3	52.1	61.2	69.9	67.5

[Pavel, Schulz, Behnke, IJCNN 2015]

Geometric and Semantic Features for RGB-D Object-class Segmentation

 New geometric feature: distance from wall

Semantic

features pretrained from ImageNet

 Both help significantly

[Husain et al. under review]

Semantic Segmentation Priors for Object Discovery

- Combine bottomup object discovery and semantic priors
- Semantic segmentation used to classify color and depth superpixels
- Higher recall, more precise object borders

[Garcia et al. under review]

RGB-D Object Recognition and Pose Estimation

Use pretrained features from ImageNet

[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view

 Colorization based on distance from center vertical

[Schwarz, Schulz, Behnke, ICRA2015]

Features Disentangle Data

[Schwarz, Schulz, Behnke ICRA2015]

Recognition Accuracy

Improved both category and instance recognition

	Category A	ccuracy (%)	Instance Accuracy (%)		
Method	RGB	RGB-D	RGB	RGB-D	
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9	
Bo <i>et al.</i> [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8	
PHOW[3]	80.2 ± 1.8		62.8		
Ours	$\textbf{83.1} \pm \textbf{2.0}$	88.3 ± 1.5	92.0	94.1	
Ours	83.1 ± 2.0	89.4 ± 1.3	92.0	94.1	

Generating Image Captions

 Multimodal recurrent neural network generative model

[Karpathy, Fei-Fei 2015]

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

two young girls are playing with lego toy.

Generating Image Captions

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Describes without errors

A close up of a cat laying on a couch.

Describes with minor errors

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the

Somewhat related to the image

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Unrelated to the image

[Vinyals et al. 2015]

Dreaming Deep Networks

[Mordvintsev et al 2015]

Painting Style Transfer

van Gogh

Conclusion

- Flat models do not suffice
- Jump from signal to symbols too large
- Deep learning helps here:
 - Hierarchical, locally connected models
 - Non-linear feature extraction
- Structure of learning machine does matter
- Proposed architectures map well to GPUs
- Iterative interpretation uses partial results as context to resolve ambiguities
- Many questions open
 - Graphical models vs. neural networks
 - Structured vs. unstructured modelling
 - Stability of recurrent networks

Presentation 1 Gregoire Montavon (TU Berlin): Deep Learning of Molecular Properties in the Chemical Compound Space

- Use deep neural networks as a non-linear function approximator in chemistry
- Targets computed by slow conventional method
- Can compute molecular properties of similar molecules quickly
- Application: Search compounds by property

Presentation 2 Takayuki Okatani (Tohoku University): Deep Learning for Material Recognition

- Material recognition is instance of image categorization
- Supervised training of deep convolutional networks
- Reaches human performance
- Seems to work different than human visual system

