Towards Structured Model Learning, Perception and Planning for Cognitive Robots

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Many New Application Areas for Robots

- Self-driving cars
- Logistics
- Agriculture, mining
- Collaborative production
- Personal assistance
- Space, search & rescue
- Healthcare
- Toys

Need more cognitive abilities!

Some of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Soccer

Domestic service

Mobile manipulation

Bin picking

Aerial inspection

Some more of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Rescue

Phenotyping

Human-robot collaboration

Telepresence

Computer Vision

3D Scene

Computer Vision is an **ill-posed inverse problem**:

- Many 3D scenes yield the same 2D image
 - => Additional constraints (knowledge about world) required

- 14× Nikon Z7 DSLR camera
 - 45 MP
 - 64–25600 ISO
 - 24-70 mm Lens

 Recovered camera poses and semi-dense point cloud through Multi-View-Stereo

PHENOROB

[Rosu 2022]

- Geometry represented as Signed Distance Field (SDF)
- Color represented as a direction-dependent color field
- Transform SDF into radiance [1] and train similar to NeRF

Geometry

Color at the zero level-set of the SDF

[Rosu 2022]

8

[1] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-View Reconstruction, NeurIPS 2021.

- InstantNGP with a Multiresolution Hash Encoding [2]
- Small MLPs for SDF and color
- 25 M parameters
- 1 h training on Nvidia RTX 3090 GPU
- [2] Müller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding ACM Transactions on Graphics (SIGGRAPH 2022)

[Rosu 2022]

- InstantNGP with a Multiresolution Hash Encoding [2]
- Small MLPs for SDF and color
- 25 M parameters
- 1 h training on Nvidia **RTX 3090 GPU**
- [2] Müller et al. Instant Neural Graphics Primitives with a Multiresolution Hash **Encoding ACM Transactions on Graphics** (SIGGRAPH 2022)

Surface

[Rosu 2022]

Rendered novel views

Plant Reconstruction over Multiple Days

Volumetric renders through SDF + color

Plant Reconstruction over Multiple Days

Predicted depth

High Geometric and Texture Detail

- Marching cubes on the SDF to recover mesh
- Learnable texture to match color images
- Rendering in real time

Mesh normal vector

PHENOROB

Textured mesh

Reconstruction of Plant Structure

- Identify individual plants
- Segment plant organ instances
- Model the plant as a structural graph
 - Establishes a plant coordinate system
- Associate instances over growth stages
- Model appearance, material properties, etc.
- This creates a Digital Twin of the plant
 - Basis for plant-science research
 - Basis for targeted interaction with the plant, e.g. contact measurements or harvesting => we must track it in real time while interacting with the plant

Pheno4D data set

Deep Learning

 Learning layered
representations

Compositionality

UNIVERSITÄT BO

[Schulz; Behnke, KI 2012]

Neural Abstraction Pyramid

[Behnke, Rojas, IJCNN 1998] [Behnke, LNCS 2766, 2003]

Iterative Image Interpretation

- Interpret most obvious parts first
- Use partial interpretation as context to iteratively resolve local ambiguities

[Behnke, Rojas, IJCNN 1998] [Behnke, LNCS 2766, 2003]

Neural Abstraction Pyramid for Object-class Segmentation of RGB-D Video

Recursive computation is efficient for temporal integration

[Pavel, Schulz, Behnke, Neural Networks 2017]

The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in two ways:

1. Generating data:

Automatic data capture, online mesh databases, scene synthesis

2. Improving generalization: Object-centered models, deformable registration, transfer learning, semi-supervised learning

RGB-D Object Recognition and Pose Estimation

Transfer learning from large-scale data sets

[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view

Colorization based on distance from center vertical

[Schwarz, Schulz, Behnke, ICRA2015]

Pretrained Features Disentangle Data

 t-SNE embedding

[Schwarz, Schulz, Behnke ICRA2015]

Recognition Accuracy

Improved both category and instance recognition

	Category Accuracy (%)		Instance Accuracy (%)	
Method	RGB	RGB-D	RGB	RGB-D
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9
Bo <i>et al.</i> [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8
PHOW[3]	80.2 ± 1.8		62.8	
Ours	83.1 ± 2.0	88.3 ± 1.5	92.0	94.1
Ours	83.1 ± 2.0	89.4 ± 1.3	92.0	94.1

Confusion:

1: pitcher / coffe mug

2: peach / sponge

[Schwarz, Schulz, Behnke, ICRA2015]

Amazon Robotics Challenge

- Storing and picking of items
- Dual-arm robotic system

[Amazon]

Object Capture and Scene Rendering

Turntable + DLSR camera

Insertion in complex annotated scenes

Semantic Segmentation and Grasp Pose Estimation

- Semantic segmentation using RefineNet [Lin et al. CVPR 2017]
- Grasp positions in segment centers

bronze_wire_cup conf: 0.749401 irish_spring_soap conf: 0.811500 playing_cards conf: 0.813761 w_aquarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467 paper_towels conf: 0.903645 white_facecloth conf: 0.895212 hand_weight conf: 0.928119 robots_everywhere conf: 0.930464*

mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015 fiskars_scissors conf: 0.831069 ice_cube_tray conf: 0.976856

[Schwarz et al. ICRA 2018]

Amazon Robotics Challenge 2017

[Schwarz et al. ICRA 2018]

Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates

UNIVERSITÄT

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]

Dense Convolutional 6D Object Pose Estimation

- Extension of PoseCNN [Xiang et al. RSS 2018]
- Dense prediction of object center and orientation, without cutting out

Self-supervised Learning

- Special case of unsupervised learning
 - Learning to represent the world in a non task-specific way
 - Learning predictive models for planning and control
- Define a pretext task without labels that needs some understanding of the data, e.g.
 - Predict the future from the past
 - Fill-in the gaps
 - Contrastive methods
- Use learned representation to quickly learn downstream task
 - Supervised learning
 - Reinforcement learning

Downstream task

Self-Supervised Surface Descriptor Learning

- Feature descriptor should be constant under different transformations, viewing angles, and environmental effects such as lighting changes
- Descriptor should be unique to facilitate matching across different frames or representations
- Learn dense features using a contrastive loss

Known correspondences

Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Descriptors as Texture on Object Surfaces

- Learned feature channels used as textures for 3D object models
- Used for 6D object pose estimation

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Abstract Object Registration

- Compare rendered and actual scene in feature space
- Adapt model pose by gradient descent

Behnke Humanoids 2019]

Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Learning from Synthetic Scenes

- Cluttered arrangements from 3D meshes
- Photorealistic scenes with randomized material and lighting including ground truth
- For online learning & render-and-compare
- Semantic segmentation on YCB Video Dataset
 - Close to real-data accuracy
 - Improves segmentation of real data

[Schwarz and Behnke, ICRA 2020]

T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

Extends DETR: End-to-end object detection with transformers [Carion et al. ECCV 2020]
 End-to-end differentiable pipeline for 6D object pose estimation

CNN features

Encoder self-attention

Object detections and decoder attention

Multi-Object 6D Pose Estimation using Keypoint Regression

[Amini et al. IAS 2022, Best Paper Award]

RoboCup 2022 in Bangkok

Transfer Learning for Visual Perception

- Encoder-decoder network
- Two outputs
 - Object detection
 - Semantic segmentation
- Location-dependent bias

- Detects objects that are hard to recognize for humans
- Robust to lighting changes

Learning Omnidirectional Gait from Scratch

- State includes joint positions and velocities, robot orientation, robot speed
- Actions are increments of joint positions
- Simple reward structure
 - Velocity tracking
 - Pose regularization
 - Not falling

Learning Curriculum

- Start with small velocities
- Increase range of sampled velocities

UNIVERSITÄT

Learned Omnidirectional Gait

Target velocity can be changed continuously

Our locomotion controller is able to: Walk Forward

$$v_x = 0.6 \text{ m/s}$$

 $v_y = 0.0 \text{ m/s}$
 $\omega_z = 0.0 \text{ rad/s}$

Learning Mapless Humanoid Navigation

- Visual (RGB images) and nonvisual observations to learn a control policy and an environment dynamics model
- Anticipate terminal states of success and failure

Inference

UNIVERSITÄ'

Training

Learning Mapless Humanoid Navigation

Learning of Hierarchical Representations for Prediction

Local learning module

Learning of Hierarchical Representations for Prediction

Coarser, more abstract predictions for longer time horizons in higher layers

MSPred: Video Prediction at Multiple Spatio-Temporal Scales

Coarser, more abstract predictions for longer time horizons in higher layers

Predict image itself, human pose joint keypoints, and human body position

MSPred: Video Prediction at Multiple Spatio-Temporal Scales

- Coarser, more abstract predictions for longer time horizons in higher layers
- Predict image itself, human pose joint keypoints, and human body position

[Villar-Corrales et al., BMVC 2022]

Depth-layered Models for Prediction

Modelling occlusions

Local Frequency Domain Transformer Networks: Motion Segmentation

Local Frequency Domain Transformer Networks: Motion Segmentation

- Unsupervised foreground/background segmentation
- Motion estimation and prediction for foreground

UNIVERSIT

Hierarchical Object Discovery trough Motion Segmentation

Simultaneous object modeling and motion segmentation

UNIVERSITÄT

Fourier-based Video Prediction through Relational Object Motion

Model relative object movement

- Star, planet, moon data set
- Infer object relation graph

Hierarchical Planning in the Now

- Use predicted state on different layers of abstraction for planning
- Coarse-to-fine planning makes actions more concrete as they come closer to execution
- Plan consists of few steps on each layer

Centauro Robot

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

Hybrid Driving-Stepping Locomotion Planning: Abstraction

- Planning in the here and now
- Far-away details are abstracted away

Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level	Map Resolution		Map Features		Robot Representation		Action Semantics	
1		• 2.5 cm • 64 orient.	\land	• Height			\bigwedge	• Individual Foot Actions
2		• 5.0 cm • 32 orient.		HeightHeight Difference				• Foot Pair Actions
3	\bigvee	10 cm16 orient.		HeightHeight DifferenceTerrain Class	\bigvee			• Whole Robot Actions

[Klamt and Behnke, IROS 2017, ICRA 2018]

Learning Cost Functions of Abstract Representations

Planning problem

Abstraction CNN

Predict feasibility and costs of local detailed planning

Training data

- generated with random obstacles, walls, staircases
- costs and feasibility from detailed A*-planner
- ~250.000 tasks

[Klamt and Behnke, ICRA 2019]

Learned Cost Function: Abstraction Quality

CNN predicts feasibility and costs better than manually tuned geometric heuristics

[Klamt and Behnke, ICRA 2019]

Experiments - Planning Performance

 Learned heuristics accelerates planning, without increasing path costs much

Heuristic preprocessing: 239 sec

[Klamt and Behnke, ICRA 2019]

UNIVERSITÄT

CENTAURO Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]

Transfer of Manipulation Skills

Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations

Interpolation in Shape Space

Shape-aware Non-rigid Registration

Shape-aware Registration for Grasp Transfer

Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

[Pavlichenko et al., IROS 2017]

Grasping an Unknown Power Drill and Fastening Screws

CENTAURO: Complex Manipulation Tasks

Regrasping for Functional Grasp

- Direct functional grasps not always feasible
- Pick up object with support hand, such that it can be grasped in a functional way

[Pavlichenko et al. Humanoids 2019]
Regrasping Experiments

Micro Aerial Vehicles: Hierarchical Navigation

Contraction of the second seco

Mission plan

Allocentric planning

Obstacle avoidance

[Droeschel et al. JFR 2016]

InventAIRy: Autonomous Navigation in a Warehouse

[Beul et al. RA-L 2018]

InventAIRy: Detected Tags in Shelf

[Beul et al. RA-L 2018]

German Rescue Robotics Center

Initial demonstrator

- Basis: DJI Matrice 600 Pro
- Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
- Tiltable sensor head

Current demonstrator

- Basis: DJI Matrice 210 v2
- Sensors: Ouster OS-0, FLIR AGX, 2× Intel RealSense D455
- IP43 water resistance

Modeling the Brandhaus Dortmund

[Rosu et al. SSRR 2019]

Real-time LiDAR Odometry with Continuous-time Trajectory Optimization

- Simultaneous registration of multiple multiresolution surfel maps using Gaussian mixture models and temporally continuous B-spline
- Accelerated by sparse permutohedral voxel grids and adaptive choice of resolution
- Real-time onboard processing 16-20 Hz
- Open-Source https://github.com/AIS-Bonn/ lidar_mars_registration

3D LiDAR Mapping

DRZ Living Lab

[Quenzel and Behnke, IROS 2021]

Semantic Perception: LiDAR Segmentation

- LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid
- Hierarchical information aggregation through U-Net architecture
- LatticeNet is real-time capable and achieves excellent results in benchmarks

Semantic Fusion: 3D LiDAR Mapping

Segmented point cloud

Semantic multiresolution surfel map

Categories:

- Building
- Floor
- Persons
- Vehicles
- Fence •
- Vegetation ٠

Semantic Fusion: Temporal LatticeNet

- Semantic segmentation of sequences of 3D point clouds
- Integration of recurrent connections
- Trained on three scans of SemanticKITTI
- Distinguishing moving from parking vehicles

[Rosu et al. Autonomous Robots 2021]

ResNet Block

Onboard Multimodal Semantic Fusion

- Real-time semantic segmentation and object detection (≈9Hz) with EdgeTPU / iGPU
 - SalsaNext for LiDAR
 - DeepLabv3 for RGB images
 - SSD MobileDet for Thermal/RGB
- Late-fusion for
 - Point cloud
 - Image segmentation

Onboard Computer

[Bultmann et al. ECMR 2021, RAS 2022]

Predictive Angular Potential Field-based Obstacle Avoidance

- Aggregate LiDAR scans in range image
- Adjust direction using angular potential field
- Predict trajectory and range image
- Scale velocity based on time-to-contact

Angular Potential Field

[Schleich and Behnke, IROS 2022]

Dynamic 3D Navigation Planning

- Positions and velocities in sparse local multiresolution grid
- Adaptation of movement primitives to grid
- Optimization of flight time and control costs
- 1 Hz replanning

Planning with Visibility Constraints

- Extra costs for flight through unmapped volumes
- Consideration of sensor frustum:
 - Coupling of vertical and horizontal motion
 - Preferred forward flight with limited rotational speed

Observation Pose Planning

- Planning of observation poses with line of sight to the target object despite occlusions
- Target objects are defined by position, line of sight and distance
- Optimization of observation poses with regard to visibility quality and accessibility

Initial observation pose

Optimized path

Autonomous Flight without GNSS

DRZ Dortmund

Exploration

- Definition of target area w.r.t. satellite images or maps
- Simple exploration patterns (spirals, meanders, ...)
- Collision check
- TSP to determine segment sequence
- Continuous replanning

Campus Poppelsdorf

Autonomous Exploration

DRZ Dortmund

Real-Time Multi-View 3D Human Pose Estimation using Semantic Feedback to Smart Edge Sensors

- Triangulation and skeleton model to recover 3D pose
- Semantic feedback channel for bidirectional communication between backend and sensors

Real-Time Multi-View 3D Human Pose Estimation using Semantic Feedback to Smart Edge Sensors

- Feedback heatmap is rendered from feedback skeleton and fused with detection on sensors
- Feedback heatmap helps to recover from incorrect or imprecise 2D joint detections
- Examples:
 - Occluded left wrist (rows 1 and 2)
 - Confusion of left and right elbow (row 3)

[Bultmann and Behnke, RSS 2021]

Semantic Perception with Smart Edge Sensor Network

- Object detection and semantic segmentation of RGB images
- Person detection in IR images
- Semantic labelling of RGB-D point clouds
- Pose estimation for mobile robot and chairs

(a) Smart Edge Sensor with Jetson NX (b) 3D semantic scene model, (c) RGB and (d) thermal detections, (e) semantic segmentation

[Bultmann and Behnke: IAS 2022]

3D Human Pose Estimation with Occlusion Feedback

- Heavy occlusion causes the pose estimation to collapse to the visible side only
- With occlusion feedback occluded joint detections can be discarded and the local model is completed

With occlusion feedback W/o occlusion feedback Unoccluded reference

Fully occluded

UNIVERSITÄ

[Bultmann and Behnke: IAS 2022]

Evaluation in Real-World Multi-Person Scenes

- 20 smart edge sensors (4 Jetson NX, 16 Edge TPU), covering 12×22 m area
- Experiments with 8 persons moving through the scene

The sensor network provides a complete 3D semantic scene view and estimates dynamic 3D poses of multiple persons in real time.

ANA Avatar XPRIZE Competition

- Requires mobility, manipulation, human-human interaction
- Focuses on the immersion in the remote environment and the presence of the remote operator

NimbRo Avatar

- Two-armed avatar robot designed for teleoperation with immersive visualization & force feedback
- Operator station with HMD, exoskeleton and locomotion interface

Team NimbRo Semifinal Submission

[Schwarz et al. IROS 2021]

Team NimbRo Semifinal Team Video

- 1. Make a coffee
- 2. Greet the recipient
- 3. Measure temperature

4. Measure blood pressure

Measure oxygen saturation
Help recipient with jacket

NimbRo Avatar: Immersive Visualization

- 4K wide-angle stereo video stream
- 6D neck allows full head movement
 - Very immersive
- Spherical rendering technique hides movement latencies
 - Assumes constant depth

Exact for pure rotations

Distortions for translations

[Schwarz and Behnke Humanoids 2021]

NimbRo Avatar: Operator Face Animation

- Operator images without HMD
- Capture mouth and eyes
- Estimate gaze direction and facial keypoints

Right Eye

Generate animated operator face using a warping neural network

NimbRo Avatar: Operator Face Animation

FaDIV-Syn: Fast Depth-Independent View Synthesis

- Two input views
- Generate novel view from different pose
- Does not require depth
- Handles occlusions, transparency, reflectance, moving objects, ...

[Rochow et al. RSS 2022]

FaDIV-Syn: Fast Depth-Independent View Synthesis

Robot Teleoperation

[Rochow et al. RSS 2022]

Conclusions

- Developed capable robotic systems for challenging scenarios
 - Plant reconstruction
 - Bin picking
 - Humanoid soccer
 - Disaster response (UGV, UAV)
- Challenges include
 - 4D semantic perception
 - High-dimensional motion planning
- Promising approaches
 - Prior knowledge (inductive bias)
 - Shared experience (fleet learning)
 - Shared autonomy (human-robot)
 - Instrumented environments

